数学理卷·2019届江西省分宜中学、玉山一中、临川一中等九校高三联考
精品解析:【校级联考】江西省临川第一中学等九校2019届高三3月联考理科数学试题(解析版)

2019年江西省高三联合考试数学试卷(理科)注意事项:1.答题前,先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,,则()A. B. C. D.【答案】C【解析】【分析】解分式不等式求得集合A,求对数函数定义域求得集合B,由此求得两个集合的交集【详解】由解得,由解得,故,故选C.【点睛】本小题主要考查分式不等式的解法,考查对数函数定义域,考查集合的交集,属于基础题2.已知复数,则复数的虚部为()A. 1B. -1C.D.【答案】A【解析】【分析】化简复数,求出其共轭复数,由此得到的虚部.【详解】依题意,故,其虚部为,故选A.【点睛】本小题主要考查复数的乘法、除法运算,考查共轭复数的概念,考查复数的虚部,属于基础题. 3.抛物线的焦点是直线与坐标轴交点,则抛物线准线方程是( )A.B.C.D.【答案】D 【解析】 【分析】先求得直线和坐标轴的焦点,由此求得的值,并求得准线方程.【详解】抛物线开口向上或者向下,焦点在轴上,直线与轴交点为,故,即抛物线的方程为,故准线方程为,故选D.【点睛】本小题主要考查直线和坐标轴的交点坐标的求法,考查已知抛物线的焦点求准线方程,属于基础题.4.下列命题中正确的是( ) A. 若为真命题,则为真命题. B. “”是“”的充要条件. C. 命题“,则或”的逆否命题为“若或,则”.D. 命题:,使得,则:,使得.【答案】B 【解析】 【分析】根据且、或命题真假性判断A 选项真假,根据充要条件知识判断B 选项真假,根据逆否命题的概念判断C 选项真假,根据特称命题的否定是全称命题判断D 选项真假. 【详解】对于A 选项,当真时,可能一真一假,故可能是假命题,故A 选项为假命题.对于B选项,根据基本不等式和充要条件的知识可知,B 选项为真命题.对于C 选项,原命题的逆否命题为“若且,则”,故C 选项为假命题.对于D 选项,原命题为特称命题,其否定是全称命题,要注意否定结论,即:,使得.综上所述,本小题选B. 【点睛】本小题主要考查还有简单逻辑连接词真假性,考查充要条件,考查逆否命题,考查特称命题的否定是全称命题等知识,属于基础题.5.等差数列前项和为,,则()A. 15B. 20C. 25D. 30【答案】A【解析】【分析】根据等差数列的性质求得,利用前项和公式求得.【详解】由于数列为等差数列,故,所以,故选A.【点睛】本小题主要考查等差数列的性质,考查等差数列前项和公式,属于基础题. 这个等差数列的性质是:若,则,若,则.如果数列是等比数列,则数列的性质为:若,则,若,则.所以解有关等差或者等比数列的题目时,先观察一下题目所给条件中的下标是否有关系.6.某程序框图如图所示,则该程序运行后输出的值是()A. 2019B. 2018C. 2017D. 2016【答案】B【解析】【分析】运行程序,找出规律,当不满足时,退出循化,输出的值.【详解】运行程序,,判断是,,判断是,,……,依次类推,当为奇数时,为,当为偶数时,为,,判断否,输出,故选B. 【点睛】本小题主要考查程序框图的运算结果,考查合情推理,属于基础题.7.设,,,,则()A. B.C. D.【答案】A【解析】【分析】根据的正负,计算出的值,由此比较出三者的大小.【详解】由于,故,,故,而,故,所以,故选A. 【点睛】本小题主要考查指数式和对数式比较大小,考查分段函数的概念与性质,属于中档题.8.函数(其中)的图象如图所示,为了得到的图象,只需把的图象上所有点()A. 向左平移个单位长度B. 向右平移个单位长度C. 向右平移个单位长度D. 向左平移个单位长度【答案】A【解析】【分析】先根据三角函数图像求得的解析式,然后求得需要平移的单位长度.【详解】由于,故,所以,,由,求得,故,故需将图像上所有点向左平移个单位长度得到,故选A. 【点睛】本小题主要考查由三角函数图像求三角函数解析式,考查三角函数图像变换,属于基础题. 求解的过程中,首先利用图像上的最高点求得的值,要注意值的正负.第二根据图像上的半周期或者四分之一周期或者四分之三周期求得的值,第三根据图像上一个点的坐标求得的值.9.某几何体的三视图如图所示,则该几何体外接球表面积为()A. B. C. D.【答案】C【解析】【分析】画出几何体的直观图,利用底面的外心和高的一半求得球的半径,由此求得球的表面积.【详解】画出几何体的直观图如下图所示,设球心为,底面等边三角形的外心为,由三视图可知,设球的半径为,则,故球的表面积为,故选C.【点睛】本小题主要考查由三视图还原为原图,考查几何体外接球的有关计算,考查数形结合的数学思想方法,考查空间想象能力,属于中档题.要找到几何体外接球的球心,主要根据几何体的结构,利用球心到球面上的点的距离相等,通过解直角三角形来求解出半径,从而求得球的表面积或者体积.10.已知双曲线,过原点作一条倾斜角为直线分别交双曲线左、右两支,两点,以线段为直径的圆过右焦点,则双曲线离心率为()A. B. C. 2 D.【答案】B【解析】【分析】求得直线的方程,联立直线的方程和双曲线的方程,求得两点坐标的关系,根据列方程,化简后求得离心率.【详解】设,依题意直线的方程为,代入双曲线方程并化简得,故,设焦点坐标为,由于以为直径的圆经过点,故,即,即,即,两边除以得,解得.故,故选B.【点睛】本小题主要考查直线和双曲线的交点,考查圆的直径有关的几何性质,考查运算求解能力,属于中档题.11.已知三棱锥的6条棱代表6种不同的化工产品,有公共顶点的两条棱代表的化工产品放在同一仓库是安全的,没有公共顶点的两条棱代表的化工产品放在同一仓库是危险的。
【精品】2019年江西省九校高三联合考试数学试卷(理科)

OB
当
4时,求
的值.
OA
( 0) 与 C1 , C2 的公共点分别为 A , B ,
0, , 2
23. [ 选修 4— 5:不等式选讲 ]
(本小题满分 10 分)已知函数 f ( x) | x 2 | |2 x 1| . (1)求 f (x) 5 的解集; (2)若关于 x 的不等式 |b 2a | |2b a | | a | (| x 1| | x m |) ( a, b R, a 0) 能成立, 求实数 m 的取值范围 .
x
40
③ f (x) cos x;
② f ( x) ln x(0 x e) ; ④ f ( x) x2 1.
