动力电池基础知识

动力电池基础知识
动力电池基础知识

动力电池PACK总成的系统组成:

1)动力电池模块;

2)结构系统;

3)电气系统;

4)热管理系统;

5)BMS;

动力电池PACK四大工艺:

1)装配工艺:通过螺栓、螺帽、扎带、卡箍、线束抛钉等连接件将五大系统连接到一起,构成一个总成。

2)气密性检测工艺:

1)热管理系统级的气密性检测;

2)PACK级的气密性检测;国际电工委员会(IEC)起草的防护等级系统中规定,动力电池PACK必须要达到IP67等级。

3)软件刷写工艺:软件刷写工艺就是将BMS控制策略以代码的形式刷入到BMS中的CMU 和BMU中,以在电池测试和使用过程中将采集的电池状态信息数据,由电子控制单元进行数据处理和分析,然后根据分析结果对系统内的相关功能模块发出控制指令,最终向外界传递信息。

4)电性能检测工艺:电性能检测分三个环节:

1)静态测试:绝缘检测、充电状态检测、快慢充测试等;

2)动态测试;通过恒定的大电流实现动力电池容量、能量、电池组一致性等参数的评价。3)SOC调整:将电池PACK的SOC调整到出厂的SOC。

SOC: State Of Charge,通俗的将就是电池的剩余电量。

PACK装配工艺中最最最重要的技术:

1、连接方式其实有三种

1)用螺栓、螺帽将线束与继电器等核心零件连接;

2)用抛钉将线束和金属支架连接;

3)用卡扣将低压线束与模组连接

其中靠螺栓、螺帽拧紧连接是动力电池PACK装配过程中用到的最多的连接方式。而拧紧技术也是装配中最最最重要的技术。

拧紧技术是很大的一个课题,本文先讲下拧紧技术的基础知识。

拧紧原理:螺栓插入被连接件,利用螺母或内螺纹拧紧使螺栓拉伸变形,这种弹性变形产生了轴向的拉力,将被夹零件挤压在了一起,称为预紧力,又称夹紧力。

高压线是动力电池PACK的“大动脉血管”,用来传输电流。高压线与模组连接的螺栓若因为拧紧过程异常导致松动或者螺栓断裂,会导致电流无法输出,动力中断,汽车急停。

夹紧力是我们制造过程中想要得到的参数,但是在制造现场直接去测量力是很难操作的。而扭矩(Torque)是很容易测量出的。真正转化为加紧力的扭矩其实只有10%,90%的扭矩用于克服摩擦力。即传说中的:50-40-10原则。

2、拧紧连接类型

首先讲下什么是贴合面和拧紧角度。

贴合面是指螺栓的法兰面与被紧固件接触的面;

拧紧角度是指螺栓从贴合面最终到达目标扭矩所旋转的角度。

根据螺栓的拧紧角度,我们可以将螺栓连接状态分为两大类。

1)硬连接

当拧紧角度<30°时,称之为硬连接。在PACK装配工艺中,绝大部分都是硬链接。比如模组与托盘的连接,高压线束与继电器的连接。

2)软连接

当拧紧角度>720°时,称之为软连接。在PACK装配工艺中,只有很少的软连接。最典型的就是笔者曾经负责的一款PACK装配工艺中,热管理系统中橡胶管与冷却板的进出水口用卡箍的连接(如下右图所示)。

在正常情况下,硬连接的静态扭矩要高于动态扭矩。软连接的静态扭矩要低于动态扭矩,我们也称之为扭矩衰减。

注:动态扭矩:电动拧紧工具传感器在拧紧结束那一刻采集到的扭矩峰值;

静态扭矩:拧紧结束5分钟以内,再用数显扭矩扳手绕螺栓原来的转动方向复拧一次所显示的扭矩值(螺栓转动角度不超过5°)。”

热工基础(张学学--第三版)复习知识点

热工基础(第三版) 张学学 复习提纲

第一章基本概念 1.工程热力学是从工程角度研究热能与机械能相互转换的科学。 2.传热学是研究热量传递过程规律的一门科学。 3.工质:热能转换为机械能的媒介物。 4.热力系统:选取一定的工质或空间作为研究对象,称之为热力系统,简称系统。 5.外界(或环境):系统之外的一切物体。 6.边界:系统与外界的分界面。 7.系统的分类: (1)闭口系统:与外界无物质交换的系统。 (2)开口系统:与外界有物质交换的系统。 (3)绝热系统:与外界之间没有热量交换的系统。 (4)孤立系统:与外界没有任何的物质交换和能量(功、热量)交换。 8.热力状态:系统中的工质在某一瞬间呈现的各种宏观物理状况的总和称为工质(或系统)的热力状态,简称为状态。 9.平衡状态:在不受外界影响的条件下,工质(或系统)的状态参数不随时间而变化的状态。 10.基本状态参数:压力、温度、比容、热力学能(内能)、焓、熵。 11.表压力Pg、真空度Pv、绝对压力P P g = P - P b P v = P b - P 12.热力学第零定律(热平衡定律) :如果两个物体中的每一个都

分别与第三个物体处于热平衡,则这两个物体彼此也必处于热平衡。 13.热力过程:系统由一个状态到达另一个状态的变化过程。 14.准平衡过程(准静态过程):热力过程中,系统所经历的每一个状态都无限地接近平衡状态的过程。 15.可逆过程:一个热力过程完成后,如系统和外界能恢复到各自的初态而不留下任何变化,则这样热力过程称为可逆过程。 16.不可逆因素:摩擦、温差传热、自由膨胀、不同工质混合。 17.可逆过程是无耗散效应的准静态过程。 18.系统对外界做功的值为正,外界对系统做功的值为负。 系统吸收热量时热量值为正,系统放出热量时热量值为负。 第二章热力学第一定律 1.热力学第一定律:在热能与其它形式能的互相转换过程中,能的总量始终不变。 也可表述为:不花费能量就可以产生功的第一类永动机是不可能制造成功的。进入系统的能量-离开系统的能量=系统储存能量的变化。 2.闭口系统的热力学第一定律表达式:Q =?U +W 微元过程:δQ =dU +δW 可逆过程:Q =?U +? 1pdV δQ =dU +pdV 2

动力电池基础知识普及

动力电池基础知识普及 动力电池是纯电动汽车的唯一能量来源,同时也是整车成本较高的一个关键动力总成部件。自电动汽车诞生以来,铅酸电池、镍氢电池以及锂电池等具有较为广泛的应用。 1)最早应用于电动汽车上的是铅酸电池,并且在较长的一段时间内都是电动汽车的主要能源方案,其主要特点是原材料易得、安全耐用、价格低廉,并且技术较为成熟。尤其是20 世纪70 年代以后,密封免维护铅酸电池的出新极大提升了性能水平和使用方便程度,在市场中占据了较大的份额。但是比能量和比功率低是铅酸电池的最大缺点,能量密度大概在35Wh/kg 左右,一般400 次左右的循环寿命也在一定程度上制约了铅酸电池的应用。目前虽然在电动汽车市场上仍有应用,但一般都是局限在对整车性能水平要求不高且注重成本的车型上,如电动自行车以及一些场地用车等。 2)镍氢电池的比能量和比功率均在一定程度上优于铅酸电池,但其价格是同容量铅酸电池的5~8 倍,特性与镍镉电池相似,但不存在镍镉电池的重金属污染问题。快速充电和深度放电的性能较好,效率较高,且无需维护,目前主要是在混合动力汽车中应用较多。不过镍氢电池自放电率较高,且对环境温度较为敏感,尤其是单体电压较低约为 1.2V 左右,对于纯电动汽车来说,往往需串联大量的电池才能满足其高压系统需求,所以在纯电动汽车上的应用相对较少。 3)锂离子电池与其他电池相比,在单体电压、容量、比功率方面具有较大的优势,且可进行大电流充放电、循环充放电性能好、较为安全,目前在纯电动汽车、混合动力汽车以及燃料电池车上均有应用。随着锂电池材料技术以及加工工艺的进一步发展,已逐渐成为国内外电动汽车用动力电池的首选方案。 三类主要电池的性能对比

电力系统基本概念

一、电力工业发展概况及前景 几个需要记住的知识点 1、电力工业是将一次能源转换成二次能源的工业,其发展水平是反映国家经济发展程度的重要标志。 2、1882年在上海建立第一个火电厂。 3、1912年在昆明滇池石龙坝建立第一座水电站。 4、2001年,针对我国能源结构的实际情况,我国的电源发展实施了“优先开发水电、大力发展火电、适当发展核电、积极发展新能源发电”的方针,使电源发展呈现多种 能源互补的格局。 5、在水电方面我取得了骄人成绩,有许多世界之最 ①1994年12月开工建设世界上最大的水电站→三峡 ②界上最大的抽水蓄能电站→广州抽水蓄能电站 ③世界上海拔最高的电站→西藏羊卓雍湖水电站等。 6、我国电力已经开始进入“大机组‘’、“大电网”、“超高压”、“高自动化” 的发展新阶段。 二、电力系统基本概念 (一)、电力系统 1、电力系统概念 由发电厂、升压变电站、输电线路、降压变电站及电力用户所组成的统一整体称为电 力系。 2、动力系统概念 电力系统加上带动发电机转动的动力装置构成的整体称为动力系统。 3、电力网概念 由各类升压变电站、输电线路、降压变电站、组成的电能传输和分配的网络称为电力网。 (二)、发电厂 1、定义 发电厂是电力系统的中心环节,它是把其他形式的一次能源转换成二次能源的一种特 殊工程。 2、分类 ⑴a、按其所用能源分为 火力发电厂、水力发电厂、核能发电厂、风力发电厂、潮汐发电厂、地热发电、太阳 能发电、垃圾发电、沼气发电等等。 b、按发电厂的规模和供电范围划分为:区域性发电厂、地方发电厂、自备专用发电厂等。 ⑵、火力发电厂

①定义 利用煤、石油、天然气、油页岩等燃料的化学能生产电能的工厂。热能→机械能机→ 电能。 ②凝汽式火力发电厂 火力发电厂中的原动机可以是凝汽式汽轮机、燃气式汽轮机或内燃机。我国大部分火 力发电厂采用凝汽式汽轮发电机组,所以称为凝汽式火力发电厂。汽式火力发电厂热 效率较低只有30~40%。适宜建在燃料产地。 ③热电厂 既发电又供热的火力发电厂称为热电厂。热效率可以上升到60~70%。一般建在大城 市及工业附近。 ⑶水力发电厂 定义 通常称水电厂。利用江河水流的水能生产电能的工厂。水能→机械能→电能。 ⑷核电厂 定义 核能→热能→机械能→电能。 特点 能取得较大的经济效益,所需原料极少。 (三)、变电站 1、定义 变电站是汇集电源、升降电压和分配电力的场所,是联系发电厂和用户的中间环节。 2、分类 ⑴按升降电压划分为 ①、升压变电站→通常是发电厂升压部分,紧靠发电厂。 ②、降压变电站→通常运离发电厂而靠近负荷中心。 ⑵按变电站在电力系统中所处的地位和作用划分为 ①、枢纽变电站:枢纽变电站位于电力系统的枢纽点,电压等级一般为330kV以上, 连接多个电源,出现回路多,变电容量大;全站停电后将造成大面积停电或系统瓦解。 ②、中间变电站:中间变电站位于系统主干环行线或系统主干线的接口处,电压等级 一般为330——220kV,汇集2~3个电源和若干线路。 ③、地区变电站:地区变电站是某个地区和某个城市的主要变电站,电压等级一般为220kV。 ④、企业变电站:企业变电站是大、中型企业的专用变电站,电压等级35——220kV,1~2回进线。 ⑤、终端变电站:终端变电站位于配电线路的终端,接近负荷处,高压侧10——35kV 引入线,经降压后向用户供电。