其中为“柯西函数”的个数为(
)
42
A. 1
B. 2
C. 3
D. 4
2b cosB,且
第Ⅱ卷
44
二、填空题(本题共 4 小题,每小题 5 分,共 20 分)
46
13.已知平面向量 a (2m 1,2),b ( 2,3m 2) ,且 a b ,则 2a 3b
16
种记事件 A 为“抽出的 3 人中至少有 1 名‘欲望膨胀型’消费者” ,则 P( A)
体积的最大值为 _______.
三、解答题(本大题共 6 小题,共 70 分.解答应写出文字说明、证
明过程或演算步骤 .第 17~21 题为必考题,每个试题考生都必须作答,第 22,23 题为选考题,考生
2019 年江西省九所重点中学高三联合考试文科数学试卷
第 1 页 共2 页
根据要求作答)
(一)必考题:共 60 分
)
S NA1A2
A. 3 2
B
.2
3
江西省九校2019届高三联合考试数学(理)试卷

2019年江西省高三联合考试数学试卷(理科)注意事项:1本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间为120分钟.2本试卷分试题卷和答题卷,第Ⅰ卷(选择题)的答案应填在答题卷卷首相应的空格内,做在第Ⅰ卷的无效.3答题前,考生务必将自己的姓名、准考证号填涂在答题卡相应的位置。
第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求。
1.已知集合}01|{≥-=xxx A ,)}12lg(|{-==x y x B ,则=B A ( ) A.]1,0( B .]1,0[ C .]1,21( D .),21(+∞2.已知复数ii i z +-=1)31(,则复数z 的虚部为( )A .1 B.1- C.i D.i -3.抛物线2ax y =的焦点是直线01=-+y x 与坐标轴交点,则抛物线准线方程是( )A.41-=xB.1-=xC.41-=y D.1-=y4.下列命题中正确的是( )A. 若q p ∨为真命题,则q p ∧为真命题.B. “0>ab ”是“2≥+baa b ”的充要条件. C. 命题“0232=+-x x ,则1=x 或2=x ”的逆否命题为“若1≠x 或2≠x ,则0232≠+-x x ”.D. 命题p :R x ∈∃,使得012<-+x x ,则p ⌝:R x ∈∀,使得012>-+x x .5.等差数列}{n a 前n 项和为n S ,543=+a a ,则=6S ( ) A.15 B.20 C.25 D.306.某程序框图如图所示,则该程序运行后输出的值是( )A.2019B.2018C.2017D.20167.设⎩⎨⎧<--≥+=0,10,1)(2x x x x x f ,5.07.0-=a ,7.0log 5.0=b ,5log 7.0=c ,则( ) A.)()()(c f b f a f >> B.)()()(c f a f b f >> C.)()()(b f a f c f >> D.)()()(a f b f c f >>8.函数)sin()(ϕω+=x x f (其中2||πϕ<)的图象如图所示,为了得到)(x f y =的图象,只需把x y ωsin =的图象上所有点( ) A.向左平移6π个单位长度 B.向右平移12π个单位长度 C.向右平移6π个单位长度 D.向左平移12π个单位长度9.某几何体的三视图如右图所示,则该几何体外接球表面积为( ) A.π11 B.314πC.328πD.π16 10.已知双曲线)0,0(12222>>=-b a by a x ,过原点作一条倾斜角为3π直线分别交双曲线左、右两支P ,Q 两点,以线段PQ 为直径的圆过右焦点F ,则双曲线离心率为( ) A.12+ B.13+ C.2D.511.已知三棱锥的6条棱代表6种不同的化工产品,有公共顶点的两条棱代表的化工产品放在同一仓库是安全的,没有公共顶点的两条棱代表的化工产品放在同一仓库是危险的。
江西省临川一中等九校重点中学协作体2019届高三第一次联考数学(理)试题(解析版)

江西省临川一中,南昌二中,九江一中,新余一中等九校重点中学协作体2019届高三第一次联考数学(理)试题满分:150分时间:120分钟一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知为虚数单位,,其中,则()A. B. C. 2 D. 4【答案】A【解析】,其中,解得,,故选2.已知命题,命题,若命题是命题的必要不充分条件,则实数的取值范围是().A. B. C. D.【答案】D【解析】【分析】由题意化简A,B,将条件转化为A B,列出不等关系解得a的范围即可.【详解】∵,,又命题是命题的必要不充分条件,∴B A,由数轴可得: a,故选D.【点睛】本题考查了必要不充分条件的概念,涉及解一元二次不等式,以及子集的应用,属于基础题.3.两个正数,的等差中项是5,等比中项是,则双曲线的离心率等于().A. B. C. D.【答案】B【解析】【分析】先由题设条件结合数列的性质解得a,b,再由双曲线的性质求得,可得答案.【详解】由题设知,解得a=6,b=4,∴,∴.故选:C.【点睛】本题借助数列的性质考查双曲线的简单性质,解题时要认真审题,注意公式的灵活运用.4.已知实数,满足线性约束条件,则其表示的平面区域外接圆的面积为().A. B. C. D.【答案】C【解析】【分析】根据二元一次不等式组表示平面区域进行作图,根据三角形的形状确定外接圆的直径,求外接圆的半径,即可得到结论.【详解】由线性约束条件,画出可行域如图(及内部,又与y=x垂直,∴为直角,即三角形ABC为直角三角形,∴外接圆的直径为AC,又A(-1,3),C(-1,-1),AC=4, ∴外接圆的半径r=2,∴外接圆的面积为=4,故选C.【点睛】本题主要考查线性规划的应用以及三角形的外接圆问题,利用数形结合是解决本题的关键.5.为了研究某班学生的脚长(单位:厘米)和身高(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出与之间有线性相关关系,设其回归直线方程为,已知,,.该班某学生的脚长为23,据此估计其身高为().A. 160B. 166C. 170D. 172【答案】B【解析】【分析】计算、,求出b,的值,写出回归方程,利用回归方程计算所求的值.【详解】根据题意,计算x i=25,y i=174,;∴174﹣4×25=74,∴4x+74,当x=24时,计算4×23+74=166,据此估计其身高为166(厘米).故选:B.【点睛】本题考查了线性回归方程的求法及应用问题,是基础题.6.函数图像向左平移个单位后图像关于轴对称,则的值可能为().A. B. C. D.【答案】B【解析】【分析】先化简f(x),再根据函数图象平移变换法则,求出平移后的函数解析式,根据对称性求出满足条件的a的值.【详解】函数,将其图象向左平移a个单位(a>0),所得图象的解析式为:y=2sin[2(x+a)﹣],由平移后所得图象关于y轴对称,则2a﹣=kπ,即a=,又,当k=0时,a.故选:B.【点睛】本题考查的知识点是函数图象的平移变换及正弦型函数的对称性,其中根据已知函数的解析式,求出平移后图象对应的函数解析式是解答本题的关键,属于基础题.7.