动力电池基础知识

动力电池PACK总成的系统组成: 1)动力电池模块; 2)结构系统; 3)电气系统; 4)热管理系统; 5)BMS; 动力电池PACK四大工艺: 1)装配工艺:通过螺栓、螺帽、扎带、卡箍、线束抛钉等连接件将五大系统连接到一起,构成一个总成。 2)气密性检测工艺: 1)热管理系统级的气密性检测; 2)PACK级的气密性检测;国际电工委员会(IEC)起草的防护等级系统中规定,动力电池PACK必须要达到IP67等级。 3)软件刷写工艺:软件刷写工艺就是将BMS控制策略以代码的形式刷入到BMS中的CMU 和BMU中,以在电池测试和使用过程中将采集的电池状态信息数据,由电子控制单元进行数据处理和分析,然后根据分析结果对系统内的相关功能模块发出控制指令,最终向外界传递信息。 4)电性能检测工艺:电性能检测分三个环节: 1)静态测试:绝缘检测、充电状态检测、快慢充测试等; 2)动态测试;通过恒定的大电流实现动力电池容量、能量、电池组一致性等参数的评价。3)SOC调整:将电池PACK的SOC调整到出厂的SOC。 SOC: State Of Charge,通俗的将就是电池的剩余电量。 PACK装配工艺中最最最重要的技术: 1、连接方式其实有三种 1)用螺栓、螺帽将线束与继电器等核心零件连接; 2)用抛钉将线束和金属支架连接; 3)用卡扣将低压线束与模组连接 其中靠螺栓、螺帽拧紧连接是动力电池PACK装配过程中用到的最多的连接方式。而拧紧技术也是装配中最最最重要的技术。 拧紧技术是很大的一个课题,本文先讲下拧紧技术的基础知识。 拧紧原理:螺栓插入被连接件,利用螺母或内螺纹拧紧使螺栓拉伸变形,这种弹性变形产生了轴向的拉力,将被夹零件挤压在了一起,称为预紧力,又称夹紧力。 高压线是动力电池PACK的“大动脉血管”,用来传输电流。高压线与模组连接的螺栓若因为拧紧过程异常导致松动或者螺栓断裂,会导致电流无法输出,动力中断,汽车急停。 夹紧力是我们制造过程中想要得到的参数,但是在制造现场直接去测量力是很难操作的。而扭矩(Torque)是很容易测量出的。真正转化为加紧力的扭矩其实只有10%,90%的扭矩用于克服摩擦力。即传说中的:50-40-10原则。

热工基础考试题库(带答案)

热工基础题库 一、选择题 基本概念 1.与外界只发生能量交换而无物质交换的热力系统称为。B A、开口系统 B、闭口系统 C、绝热系统 D、孤立系统 2.与外界既无能量交换又无物质交换的热力系统称为。D A、开口系统 B、闭口系统 C、绝热系统 D、孤立系统 3.开口系统与外界可以有。D A、质量交换 B、热量交换 C、功量交换 D、A+B+C 4.与外界有质量交换的热力学系统是:A A、开口系统 B、闭口系统 C、绝热系统 D、孤立系统 5.下列与外界肯定没有质量交换但可能有热量交换。B A、绝热系统 B、闭口系统 C、开口系统 D、孤立系统 6.实现热功转换的媒介物质称为。C A、系统 B、气体 C、工质 D、蒸气 7.工质应具有良好的和。A A、流动性/膨胀性 B、耐高温性/导热性 C、耐高压性/纯净 D、耐腐蚀性/不易变形 8.若闭系处于热力学平衡状态,则内部工质的处处一致。A A、压力和温度 B、压力和比容 C、比容和温度 D、压力、温度和比容 9.稳定状态是平衡状态,而平衡状态是稳定状态。B A、一定/一定 B、不一定/一定 C、一定/不一定 D、不一定/不一定 10.均匀状态是平衡状态,而平衡状态是均匀状态。C A、一定/一定 B、不一定/一定 C、一定/不一定 D、不一定/不一定 11.下列组参数都不是状态参数。C A、压力;温度;比容 B、内能;焓;熵 C、质量;流量;热量 D、膨胀功;技 术功;推动功 12.下列组参数都是状态参数。A A、焓;熵;比容 B、膨胀功;内能;压力 C、热量;比热;温度 D、技术功;动能;位能 13.下列答案是正确的。B A、10℃=43.8℉=285.15K B、10℃=50℉=283.15K C、10℃=40.2℉=285.15K D、10℃=42℉=283.15K 14.摄氏温度变化1℃与热力学绝对温度变化1K相比,有。B A、前者大于后者 B、两者相等 C、后者大于前者 D、不一定 15.摄氏温度变化1℃与华氏温度变化1℉相比,有。B A、前者大于后者 B、两者相等 C、后者大于前者 D、不一定 16.若大气压力为100KPa,真空度为60KPa,则绝对压力为。D A、160KPa B、100KPa C、60KPa D、40KPa 17.若大气压力为100KPa,表压力为60KPa,则绝对压力为。A A、160KPa B、100KPa C、60KPa D、40Kpa 18.在工程热力学计算中使用的压力是。A A、绝对压力 B、表压力 C、真空压力 D、大气压力 19.若大气压力为0.1Mpa,容器内的压力比大气压力低0.004Mpa,则容器的B。 A、表压力为0.096Mpa B、绝对压力为0.096Mpa C、真空度为0.104Mpa D、表压力为0.104Mpa

电力系统基础相关概念总结

电力系统概念汇总 CHAPTER1 1、什么是电力系统?什么是电力网?他们都由那些设备组成? 电力系统:由发电、变电、输电、配电、用电等设备和相应辅助设备、按规定的技术和经济要求组成的,将一次能源转换成电能并输送和分配到用户的一个统一系统。 组成:电力系统是由发电机、变压器、线路、负荷等4类设备组成的有机整体。其组成按照功能分3个层次: 电力网络:升压变压器+输电线路+降压变压器+配电线路 电力系统:发电机+电力网络+用电设备(用电负荷) 动力系统:电力系统+发电厂动力部分(一次能源转换设备) 2、电力网的额定电压是怎样规定的?电力系统各类元件的额定电压与电力网的额定电压有什么关系? I)电力线路的额定电压和系统的额定电压相等; II)发电机的额定电压与系统的额定电压为同一级别时,其额定电压规定比系统的额定电压高5%; III)变压器接受功率一侧的绕组为一次绕组(相当于受电设备),输出功率一侧的绕组为二次绕组(相当于供电设备); IV)变压器一次绕组的额定电压与系统的额定电压相等,但直接与发电机联接时,其额定电压则与发电机的额定电压相等。 V)变压器二次绕组的额定电压规定比系统的额定电压高10%,如果变压器的短路电压小于7%、或直接(包括通过短距离线路)与用户联接时,则规定比系统的额定电压高5%。 3、升压变压器和降压变压器的分接头是怎样规定的?变压器的额定变比和实际变比有什么区别? 变压器分接头: ①为满足电力系统的调压要求,电力变压器的绕组设有若干个分接抽头———分接头,相应绕组的中心抽头称之为主抽头。 ②变压器绕组额定电压,指主轴头对应的绕组额定电压。 ③分接头位置用“%”示出,表示抽头偏离主抽头的额定电压% ④分接头的设置: 双绕组变压器——分接头设在高压侧 三绕组变压器——分接头分别设在高压侧和中压侧 ⑤分接头调节方式与个数:个数为奇数(含主抽头) 变压器变比 A)额定变比:kN=高压侧额定电压/低压侧额定电压 B)运行变比:k=高压侧分接头电压/低压侧额定电压 C)标么变比:k*=k/kN(or:k*=k/kB——见2.6节)

锂离子电池基础知识

电池基础知识培训资料 、锂离子电池工作原理与性能简介: 1、电池的定义:电池是一种能量转化与储存的装置,它通过反应将化学能或物理能转化为电能,电池 即是一种化学电源,它由两种不同成分的电化学活性电极分别组成正负极,两电极浸泡在能提供媒体传导作用的电解质中,当连接在某一外部载体上时,通过转换其内部的化学能来提供能源。 2、锂离子电池的工作原理:即充放电原理。Li-ion的正极材料是氧化钻锂,负极是碳。当对电池进行 充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。在Li-ion的充放 电过程中,锂离子处于从正极一负极一正极的运动状态。Li-ion就象一把摇椅,摇椅的两端为电池的两 极,而锂离子就象运动员一样在摇椅两端来回奔跑。所以,Li-i on又叫摇椅式电池。 通俗来说电池在放电过程中,负极发生氧化反应,向外提供电子;在正极上进行还原反应,从外电路接收电子,电子从负极流到正极,而电流方向正好与电子流动方向相反,故电流经外电路从正极流向负极。电解质是离子导体,离子在电池内部的正负极之间定向移动而导电,阳离子流向正极,阴离子流向负极。整个电池形成了一个由外电路的电子体系和电解质的离子体系构成的完整放电体系,从而产生电能。 正极反应:LiCoO2==== Li i-x CoO + xLi + + xe 负极反应:6C + xLi + + xe - === Li x C6 电池总反应:LiCoO2 + 6C ==== Li1-xCoO2 + LixC6 3、电池的连接: 根据电池的电压与容量的需求,可以把电池做串联、并联及混连连接 a、串联:电压升高,容量基本不变; b、并联:电压基本不变,容量升高; c、混联:电压与容量都会升高; 4、化学电池的种类: 锂离子电池按电池外形来分类,可分为圆柱形、方形、钮扣形和片状形等。

动力电池基础知识普及

锂电池基础的方方面面介绍 目录 1. 锂电池的构成 2. 锂电池的优缺点 3. 锂电池的分类 4. 常用术语解释 5. 锂电池命名规则 6. 锂电池工艺 7. 锂电池成组和串并联 8. 各种动力电池对比 9. 锂电池模型 10. 锂电池电气特性与关键参数 11. 锂电池保护和管理系统 12. 锂电池应用领域 13. 锂电池相关标准

(一)锂电池的构成 锂电池主要由两大块构成,电芯和保护板PCM(动力电池一般称为电池管理系统BMS),电芯相当于锂电池的心脏,管理系统相当于锂电池的大脑。 电芯主要由正极材料、负极材料、电解液、隔膜和外壳构成,而保护板主要由保护芯片(或管理芯片)、MOS管、电阻、电容和PCB板等构成。 锂电池的产业链结构如下图: 电芯的构成如下面两图所示:

锂电池的PACK的构成如下图所示:

●(二)锂电池优缺点 锂电池的优点很多,电压平台高,能量密度大(重量轻、体积小),使用寿命长,环保。锂电池的缺点就是,价格相对高,温度范围相对窄,有一定的安全隐患(需加保护系统)。 ●(三)锂电池分类 锂电池可以分成两个大类:一次性不可充电电池和二次充电电池(又称为蓄电池)。 不可充电电池如锂二氧化锰电池、锂-亚硫酰胺电池。 二次充电电池又可以分为下面根据不同的情况分类。 1.按外型分:方形锂电池(如普通手机电池)和圆柱形锂电池(如电动工具的18650);2.按外包材料分:铝壳锂电池,钢壳锂电池,软包电池; 3.按正极材料分:钴酸锂(LiCoO2)、锰酸锂(LiMn2O4)、三元锂(LiNixCoyMnzO2)、磷酸铁锂(LiFePO4); 4.按电解液状态分:锂离子电池(LIB)和聚合物电池(PLB); 5.按用途分:普通电池和动力电池。 6.按性能特性分:高容量电池、高倍率电池、高温电池、低温电池等。