已知,则()A. 18B. 24C. 36D. 56【答案】B【解析】,故,.8.《九章算术》是中国古代数学专著,其中的“更相减损术”可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之.”翻译成现代语言如下:第一步,任意给定两个正整数,判断它们是否都是偶数,若是,用2约简;若不是,执行第二步:第二步,以较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,知道所得的数相等为止,则这个数(等数)或这个数与约简的数的乘积就是所求的最大公约数.现给出更相减损术的程序图如图所示,如果输入的,,则输出的为().A. 3B. 6C. 7D. 8【答案】C【解析】【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.【详解】∵,,满足a,b都是偶数,则a==57,b==15,k=2;不满足a,b都是偶数,且不满足a=b,满足a>b,则a=57-15=42,n=1,不满足a=b,满足a>b,则a=42-15=27,n=2,不满足a=b,满足a>b,则a=27-15=12,n=3,不满足a=b,不满足a>b,则c=12,a=15,b=12,则a=15-12=3,n=4,不满足a=b,不满足a>b,则c=3,a=12,b=3,则a=12-3=9,n=5,不满足a=b,满足a>b,则a=9-3=6,n=6,不满足a=b,满足a>b,则a=6-3=3,n=7,满足a=b,结束循环,输出n=7,故选:C.【点睛】本题考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.9.已知扇形,,扇形半径为,是弧上一点,若,则().A. B. C. D.【答案】D【解析】【分析】将已知等式两边同时平方,利用数量积的运算法则计算,可得到cos,即可求得结果.【详解】由,两边同时平方得=,则有3=4+1+2=5+22cos,∴cos,,故选D.【点睛】本题考查了向量数量积的运算,考查了夹角的求法,属于基础题.10.如图所示,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为().A. B.C. D.【答案】A【解析】【分析】由三视图还原该几何体得到三棱锥,将三棱锥放在对应的正方体中,结合正弦定理求出三棱锥A﹣BCD的四个面的面积,求和即可.【详解】由三视图知该几何体是如图所示的三棱锥A﹣BCD,将该三棱锥是放在棱长为4的正方体中,A 是棱的中点,在△ADC中,AC=2,且CD∴AD=,2=4;在△ABD中,AB=2,BD=4,由余弦定理得,cos∠DAB,∴sin∠DAB,∴2,又与均为边长为4的正方形面积的一半,即为8,∴三棱锥A﹣BCD的表面积为12+2=,故选:A.【点睛】本题考查了空间几何体的三视图,考查了余弦定理及三角形面积公式的应用,解题关键是由三视图还原为几何体,是中档题.11.已知以圆的圆心为焦点的抛物线与圆在第一象限交于点,电商抛物线上任意一点与直线垂直,垂足为,则的最大值为().A. -1B. 2C. 1D. 8【答案】C【解析】试题分析:求得圆心,可得抛物线C1方程,与圆C的交点A,运用抛物线的定义和三点共线,即可得到所求最大值.详解:圆C:(x﹣1)2+y2=4的圆心为焦点(1,0)的抛物线方程为y2=4x,由,解得A(1,2),抛物线C2:x2=8y的焦点为F(0,2),准线方程为y=﹣2,即有|BM|﹣|AB|=|BF|﹣|AB|≤|AF|=1,当且仅当A,B,F(A在B,F之间)三点共线,可得最大值1,故选:C.点睛:本题考查圆方程和抛物线的定义和方程的运用,考查方程思想和定义法解题,以及三点共线取得最值,属于中档题,一般和抛物线有关的小题,很多时可以应用结论来处理的;平时练习时应多注意抛物线的结论的总结和应用。
2019年3月江西省临川一中等九校2019届高三联考数学(文)试题(解析版)

绝密★启用前江西省临川一中等九校2019届高三毕业班下学期联考数学(文)试题(解析版)(临川一中玉山一中高安中学分宜中学南城一中南康中学彭泽一中泰和中学樟树中学)2019年3月注意事项:1 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间为120分钟.2 本试卷分试题卷和答题卷,第Ⅰ卷(选择题)的答案应填在答题卷卷首相应的空格内,做在第Ⅰ卷的无效.3 答题前,考生务必将自己的姓名、准考证号填涂在答题卡相应的位置.第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合,,则等于()A. B. C. D.【答案】A【解析】【分析】利用一元二次不等式的解法化简集合,再利用交集的定义求解即可.【详解】因为,,所以集合,故选A.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合.2.已知为虚数单位,复数,且,则实数()A. -4B. 4C.D. 2【答案】C【解析】【分析】先利用复数乘法的运算法则化简复数,再利用复数模的公式求解即可.【详解】复数,且,所以,,解得,故选C.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查乘除法运算,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.某兄弟俩都推销某一小家电,现抽取他们其中8天的销售量(单位:台),得到的茎叶图如下图所示,已知弟弟的销售量的平均数为34,哥哥的销售量的中位数比弟弟的销售量的众数大2,则的值为()A. 5B. 13C. 15D. 20【答案】B【解析】【分析】利用平均数、众数、中位数的定义,根据茎叶图中的数据求出的值,从而可得结果 .【详解】根据茎叶图中的数据知,弟弟的众数是34 ,则哥哥的中位数是,,解得,又,解得,,故选B.【点睛】本题考查了利用茎叶图求众数、中位数和平均数的应用问题,是基础题.(1)中位数,。
2019届江西省名校(临川一中、南昌二中)高三下学期联合数学(理)试题(解析版)