热工基础(1.1.4)--基本概念

习 题 1 指出下列各物理量中哪些是状态量?哪些是过程量? 压力,温度,动能,位能,热能,热量,功量,密度。 2 指出下列各物理量中哪些是强度量: 体积,速度,比体积,动能,位能,高度, 压力,温度,重量。 3 用水银差压计测量容器中气体的压力,为防止有毒的 水银蒸气产生,在水银柱上加一段水。若水柱高 200mm ,水银柱高800mm ,如图1-9所示。已知大气压 力为735mmHg (lmmHg=133.322Pa),试求容器中气体 的绝对压力为多少kPa? 4 锅炉烟道中的烟气常用上部开口的斜管测量,如图1-10所示。若已知斜管倾角α= 30°,压力计中使用 ρ=0.8g/cm 3的煤油,斜管液体长度L = 200mm ,当地大气压力p b =0. lMPa 。 求烟气的绝对压力(用MPa 表示)。 5 一容器被刚性壁分成两部分,并在各部装有测压表计,如图1-11所示。 其中C 为压力表,读数为110kPa ,B 为真空表,读数为45kPa 。若当地大气压p b =97kPa ,求压力表A 的读数(用kPa 表示)。 6 如图1-12所示,一刚性绝热容器内盛有水,电流通过容器底 部的电阻丝加热水。按下列三种方式取系统时,试述系统与外 界交换的能量形式是什么? (1) 取水为系统; (2) 取电阻丝、容器和水为系统; (3) 取如图中虚线内空间为系统。 7 某电厂汽轮机进口处蒸汽压力用压力表测量,其读数为 13.402MPa ;冷凝器内蒸汽压力用真空表测量,其读数为706mmHg 。若大气压力为0.098MPa ,试求汽轮机进口处和冷 凝器内蒸汽的绝对压力(用MPa 表示)。 8 测得容器的真空度p v =550mmHg ,大气压力p b =0.098MPa ,求容程器内的绝对压力。若大气压力变为p b =0.102MPa 。求此时真空表上读数为多少mmHg? 9 如果气压计压力为83kPa ,试完成以下计算: (1) 绝对压力为0.15MPa 时的表压力; 图1-9 习题1-3 图图1-10 习题1-4图 图1-11 习题1-5图 图1-12 电加热水过程

电路基础知识点大全

一、认识电路 1. 电路的基本组成: 电源——将其他能转化为电能的装置用电器——将电能转化为其他形式能的装置开关——控制电路的通断导线——起连接作用,传输电能 2. 电路图:用规定的符号表示电路连接情况的图。填写以下电路图符号: 电源开关灯泡变阻器电流表电压表 3. 电路的连接方式:串联和并联 二、探究不同物质的导电性能 1. 导体:容易导电的物体。如:常见金属、酸碱盐的水溶液、人体、大地、石墨等。 容易导电的原因:有大量的自由电荷。(具体情况:金属中有大量的自由电子;酸碱盐的水溶液中有大量的自由离子) 2.绝缘体:不容易导电的物体。如:油、酸碱盐的晶体、陶瓷、橡胶、纯水、空气等。 不容易导电的原因:几乎没有自由电荷。 3.良好的导体和绝缘体都是理想的电工材料,导体和绝缘体没有明显的界限。 三、电流 1. 电流的形成:电荷的定向移动形成电流。(在金属导体中,能够做定向移动的是自由电 子;在酸碱盐溶液中,能够做定向移动的是正离子和负离子) 2. 电流的方向:正电荷定向移动的方向为电流方向。按照这个规定,负电荷定向移动的方 向和电流方向相反。 3. 电流用字母I表示,国际单位是安培,简称安,符号A。 比安小的单位还有毫安(mA)和微安(μA):1A=103 mA 1 mA=103μA 4. 实验室常用的电流表有两个量程:0—0.6A(分度值0.02A);0—3A(分度值0.1A) 四、电压 1电压的作用 (1)电压是形成电流的原因:电压使电路中的自由电荷定向移动形成了电流。电源是提供电压的装置。 (2)电路中获得持续电流的条件:①电路中有电源(或电路两端有电压);②电路是连通的。

第章电路的基本概念与基本定律

第1章电路的基本概念与基本定律 一、填空题: 1. 下图所示电路中,元件消耗功率200W P=,U=20V,则电流I为 10 A。 2. 如果把一个24伏的电源正极作为零参考电位点,负极的电位是_-24___V。 3.下图电路中,U = 2 V,I = 1 A 3 A,P 2V = 2 W 3 W , P 1A = 2 W,P 3Ω = 4 W 3 W,其中电流源(填电流源或电压源)在发出功 率,电压源(填电流源或电压源)在吸收功率。 U 4. 下图所示中,电流源两端的电压U= -6 V,电压源是在发出功率 5.下图所示电路中,电流I= 5 A ,电阻R= 10 Ω。 B C 6.下图所示电路U=___-35 ________V。 7.下图所示电路,I=__2 __A,电流源发出功率为_ 78 ___ W,电压源吸收功率20 W。 8. 20. 下图所示电路中,根据KVL、KCL可得U=2 V,I 1= 1 A,I 2 = 4 A ;电流源的 功率为 6 W;是吸收还是发出功率发出。2V电压源的功率为 8 W,是吸收还是发出功率吸收。 9.下图所示的电路中,I 2= 3 A,U AB = 13 V。 10.电路某元件上U = -11 V,I = -2 A,且U 、I取非关联参考方向,则其吸收的功率是22 W。 11. 下图所示的电路中,I1= 3 A,I2= 3 A,U AB= 4 V。 12.下图所示的电路中,I= 1 A;电压源和电流源中,属于负载的是 电压源。 13. 下图所示的电路中,I=-3A;电压源和电流源中,属于电源的是电流源。

14.下图所示的电路,a 图中U AB 与I 之间的关系表达式为 155AB U I =+ ;b 图中U AB 与I 之间 的关系表达式为 510 AB U I =- 。 a 图 b 图 15. 下图所示的电路中,1、2、3分别表示三个元件,则U = 4V ;1、2、3这三个元件中,属于电源的是 2 ,其输出功率为 24W 。 16.下图所示的电路中,电流I= 6 A ,电流源功率大小为 24 W ,是在 发出 (“吸收”,“发出”)功率。 17. 下图所示的电路中,I= 2 A ,5Ω电阻消耗的功率为 20W W ,4A 电流源的发出功率为 40 W 。 18.下图所示的电路中,I= 1A A 。 19. 下图所示的电路中,流过4Ω电阻的电流为 0.6 A ,A 、B 两点间的电压为 5.4 V , 3Ω电阻的功率是 3 W 。 20. 下图所示电路,A 点的电位V A 等于 27 V 。 21.下图所示的电路中,(a )图中Uab 与I 的关系表达式为3AB U I =- ,(b) 图中Uab 与I 的关系 表达式为 103AB U I =+ ,(c) 图中Uab 与I 的关系表达式为 62 AB U I =+,(d )图中Uab 与I 的关系表达式为 62 AB U I =+ 。 (a ) (b) (c) (d ) 22. 下图中电路的各电源发出的功率为Us P = 0W , Is P = 8W 。 23. 额定值为220V 、40W 的灯泡,接在110V 的电源上,其功率为 10 W 。 二、选择题: 1. M Ω是电阻的单位,1M Ω=( B )Ω。 A.103 B.106 C. 109 D. 1012 2.下列单位不是电能单位的是( B )。 A.W S ? B.kW C.kW h ? D.J 3. 任一电路,在任意时刻,某一回路中的电压代数和为0,称之为( B )。 A.KCL B.KVL C.VCR D.KLV 4. 某电路中,B 点电位-6V ,A 点电位-2V ,则AB 间的电压U AB 为( C )。 A.-8V B.-4V C.4V D.8V 5. 下图电路中A 点的电位为( D )V 。

工程热力学基本概念

工程热力学基本概念及基本公式 1.准静态过程(Quasi-static Process ) 过程中热力学系统经历的是一系列平衡状态并在每次状态变化时仅无限小地偏离平衡状态。 A quasi-static process is one in which the departure from thermodynamic equilibrium is at most infinitesimal. 2.外界(Surroundings ):系统之外的一切其它物质。 边界(Boundary ):系统与外界之间的分界面。 闭口系统(Closed System ) ←→控制质量(Control Mass ):系统与外界之间没有物质交换,但有能量交换。0;0≠=E m δδ 开口系统(Open System )←→控制体积(Control Volume ):系统与外界之间不仅有物质交换,还有能量交换。0;0≠≠E m δδ 孤立系统(Isolated System ):系统与外界之间既无质量交换又无能量交换。0;0==E m δδ 3.热力学第一定律(First Law of Thermodynamics ): 在系统两个状态之间的所有绝热过程的净功是一样的,也就是说,闭口系统在经历给定两点的绝热过程对环境所作的净功仅与系统初态和终态有关,而与绝热过程的具体路径无关。 It is found by experiment that for all adiabatic processes between two states the value of the net work done by or on the system is the same. That is, the value of the net work done by or on a closed system undergoing an adiabatic process between two given states depends solely on the end states and not on the details of the adiabatic process. dE Q W δδ=-→dE Q W dt =- 4.第二定律的陈述(Statements of the Second Law ) 克劳修斯陈述: ① 热能不可能单独地从低温物体传向高温物体。(It is impossible for any system to operate in such a way that the sole result would be an energy transfer by heat from a cooler to a hotter body.) ② 热能可以单独地从高温物体传向低温物体。 ③ 在外界作用下,热能可以从低温物体传向高温物体。 开尔文-普朗克陈述: ① 任何系统不可能从单一热库吸收热能在经历一个热循环之后使之完全转变为功。(It is impossible for any system to operate in a thermodynamic cycle and deliver a net amount of work to its surroundings while receiving energy by heat transfer from a single thermal reservoir.) ② 热力系统可以从一个热库吸热同时向另一个热库放热并在经历一个热循环之后使剩余热能完全 转变为功。 ③ 外界对热力系统作功并在其经历一个热循环之后使之完全转变为热能。 5.不可逆和可逆过程(Irreversible and Reversible Processes ) 不可逆过程: 系统在经历了一个热力过程之后,如果系统及其环境不能精确地回复到各自的初始状态。 A process is called irreversible if the system and all parts of its surroundings cannot be exactly restored to their respective initial states after the process has occurred. 不可逆过程主要有:热交换过程;自由膨胀过程;燃烧过程;混合过程;粘性流动过程;非弹性变形过程; 可逆过程: 系统在经历了一个热力过程之后,如果系统及其环境能回复到各自的初始状态。

知识点《热工基础与应用(第3版)》

《热工基础及应用》第3版知识点 第一章 热能转换的基本概念 本章要求:1.掌握研究热能转换所涉及的基本概念和术语; 2.掌握状态参数及可逆过程的体积变化功和热量的计算; 3.掌握循环的分类与不同循环的热力学指标。 知识点: 1.热力系统:根据研究问题的需要和某种研究目的,人为划定的一定范围内的研究对象称为热力系统,简称热力系或系统。热力系可以按热力系与外界的物质和能量交换情况进行分类。 2.工质:用来实现能量相互转换的媒介物质称为工质。 3.热力状态:热力系在某瞬时所呈现的宏观物理状态称为热力状态。对于热力学而言,有意义的是平衡状态。其实现条件是:0,0,0p T μ?=?=?=。 4. 状态参数和基本状态参数:描述系统状态的宏观物理量称为热力状态参数,简称状态参数。状态参数可按与系统所含工质多少有关与否分为广延量(尺度量)参数和强度量状态参数;按是否可直接测量可分为基本和非基本状态参数。 5. 准平衡(准静态)过程和可逆过程:准平衡过程是基于对热力过程的描述而提出的。实现准平衡过程的条件是推动过程进行的不平衡势差要无限小,即0p ?→,0T ?→(0μ?→)。 6、热力循环:为了实现连续的能量转换,就必须实施热力

循环,即封闭的热力过程。热力循环按照不同的方法可以分为:可逆循环和不可逆循环;动力循环(正循环)和制冷(热)循环(逆循环)等。动力循环的能量利用率的热力指标是热效率:0 =t H W Q η;制冷循环能量利用率的热力学指标是制冷系数:L 0=Q W ε。 第二章 热力学第一定律 本章要求:1. 深入理解热力学第一定律的实质;2. 熟练掌握热力学第一定律的闭口系统和稳定流动系统的能量方程。 知识点: 1. 热力学第一定律:是能量转换与守恒定律在涉及热现象的能量转换过程中的应用。热力学第一定律揭示了能量在传递和转换过程中数量守恒这一实质。 2. 闭口系统的热力学第一定律表达式,即热力学第一定律基本表达式:Q U W =?+。 3. 稳定流动系统的能量方程:2sh 12Q H m c mg z W =?+ ?+?+。 4. 技术功: 2t sh 12W m c mg z W =?+?+,在可逆条件下 2t 1d W V p =-?。 第三章 热力学第二定律 本章要求:1. 深刻理解热力学第二定律的实质,掌握卡诺循环、卡诺定理及其意义;2. 掌握熵参数,了解克劳修斯不等式意义;3.利用熵增原理进行不可逆过程和循环的分析与计算。