2019届江西省名校(临川一中、南昌二中)高三下学期联合数学(理)试题一、单选题1.已知集合1121A x R x ⎧⎫=∈≤⎨⎬+⎩⎭,()(){}2210B x R x a x a =∈---<,若()RA B =∅Ið,则实数a 的取值范围是( )A .[)1,+∞ B .[)0,+∞C .()0,∞+D .()1,+∞【答案】B【解析】解分式不等式求得集合A ,对a 进行分类讨论,结合()R A B =∅I ð,求得实数a 的取值范围. 【详解】由1121210,021212121x x x x x x +--≤-=≤++++()2210210x x x ⎧-+≤⇔⎨+≠⎩12x ⇔<-或0x ≥.所以{1|2A x x =<-或}0x ≥,所以1|02R A x x ⎧⎫=-≤<⎨⎬⎩⎭ð.由()()2210x a x a ---=,解得2x a =或21x a =+.2122a a a +≥=≥,当1a =时,221a a =+,此时B =∅,满足()R A B =∅I ð;当1a ≠时,{}2|21B x a x a =<<+,由()R A B =∅I ð得201a a ≥⎧⎨≠⎩,即0a ≥且1a ≠.综上所述,实数a 的取值范围是[)0,+∞. 故选:B 【点睛】本小题主要考查分式不等式的解法,考查一元二次不等式的解法,考查根据交集、补集的运算结果求参数的取值范围,属于中档题.2.已知复数z 满足:(2+i )z =1-i ,其中i 是虚数单位,则z 的共轭复数为( )A .15-35i B .15+35i C .13i -D .13i +【答案】B【解析】把等式变形,根据复数的运算先求出z ,再根据共轭复数的定义得出答案. 【详解】由(2+i )z =1-i ,得z =12i i-+=(1)(2)(2)(2)i i i i --+-=15-35i ∴z =15+35i . 故选:B. 【点睛】本题考查复数的运算法则、共轭复数的定义.3.已知等比数列{}n a ,若1231a a a ⋅⋅=,7894a a a ⋅⋅=,则129a a a ⋅=L ( ) A .4 B .6 C .8D .8±【答案】D【解析】根据等比数列的性质求得5a ,由此求得129a a a ⋅L 的值. 【详解】由于等比数列{}n a 满足1231a a a ⋅⋅=,7894a a a ⋅⋅=,故312321a a a a ⋅⋅==,所以21a =378984a a a a ⋅⋅==,所以2382a =,所以2235282a a a =⋅=,1352a =±所以129a a a ⋅L 919335228a ⎛⎫==±=±=± ⎪⎝⎭.故选:D 【点睛】本小题主要考查等比数列的性质,属于基础题.4.点()1,1M 到抛物线22y ax =准线的距离为2,则a 的值为( )A .1B .1或3C .18或124- D .14-或112【答案】C【解析】对a 分成0a <和0a >两种情况进行分类讨论,结合抛物线的定义求得a 的值. 【详解】依题意可知0a ≠,抛物线的标准方程为212x y a= 当0a <时,抛物线的准线方程为18y a =-,点()1,1M 到18y a=-的距离为1111288a a ⎛⎫--=+= ⎪⎝⎭,解得124a =-.当0a >时,抛物线的准线方程为18y a =-,点()1,1M 到18y a=-的距离为1111288a a ⎛⎫--=+= ⎪⎝⎭,解得18a =.所以a 的值为18或124-. 故选:C 【点睛】本小题主要考查抛物线的定义和准线方程,属于基础题.5.如图所示的程序框图,若输出的结果为4,则输入的实数的取值范围是( )A .B .C .D .【答案】A 【解析】,,否,; ,否,; ,否,;,,是,即;解不等式,,且满足,,综上所述,若输出的结果为4,则输入的实数的取值范围是,故选.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项. 6.在ABC ∆中,角A ,B ,C 所对边长分别为a ,b ,c ,若2a b c +=,则cos C 的最小值为( )A .12-B .12C.2D【答案】B【解析】利用余弦定理表示cos C ,再利用基本不等式求得cos C 的最小值. 【详解】由余弦定理得2222222cos 22a b a b a b c C ab ab+⎛⎫+- ⎪+-⎝⎭==()22323221882a b abab ab abab +-⨯-=≥=,当且仅当a b =时等号成立.故选:B 【点睛】本小题主要考查余弦定理解三角形,考查基本不等式求最值,属于基础题.7.已知两点()2,0A -,()2,0B 以及圆C :()()22243x y r ++-=(0r >),若圆C上存在点P ,满足0PA PB ⋅=u u u r u u u r,则r 的取值范围是( ) A .[]3,6 B .[]3,7 C .[]4,7 D .[]4,6【答案】B【解析】求得以AB 为直径的圆O 的圆心和半径,根据圆O 与圆C 有公共点列不等式,解不等式求得r 的取值范围. 【详解】由于圆C 上存在点P ,满足0PA PB ⋅=u u u r u u u r,故以AB 为直径的圆O 与圆C 有公共点.圆O 的圆心为()0,0,半径为2.圆C 的圆心为()4,3-,半径为r 所以22r OC r -≤≤+,而5OC ==,所以252r r -≤≤+,解得37r ≤≤.故选:B 【点睛】本小题主要考查圆与圆的位置关系,考查向量数量积为零的几何意义,考查化归与转化的数学思想方法,属于基础题.8.给出下列说法:①设0x >,y R ∈,则“x y >”是“x y >”的充分不必要条件;②若()11f x x x =++,则()00,x ∃∈+∞,使得()01f x =;③{}n a 为等比数列,则“123a a a <<”是“45a a <”的充分不必要条件;④命题“x ∀∈R ,x *∃∈N ,使得2n x >”的否定形式是“x ∀∈R ,n *∀∈N ,使得2n x ≤” .其中正确说法的个数为( ) A .0 B .1C .2D .3【答案】B【解析】将“x y >”与“x y >”相互推导,根据能否推导的情况判断充分、必要条件,由此判断①的正确性.利用基本不等式等号成立的条件,判断②的正确性. 将“123a a a <<”与“45a a <”相互推导,根据能否推导的情况判断充分、必要条件,由此判断③的正确性.根据命题的否定的知识,判断④的正确性. 【详解】对于①,当“x y >”时,如12>-,结论12>-错误,“x y >”不是“x y >”的充分条件,故①错误.对于②,当0x >时,()111111f x x x =++-≥=+,当且仅当11,01x x x +==+时等号成立,所以()1f x >,故②错误. 对于③,在等比数列{}n a 中,当“123a a a <<”时,所以等比数列{}n a 是单调递增数列,所以“45a a <”.当“45a a <”时,如1,2,4,8,16,--L ,不能推出“123a a a <<”.所以③正确.对于④,命题“x ∀∈R ,x *∃∈N ,使得2n x >”的否定形式是“x ∃∈R ,n *∀∈N ,使得2n x ≤”,故④错误.综上所述,正确说法个数为1个. 故选:B 【点睛】本小题主要考查充分、必要条件的判断,考查命题的否定,考查基本不等式等号成立的条件,属于基础题.9.已知某几何体是两个正四棱锥的组合体,其三视图如图所示,则该几何体外接球的表面积为( )A .8πB .4πC .22πD .2π【答案】A【解析】判断出球心和半径,由此计算出外接球的表面积. 【详解】由三视图还原原几何体如图,该几何体为两个正四棱锥的组合体,由于正四棱锥的底面是正方形,由三视图可知,正方形的中心即外接球的球心,且正方2.所以外接球的表面积为2428ππ⨯=.故选:A 【点睛】本小题主要考查三视图,考查几何体外接球的表面积的求法,属于基础题.10.不等式组10200x x y y +≥⎧⎪+-≤⎨⎪≥⎩表示的点集记为A ,不等式组21020x x y y x +≥⎧⎪+-≤⎨⎪≥⎩表示的点集记为B ,在A 中任取一点P ,则P B ∈的概率为( ) A .49B .23C .2027D .716【答案】C【解析】画出点集,A B 的图像,用阴影部分的面积除以三角形ABC 的面积,由此求得所求的概率. 【详解】点集A表示的图像为如图所示三角形ABC,点集B表示的图像为如图所示阴影部分.由于三角形ABC的面积为193322⨯⨯=,阴影部分的面积为()1212x x dx--+-⎰23112|23x xx-⎛⎫=-+-⎪⎝⎭=71310663⎛⎫--=⎪⎝⎭.所以所求的概率为920210273=.故选:C【点睛】本小题主要考查几何概型的计算,考查定积分,考查不等式组表示区域的画法,考查数形结合的数学思想方法,属于中档题.11.设直线l与抛物线214y x=相交于,A B两点,与圆C:()()22250x y r r+-=>相切于点M,且M为线段AB中点,若这样的直线l恰有4条,则r的取值范围是A.()1,3B.()1,4C.()2,3D.()2,4【答案】D【解析】假设A、B两点的坐标,圆心为C,求出点M的坐标,由垂直关系,利用斜率之积为-1列式,得到A 、B 横坐标的关系,由C 、M 两点间距离为半径也可列式,得到A 、B 横坐标间关系,由韦达定理逆推解为A 、B 横坐标的方程,有两个根,由判别式求出半径的范围,当斜率不存在时,也有两条直线,故共四条直线,即已求出半径范围. 【详解】设A 、B 两点的坐标分别为:2111,4x x ⎛⎫ ⎪⎝⎭、2221,4x x ⎛⎫⎪⎝⎭,则点M 的坐标为:221212,28x x x x ⎛⎫++ ⎪⎝⎭, 圆心坐标为:C ()0,5,由于相切,所以·1AB CM k k =-, 即:()2212121240·144x x x x x x ++-=-+,化简得:221224x x +=,所以12,32x x M +⎛⎫ ⎪⎝⎭, 由22CMr =可得:212102x x r +=,化简得:()222212220x x r =-, 所以()222242200t t r -+-=的两根分别为:21x 、22x ,所以:()()2222442200r ∆=--->,解得:24r <<,此时有两条直线,当斜率为0时,已知存在两条直线满足题意,共四条. 故选D. 【点睛】本题考查直线与圆和抛物线之间的关系,计算量较大,利用设而不求的方式解题,根据相切时的垂直与距离等于半径两条件列式,由直线只有四条作为限制条件,根据根的判别式求出范围.12.已知函数()()224,0ln 13,0x x x f x x x ⎧-+≥⎪=⎨--<⎪⎩,若函数()()F x f x kx =-有且只有两个零点,则k 的取值范围为( ) A .()3,+∞ B .()2,3C .[)2,3D .{}[)23,⋃+∞【答案】D【解析】画出()f x 的图像和y kx =的图像,根据两个函数图像有两个交点,求得k 的取值范围. 【详解】令()()0F x f x kx =-=,得()f x kx =,画出()f x 的图像和y kx =的图像如下图所示.由图可知,要使两个函数图像有两个交点,则需0k >. 当y kx =与224y x x =-+的图像相切时,由224y kxy x x =⎧⎨=-+⎩消去y 并化简得()2240x k x -++=,其判别式()22160k ∆=+-=,解得2k =,由>0∆解得0k >.由()ln 13y x =--,'313y x =-,则'03|3130x y ===-⨯.所以当2k =或3k ≥时,()f x 的图像和y kx =的图像有两个交点,也即()F x 有两个零点.故选:D【点睛】本小题主要考查利用导数研究函数的零点,考查数形结合的数学思想方法,考查化归与转化的数学思想方法,属于中档题.二、填空题13.将函数()()sin 2f x x ϕ=+(0ϕ>)的图像向右平移3π个单位,再将图像上每一点横坐标伸长到原来的2倍,所得图像关于直线4x π=对称,则ϕ的最小正值为______.【答案】1112π【解析】先求得函数()f x 变换后的解析式,根据所得解析式对应的图像关于直线4x π=对称,求得ϕ的最小正值.【详解】将函数()()sin 2f x x ϕ=+(0ϕ>)的图像向右平移3π个单位,得到sin 23x πϕ⎡⎤⎛⎫-+ ⎪⎢⎥⎝⎭⎣⎦2sin 23x πϕ⎛⎫=-+ ⎪⎝⎭,再将图像上每一点横坐标伸长到原来的2倍,得到2sin 3x πϕ⎛⎫-+ ⎪⎝⎭,依题意2sin 3x πϕ⎛⎫-+ ⎪⎝⎭的图像关于直线4x π=对称,即25sin sin 14312πππϕϕ⎛⎫⎛⎫-+=-=± ⎪ ⎪⎝⎭⎝⎭,故5122k ππϕπ-=+,()1112k k Z πϕπ=+∈,所以当0k =时,ϕ取得最小正值为1112π. 故答案为:1112π【点睛】本小题主要考查三角函数图像变换,考查三角函数对称性,属于中档题.14.如果1nx ⎛⎫ ⎪⎝⎭的展开式中各项系数之和为128,则展开式中41x 的系数是______ . 【答案】-189【解析】令1x =,得展开式中各项系数之和为2n .由2128n =,得7n =,所以展开式的通项为737217(1)3r r rrr T C x--+=-⋅⋅.由7342r -=-,得=5r ,展开式中41x的系数是57557(1)3189C --⨯⨯=-. 15.已知ABC ∆中,3AC =,4BC =,2C π∠=,点P 为ABC ∆外接圆上任意一点,则()CP AB AC ⋅-u u u r u u u r u u u r的最大值为______.【答案】18【解析】建立平面直角坐标系,求得ABC ∆外接圆的方程,设出点P 的坐标,利用向量数量积的坐标运算,求得()CP AB AC ⋅-u u u r u u u r u u u r 的表达式,并由此求得()CP AB AC ⋅-u u u r u u u r u u u r的最大值. 【详解】以C 为坐标原点建立平面直角坐标系,依题意()()3,0,0,4A B ,()()3,4,3,0AB AC =-=-u u u r u u u r ,()0,4AB AC -=u u u r u u u r .ABC ∆外接圆的圆心3,22D ⎛⎫ ⎪⎝⎭,半径为52,所以外接圆的方程为()22235222x y⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭,设[)()355cos,2sin,0,2222Pθθθπ⎛⎫++∈⎪⎝⎭,则()CP AB AC⋅-u u u r u u u r u u u r()355cos,2sin0,4222θθ⎛⎫=++⋅⎪⎝⎭810sinθ=+,故当2πθ=时,()CP AB AC⋅-u u u r u u u r u u u r的最大值为81018+=.故答案为:18【点睛】本小题主要考查向量数量积的坐标运算,考查数形结合的数学思想方法,属于中档题. 16.在数列{}n a中,113a=,()1133n n na a a+=+,Nn+∈,且13nnba=+.记12n nP b b b=⨯⨯⨯L,12n nS b b b=+++L,则13nn nP S++=______.【答案】3【解析】利用累乘法求得n P,利用裂项求和法求得n S,由此求得13nn nP S++.