电路分析基础基本概念

1实际电路:实际电路是各个器件按照一定的方式相互连接而构成电流的通路。以实现电能或电信号的产生、传输、转换、控制和处理等。 模型:是对实体的特征和变化规律的一种表示或者抽象。 理想电路元件:理想电路元件是用数学关系式严格定义的假想元件,每一种理想电路元件都可以表示其实际器件的其中主要的一种电磁性能,理想电路元件是电路模型的最小组成单元。 R、L、C是电路中的三类基本元件 电路模型:电路模型是实际电路在一定条件下的科学抽象和足够精确的数学描述。 集总概念:当实际电路的尺寸远小于电路工作时电磁波的波长时,可以把元件的作用集总起来,这样的元件叫做集总元件,这样的电路参数叫做集总参数,由集总元件构成的电路称为集总电路。 分布概念:当实际电路的尺寸可以电路工作时电磁波的波长相比拟时,电路中同一瞬间相邻两点的电位和电流都不相同,这样的元件叫做分布元件,这样的电路参数叫做分布参数,由分布元件构成的电路叫做分布电路。 1

集总电路的分类:(1)静态电路(2)动态电路 二端元件:具有两个端子的元件叫做二端元件,又叫单口元件支路:电路的每一个二端元件称为一条支路,流经元件的电流叫做支路电流,元件的端电压叫做支路电压。 节点:电路中两条或两条以上的支路的公共连接点叫做节点。回路:电路中由支路组成的任一闭合路径称为回路。 网孔:内部不含有支路的回路叫做网孔。 网络:一般把含有元件较多的电路称为网络。 有源网络:内部含有独立电源的网络 无源网络:内部不含独立电源的网络 平面网络:可以画在一个平面上而不出现任何支路交叉现象的网络。 非平面网络:不属于平面网络即为非平面网络。 KCL:对于任一集总电路的任一节点,在任一时刻,流进(或流出)改节点的支路电流的代数和为零。或表示为流入任一节点的支路电流的等于流出任一节点的支路电流。 KVL:对于任一集总电路的任一回路,在任一时刻,沿着该回路的所有支路电压的代数和为零。或表示为回路中各支路电压升

入门 锂离子动力电池基础知识.doc

锂离了动力电池 锂离了动力电池是2()世纪开发成功的新熨高能电池。这种电池的负极是金属锂,正极用MnO2, S0CL2, (CFx)n等。70年代进入实用化。因其具有能量高、电池电压高、工作温度范围宽、贮存寿命长等优点,已广泛应用于军事和民川小型电器屮,如移动电话、便携式计算机、摄像机、照相机等、部分代替了传统电池。大容量锂离了电池已在电动汽车屮试用,将成为21世纪电动汽车的主要动力电源并将在人造卫星、航空航天和储能方面得到应用。 特点 (1)单体电池工作电压高达3.7V,是磔镉电池,磔氢电池的3倍,铅酸电池的近2 倍,这也是锂离子动力电池比能量高的一个重要原因。因此组成相同电压的动力电池组时, 锂离了动力电池使用的串联数忖会大大少于铅酸电池和银氢电池。如果动力电池屮单体电池数量越多,电池组屮单体电池的一致性要求就越高,寿命就越不好做,在实际使用过稈屮电池组有问题分析后,一般是其中一、两个单体电池出问题然后导致整组电池出现问题,因此不难理解为什么48V的铅酸电池比36V的铅酸电池反馈要高,从这个角度上讲锂电更适合动力电池的使用。例如36V的锂电只需要10个单体,而36V铅酸电池需要18个单体电池, 即3只12V的电池纽.,而每只12V的铅酸电池有六个单格即六个单体电池纽.成。 (2)重量轻,比能量大,高达150Wh/Kg,是银氢电池的2倍,铅酸电池的4倍,因此重量是相同能量的铅酸电池的三分之一到四分之一,从这个角度讲锂电消耗的资源就少,而口由于猛酸锂电池屮所用元索的储量比较多,因此相对铅酸、银氢电池可能会进一步涨价, 锂离了动力电池成木反而是进一步降低的。电动自行车用锂离了?电池重量为224公斤,铅酸电池的重量为12?20公斤,锂电重量约为铅酸电池的四分Z—到三分2—,比铅酸电池轻约10公斤(36V, 10Ah电池),电池重量减轻了70%,整车总重量至少减轻了20%。加上一般锂电车都是简易款的电动自行车,由于电池和整车轻,相同电压、和同容量的电池行驶里程更长,普通的电动车重量在40公斤以上,而锂离子动力电池电动白行车重量在7到26公斤之间。女士和老年人都可以轻易搬动,人力骑行也十分轻便,运动休闲兼得。 (3)体积小,高达到400Wh/L,体积是铅酸电池的二分Z—到三分之一。提供了更合理的结构和更美观的外形的设计条件、设计空间和可能性。现阶段由于铅酸电池体积、重量的限制,设计师们的设计思想受到极大约朿,导致现阶段的电动白行车在结构和外观上“千车一面”、雷同相似、单调划一。而锂离了电池的使用,给设计师们提供了展示设计思想和设计风格的更大空间及条件。当然同时也导致电动白行车用锂离了动力电池尺寸多种多样,不利于锂动力电池行业的发展。锂动力电池行业也需要尽快制定电动自行车川锂离了电池国家标准,加速在电动H行车领域锂电对铅酸电池的替代。当然目前锂电池是在不断发展过程屮