【详解】由于()1133n n na a a+=+,13nnba=+,所以13nnnaba+=,12n nP b b b=⨯⨯⨯L31212341133333nnn na aa a aa a a a a++=⋅⋅⋅⋅=L,.又()1131133n n n n na a a a a+==-++,∴111nn nba a+=-,所以12n n S b b b =+++L 12231111111n n a a a a a a +=-+-++-L 113n a +=-.所以13n n n P S ++=111113333n nn n a a a +++⋅+-=. 故答案为:3 【点睛】本小题主要考查累乘法、裂项求和法,考查化归与转化的数学思想方法,属于中档题.三、解答题17.在锐角三角形ABC 中,角,,A B C 所对的边分别为,,a b c ,已知()(sin sin )(sin sin )a c A C b A B -+=-.(1)求角C 的大小;(2)求22cos cos A B +的取值范围. 【答案】(1)3π;(2)13[,)24. 【解析】试题分析:(1)由正弦定理转化为关于边的条件,再由余弦定理,求角即可; (2)利用二倍角公式化简,得到正弦型三角函数,分析角的取值范围,即可求出三角函数的取值范围.试题解析:(1)因为()()()sin sin sin sin a c A C b A B -+=-,由正弦定理得()()()a c a c b a b -+=-,即222a b c ab +-=,则222122a b c ab +-=根据余弦定理得1cos 2C =又因为0C π<<,所以3C π=(2)因为3C π=,所以4223B A π=-则()221cos21cos21cos cos 1cos2cos2222A B A B A B +++=+=++ 141cos2cos 223A A π⎡⎤⎛⎫=++- ⎪⎢⎥⎝⎭⎣⎦111cos222A A ⎛⎫=+ ⎪ ⎪⎝⎭11cos 223A π⎛⎫=++ ⎪⎝⎭因为三角形ABC 为锐角三角形且3C π=,所以62A ππ<<则242333A πππ<+<所以11cos 262A π⎛⎫-≤+<- ⎪⎝⎭, 所以2213cos cos 24A B ≤+< 即22cos cos A B +的取值范围为1324,⎡⎫⎪⎢⎣⎭点睛:解决三角形中的角边问题时,要根据条件选择正余弦定理,将问题转化统一为边的问题或角的问题,利用三角中两角和差等公式处理,特别注意内角和定理的运用,涉及三角形面积最值问题时,注意均值不等式的利用,特别求角的时候,要注意分析角的范围,才能写出角的大小.18.如图,在矩形ABCD 中,点E 为边AD 上的点,点F 为边CD 的中点,23AB AE AD ==,现将ABE ∆沿BE 边折至PBE ∆位置,且平面PBE ⊥平面BCDE .(1) 求证:平面平面;(2) 求二面角的大小.【答案】(1)详见解析;(2)150︒.【解析】【详解】试题分析:(1) 利用直角三角形,先证明折前有,折后这个垂直关系没有改变,然后由平面PBE ⊥平面BCDE 的性质证明平面,最后由面面垂直的判定定理即可证明平面PBE ⊥平面PEF ;(2)为方便计算,不妨设3AD =,先以D 为原点,以DC 方向为x 轴,以ED 方向为y 轴,以与平面EBCD 向上的法向量同方向为z 轴,建立空间直角坐标系,写给相应点的坐标,然后分别求出平面PEF 和平面PCF 的一个法向量,接着计算出这两个法向量夹角的余弦值,根据二面角的图形与计算出的余弦值,确定二面角的大小即可. 试题解析:(1) 证明:由题可知:折前,这个垂直关系,折后没有改变 故折后有(2)不妨设3AD =,以D 为原点,以DC 方向为x 轴,以ED 方向为y 轴,以与平面EBCD 向上的法向量同方向为z 轴,建立空间直角坐标系 7分则设平面PEF 和平面PCF 的法向量分别为,由10n FP ⋅=u u ur r 及可得到即,不妨取又由20n FP ⋅=u u r u u u r及可得到即不妨取9分11分综上所述,二面角大小为12分.【考点】1.线线垂直的证明;2. 线面垂直、面面垂直的判定与性质;3.空间向量在解决空间角中的运用问题.19.为推行“高中新课程改革”,某数学老师分别用“传统教学”和“新课程”两种不同的教学方式,在甲、乙两个平行班级进行教学实验,为了比较教学效果.期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,结果如下表:记成绩不低于120分者为“成绩优良”.(1)从以上统计数据填写下面22⨯列联表,并判断能否犯错误的频率不超过0.01的前提下认为“成绩优良与教学方式有关”?附:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.临界值表如上表:(2)现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核,在这8人中,记成绩不优良的乙班人数为X,求X的分布列及数学期望.【答案】(1)能;(2)分布列见解析,273 455.【解析】(1)根据题目所给数据填写22⨯列联表,计算2K的数值,由此判断出能在犯错概率不超过0.01的前提下认为“成绩优良与教学方式有关”.(2)利用超几何分布的分布列计算方法,计算出X的分布列,进而计算出数学期望. 【详解】(1)由统计数据得22⨯列联表:根据22⨯列联表中的数据,得2K 的观测值为()22408312178.64 6.63520202515K ⨯-⨯==⨯⨯⨯f ,所以能在犯错概率不超过0.01的前提下认为“成绩优良与教学方式有关”(2)由表可知在8人中成绩不优良的人数为83⨯=,则X 的可能取值为0,1,2,3.()312315C 440C 91P X ===;()21123315C C 1981C 455P X === ()12123315C C 362C 455P X ===;()33315C 13C 455P X ===所以X 的分布列为:所以()44198361273012391455455455455E X =⨯+⨯+⨯+⨯=. 【点睛】本小题主要考查22⨯列联表、独立性检验,考查超几何分布的分布列和数学期望的计算,属于中档题.20.已知椭圆C :22221x y a b+=(0a b >>)的左、右焦点分别为()11,0F -,()21,0F 且椭圆上存在一点P ,满足.172PF =,122cos 3F F P ∠=(1)求椭圆C 的标准方程;(2)已知A ,B 分别是椭圆C 的左、右顶点,过1F 的直线交椭圆C 于M ,N 两点,记直线AM ,BN 的交点为T ,是否存在一条定直线l ,使点T 恒在直线l 上?【答案】(1)2211615x y +=;(2)存在. 【解析】(1)在12F F P ∆内利用余弦定理求得2F P ,根据椭圆的定义求得a ,由此求得b ,从而求得椭圆C 的标准方程.(2)设(),T x y ,()11,M x y ,()22,N x y ,利用AT AM k k =、BT BN k k =求得1122,,,,x x y x y 的关系式,设MN 的方程为1x my =-与椭圆C 的方程联立,并写出韦达定理,并代入上述求得的1122,,,,x x y x y 的关系式,由此判断出T 横在直线16x =-上. 