锂电池基础知识讲解

锂电池基础知识讲解 理想的锂离子电池,除了锂离子在正负极之间嵌入和脱出外,不发生其他副反应,不出现锂离子的不可逆消耗。实际的锂离子电池,每时每刻都有副反应存在,也有不可逆的消耗,如电解液分解,活性物质溶解,金属锂沉积等,只不过程度不同而己。实际电池系统,每次循环中,任何能够产生或消耗锂离子或电子的副反应,都可能导致电池容量平衡的改变。一旦电池的容量平衡发生改变,这种改变就是不可逆的,并且可以通过多次循环进行累积,对电池性能产生严重影响。 ⑴正极材料的溶解 尖晶石LiMn2O4中Mn的溶解是引起LiMn2O4可逆容量衰减的主要原因,对于Mn的溶解机理,一般有两种解释:氧化还原机制和离子交换机制。氧化还原机制是指放电末期Mn3+的浓度高,在LiMn2O4表面的Mn+会发生歧化反应: 2Mn3+(固)Mn4+(固)+Mn2+(液) 歧化反应生成的二价锰离子溶于电解液。离子交换机制是指Li+和H+在尖晶石表面进行交换,最终形成没有电化学活性的HMn2O4。 Xia等的研究表明,锰的溶解所引起的容量损失占整个电池容量损失的比例随着温度的升高而明显增大(由常温下的23%增大到55℃时的34%)[14]。 ⑵正极材料的相变化[15] 锂离子电池中的相变有两类:一是锂离子正常脱嵌时电极材料发生的相变;二是过充电或过放电时电极材料发生的相变。 对于第一类相变,一般认为锂离子的正常脱嵌反应总是伴随着宿主结构摩尔体积的变化,同时在材料内部产生应力,从而引起宿主晶格发生变化,这些变化减少了颗粒间以及颗粒与电极间的电化学接触。 第二类相变是Jahn-Teller效应。Jahn-Teller效应是指由于锂离子的反复嵌入与脱嵌引起结构的膨胀与收缩,导致氧八面体偏离球对称性并成为变形的八面体构型。由于Jahn-Teller效应所导致的尖晶石结构不可逆转变,也是LiMn2O4容量衰减的主要原因之一。在深度放电时,Mn的平均化合价低于3.5V,尖晶石的结构由立方晶相向四方晶相转变。四方晶相对称性低且无序性强,使锂离子的脱嵌可逆程度降低,表现为正极材料可逆容量的衰减。 ⑶电解液的还原[15] 锂离子电池中常用的电解液主要包括由各种有机碳酸酯(如PC、EC、DMC、DEC 等)的混合物组成的溶剂以及由锂盐(如LiPF6 、LiClO4 、LiAsF6 等)组成的电解质。在充电的条件下,电解液对含碳电极具有不稳定性,故会发生还原反应。电解液还原消耗了电解质及其溶剂,对电池容量及循环寿命产生不良影响,由此产生的气体会增加电池的内部压力,对系统的安全造成威胁。 ⑷过充电造成的量损失[15] 负极锂的沉积:过充电时,发生锂离子在负极活性物质表面上的沉积。锂离子的沉积一方面造成可逆锂离子数目减少,另一方面沉积的锂金属极易与电解液中的溶剂或盐的分子发生反应,生成Li2CO3、LiF或其他物质,这些物质可以堵塞电极孔,最终导致容量损失和寿命下降。 电解液氧化:锂离子电池常用的电解液在过充电时容易分解形成不可溶的Li2CO3等产物,阻塞极孔并产生气体,这也会造成容量的损失,并产生安全隐患。 正极氧缺陷:高电压区正极LiMn2O4中有损失氧的趋势,这造成氧缺陷从而导致容量损失。 ⑸自放电 锂离子电池的自放电所导致的容量损失大部分是可逆的,只有一小部分是不可逆的。造成不可逆自放电的原因主要有:锂离子的损失(形成不可溶的Li2CO3等物质);电解液氧化产物堵塞电极微孔,造成内阻增大。

锂电池保护板的基础知识普及

第一章保护板的构成和主要作用 一、保护板的构成 锂电池(可充型)之所以需要保护,是由它本身特性决定的。由于锂电池本身的材料决定了它不能被过充、过放、过流、短路及超高温充放电,因此锂电池锂电组件总会跟着一块精致的保护板和一片电流保险器出现。锂电池的保护功能通常由保护电路板和PTC协同完成,保护板是由电子电路组成,在-40℃至+85℃的环境下时刻准确的监视电芯的电压和充放回路的电流,即时控制电流回路的通断;PTC在高温环境下防止电池发生恶劣的损坏。 保护板通常包括控制IC、MOS开关、电阻、电容及辅助器件NTC、ID存储器等。其中 控制IC,在一切正常的情况下控制MOS开关导通,使电芯与外电路沟通,而当电芯电压或回路电流超过规定值时,它立刻(数十毫秒)控制MOS开关关断,保护电芯的安全。NTC 是Negative temperaturecoefficient的缩写,意即负温度系数,在环境温度升高时,其阻值降低,使用电设备或充电设备及时反应、控制内部中断而停止充放电。ID 存储器常为单线接 口存储器,ID是Identification 的缩写即身份识别的意思,存储电池种类、生产日期等信息。可起到产品的可追溯和应用的限制。

二、保护板的主要作用 一般要求在-25℃~85℃时Control(IC)检测控制电芯电压与充放电回路的工作电流、电压,在一切正常情况下C-MOS开关管导通,使电芯与保护电路板处于正常工作状态,而当电芯 电压或回路中的工作电流超过控制IC中比较电路预设值时,在15~30ms内(不同控制IC 与C-MOS有不同的响应时间),将CMOS关断,即关闭电芯放电或充电回路,以保证使用 者与电芯的安全。 第二章保护板的工作原理 保护板的工作原理图: 如图中,IC由电芯供电,电压在2v-5v均能保证可靠工作。 1、过充保护及过充保护恢复 当电池被充电使电压超过设定值VC(4.25-4.35V,具体过充保护电压取决于IC)后,VD1 翻转使Cout变为低电平,T1截止,充电停止.当电池电压回落至VCR(3.8-4.1V,具体过充保护恢复电压取决于IC)时,Cout变为高电平,T1导通充电继续, VCR必须小于VC一个定值,以防止频繁跳变。 2、过放保护及过放保护恢复 当电池电压因放电而降低至设定值VD(2.3-2.5V,具体过充保护电压取决于IC)时, VD2翻转,以短时间延时后,使Dout变为低电平,T2截止,放电停止,当电池被置于充电时,内部或门被翻转而使T2再次导通为下次放电作好准备。 3、过流、短路保护 当电路充放回路电流超过设定值或被短路时,短路检测电路动作,使MOS管关断,电流截止。

相关文档
最新文档