【详解】(1)设2F P x =,12F F P ∆内,由余弦定理得222127222cos 2x x F F P ⎛⎫+-⋅⋅⋅∠= ⎪⎝⎭,化简得()()296110x x -+=,解得92x =, 故1228a PF PF =+=,∴4a =,22215b a c =-=所以椭圆C 的标准方程为2211615x y +=(2)已知()4,0A -,()4,0B ,设(),T x y ,()11,M x y ,()22,N x y 由1144AT AM y yk k x x =⇒=++,① 2244BT BN y y k k x x =⇒=--,② 两式相除得12124444y x x x x y --=⋅++.又21112111415151616416y y x x x y -=-⇒=-⋅-+, 故()121244415416x x x x y y ---=-⋅⋅+,③ 设MN 的方程为1x my =-,代入2211615x y +=整理,得()221516302250m y my +--=,>0∆恒成立.把122301516m y y m +=+,1222251516y y m =-+代入③, ()()()1122121245544151541616x my my x x x y y y y -----=-⋅⋅=-⋅+得()212121252541554163m y y m y y x x y y -++-=-⋅=+,得到16x =-,故点T 在定直线16x =-上. 【点睛】本小题主要考查椭圆方程的求法,考查余弦定理解三角形,考查直线和椭圆的位置关系,考查定直线问题,考查运算求解能力,属于中档题. 21.已知函数()()13ln 3f x a x ax x=++-(0a >). (1)讨论()f x 的单调性;(2)若对任意的()3,4a ∈,1x ,[]21,2x ∈恒有()()()12ln 23ln 2m a f x f x -->-成立,求实数m 的取值范围. 【答案】(1)见解析;(2)196m ≥. 【解析】(1)求得函数()f x 的定义域和导函数,对a 分成0<<3a 、3a =、3a >三种情况,讨论()f x 的单调区间.(2)先求得()()12f x f x -的最大值,由此化简不等式()()()12ln 23ln 2m a f x f x -->-,得到()132m a ->,构造函数()()132h a m a =--,利用一次函数的性质列不等式组,解不等式组求得m 的取值范围. 【详解】 (1)由()()()22311313x ax a f x a x x x --+'=--=-(0x >) ①当0<<3a 时,()f x 在10,3⎛⎫ ⎪⎝⎭和1,a⎛⎫+∞ ⎪⎝⎭上是减函数,在11,3a ⎛⎫ ⎪⎝⎭上是增函数; ②当3a =时,()f x 在()0,+?上是减函数;③当3a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭和1,3⎛⎫+∞ ⎪⎝⎭上是减函数,在11,3a ⎛⎫ ⎪⎝⎭上是增函数(2)当34a <<时,由(1)可知()f x 在[]1,2上是减函数, ∴()()()()()121123ln 232f x f x f f a a -≤-=-+++ 由()()()12ln 23ln 2m a f x f x -->-对任意的()3,4a ∈,[]121,2x x ∈恒成立, ∴()()()12maxln 23ln 2m a f x f x -->-即()()1ln 23ln 23ln 232m a a a -->-+++对任意34a <<恒成立, 即()132m a ->对任意34a <<恒成立, 设()()132h a m a =--,则()()1913306212519340286m m m m m ⎧⎧≥--≥⎪⎪⎪⎪⇒⎨⎨⎪⎪--≥≥⇒≥⎪⎪⎩⎩. 【点睛】本小题主要考查利用导数研究函数的单调区间,考查不等式恒成立问题的求解,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于难题. 22.选修4-4:坐标系与参数方程已知直线l的参数方程为12x m t y ⎧=-⎪⎪⎨⎪=⎪⎩(其中t 为参数,m 为常数),以原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin ρθ=,直线l 与曲线C 交于点,A B 两点.(1)若||2AB =,求实数m 的值; (2)若1m =,点P 坐标为(1,0),求11||||PA PB +的值. 【答案】(1)m =或6;(2)1【解析】试题分析:⑴将极坐标方程化为普通方程,根据题目条件计算出弦长的表达式,从而求出实数m 的值⑵将当1m =时代入即可求出结果解析:(1)曲线C 的极坐标方程可化为22sin ρρθ=,转化为普通方程可得222x y y +=,即()2211x y +-=.把12x m t y ⎧=-⎪⎪⎨⎪=⎪⎩代入()2211x y +-=并整理可得(()220*t m t m -++=,由条件可得(2240m m ∆=+->,解之得m <<设,A B 对应的参数分别为12,t t,则12t t m +=2120t t m =≥,12AB t t =-=2==,解之得m =(2)当1m =时,()*式变为(2110t t -++=,121t t +=121t t =,由点P 的坐标为()1,0可得11PA PB +=1212121212111t t t t t t t t t t +++===点睛:本题考查了极坐标方程方程的一些计算,这里需要注意极坐标方程与普通方程之间的互化,将其转化为一般方程,然后借助于解析几何的知识点来解题;第二问结合了上一问的解答结果,注意需求简答的计算 23.已知函数()21f x x x =++. (1)解关于x 不等式()5f x ≥;(2)对任意正数a ,b 满足21a b +=,求使得不等式()12f x a b<+恒成立的x 的取值集合M .【答案】(1){|2x x ≤-或43x ⎫≥⎬⎭;(2)733M x x ⎧⎫=-<<⎨⎬⎩⎭.【解析】(1)利用零点分段法求得不等式的解集. (2)利用基本不等式求得12a b+的最小值为8,由()8f x <求得使得不等式()12f x a b<+恒成立的x 的取值集合M . 【详解】由()5f x ≥得215x x ++≥第 21 页 共 21 页 当0x ≥时,不等式等价于215x x ++≥,解得43x ≥,所以43x ≥, 当102x -≤<时,不等式等价于215x x -++≥,即4x ≥,所以解集为空集; 当21x <-时,不等式等价于215x x ---≥,解得2x -≤,所以2x -≤ 故原不等式的解集为{|2x x ≤-或43x ⎫≥⎬⎭; (2)21a b += ()12124424428b a b a a b a b a b a b a b⎛⎫∴+=+⋅+=++≥+⋅= ⎪⎝⎭ 不等式等价于()8f x <218x x ++<解之得733x -<<,故733M x x ⎧⎫=-<<⎨⎬⎩⎭. 【点睛】 本小题主要考查绝对值不等式的解法,考查基本不等式求最值,考查不等式恒成立问题的求解,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题.。
2019年3月江西省临川一中等九校2019届高三联考数学(理)试题(解析版)

绝密★启用前江西省临川一中等九校2019届高三毕业班下学期联考数学(理)试题(解析版)(临川一中玉山一中高安中学分宜中学南城一中南康中学彭泽一中泰和中学樟树中学)2019年3月注意事项:1 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间为120分钟.2 本试卷分试题卷和答题卷,第Ⅰ卷(选择题)的答案应填在答题卷卷首相应的空格内,做在第Ⅰ卷的无效.3 答题前,考生务必将自己的姓名、准考证号填涂在答题卡相应的位置.第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.B.【答案】C【解析】【分析】解分式不等式求得集合A,求对数函数定义域求得集合B,由此求得两个集合的交集故选C.【点睛】本小题主要考查分式不等式的解法,考查对数函数定义域,考查集合的交集,属于基础题2.A. 1 C. i【答案】A【解析】【分析】.其虚部为故选A.【点睛】本小题主要考查复数的乘法、除法运算,考查共轭复数的概念,考查复数的虚部,属于基础题.3.,则抛物线准线方程是( )【答案】D【解析】【分析】先求得直线和坐标轴的焦点,,并求得准线方程.【详解】抛物线开口向上或者向下,,故故选D.【点睛】本小题主要考查直线和坐标轴的交点坐标的求法,考查已知抛物线的焦点求准线方程,属于基础题.4.下列命题中正确的是()A. ,B.C. ,则则D.【答案】B【解析】【分析】根据且、或命题真假性判断A选项真假,根据充要条件知识判断B选项真假,根据逆否命题的概念判断C选项真假,根据特称命题的否定是全称命题判断D选项真假.【详解】对于A选项,,,故A选项为假命题.。
精品解析:【校级联考】江西省临川第一中学等九校2019届高三3月联考理科数学试题(解析版)

2019年江西省高三联合考试数学试卷(理科)注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3.考生必须按照题号在答题卡各题号相对应的答题区域内(黑色线框)作答,写在草稿纸上、超出答题区域或非题号对应的答题区域的答案一律无效。
4.保持卡面清洁,不折叠,不破损。
5.做选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的题号涂黑。
第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,,则()A. B. C. D.【答案】C【解析】【分析】解分式不等式求得集合A,求对数函数定义域求得集合B,由此求得两个集合的交集【详解】由解得,由解得,故,故选C.【点睛】本小题主要考查分式不等式的解法,考查对数函数定义域,考查集合的交集,属于基础题2.已知复数,则复数的虚部为()A. 1B. -1C.D.【答案】A【解析】【分析】化简复数,求出其共轭复数,由此得到的虚部.【详解】依题意,故,其虚部为,故选A.【点睛】本小题主要考查复数的乘法、除法运算,考查共轭复数的概念,考查复数的虚部,属于基础题.3.抛物线的焦点是直线与坐标轴交点,则抛物线准线方程是()A. B. C. D.【答案】D【解析】【分析】先求得直线和坐标轴的焦点,由此求得的值,并求得准线方程.【详解】抛物线开口向上或者向下,焦点在轴上,直线与轴交点为,故,即抛物线的方程为,故准线方程为,故选D.【点睛】本小题主要考查直线和坐标轴的交点坐标的求法,考查已知抛物线的焦点求准线方程,属于基础题.4.下列命题中正确的是()A. 若为真命题,则为真命题.B. “”是“”的充要条件.C. 命题“,则或”的逆否命题为“若或,则”.D. 命题:,使得,则:,使得.【答案】B【解析】【分析】根据且、或命题真假性判断A选项真假,根据充要条件知识判断B选项真假,根据逆否命题的概念判断C 选项真假,根据特称命题的否定是全称命题判断D选项真假.【详解】对于A选项,当真时,可能一真一假,故可能是假命题,故A选项为假命题.对于B 选项,根据基本不等式和充要条件的知识可知,B选项为真命题.对于C选项,原命题的逆否命题为“若且,则”,故C选项为假命题.对于D选项,原命题为特称命题,其否定是全称命题,要注意否定结论,即:,使得.综上所述,本小题选B. 【点睛】本小题主要考查还有简单逻辑连接词真假性,考查充要条件,考查逆否命题,考查特称命题的否定是全称命题等知识,属于基础题.5.等差数列前项和为,,则()A. 15B. 20C. 25D. 30【答案】A【解析】【分析】根据等差数列的性质求得,利用前项和公式求得.【详解】由于数列为等差数列,故,所以,故选A.【点睛】本小题主要考查等差数列的性质,考查等差数列前项和公式,属于基础题. 这个等差数列的性质是:若,则,若,则.如果数列是等比数列,则数列的性质为:若,则,若,则.所以解有关等差或者等比数列的题目时,先观察一下题目所给条件中的下标是否有关系.6.某程序框图如图所示,则该程序运行后输出的值是()A. 2019B. 2018C. 2017D. 2016【答案】B【解析】【分析】运行程序,找出规律,当不满足时,退出循化,输出的值.【详解】运行程序,,判断是,,判断是,,……,依次类推,当为奇数时,为,当为偶数时,为,,判断否,输出,故选B. 【点睛】本小题主要考查程序框图的运算结果,考查合情推理,属于基础题.7.设,,,,则()A. B.C. D.【答案】A【解析】【分析】根据的正负,计算出的值,由此比较出三者的大小.【详解】由于,故,,故,而,故,所以,故选A.【点睛】本小题主要考查指数式和对数式比较大小,考查分段函数的概念与性质,属于中档题.8.函数(其中)的图象如图所示,为了得到的图象,只需把的图象上所有点()A. 向左平移个单位长度B. 向右平移个单位长度C. 向右平移个单位长度D. 向左平移个单位长度【答案】A【解析】【分析】先根据三角函数图像求得的解析式,然后求得需要平移的单位长度.【详解】由于,故,所以,,由,求得,故,故需将图像上所有点向左平移个单位长度得到,故选A. 【点睛】本小题主要考查由三角函数图像求三角函数解析式,考查三角函数图像变换,属于基础题. 求解的过程中,首先利用图像上的最高点求得的值,要注意值的正负.第二根据图像上的半周期或者四分之一周期或者四分之三周期求得的值,第三根据图像上一个点的坐标求得的值.9.某几何体的三视图如图所示,则该几何体外接球表面积为()A. B. C. D.【答案】C【解析】【分析】画出几何体的直观图,利用底面的外心和高的一半求得球的半径,由此求得球的表面积.【详解】画出几何体的直观图如下图所示,设球心为,底面等边三角形的外心为,由三视图可知,设球的半径为,则,故球的表面积为,故选C.【点睛】本小题主要考查由三视图还原为原图,考查几何体外接球的有关计算,考查数形结合的数学思想方法,考查空间想象能力,属于中档题.要找到几何体外接球的球心,主要根据几何体的结构,利用球心到球面上的点的距离相等,通过解直角三角形来求解出半径,从而求得球的表面积或者体积.10.已知双曲线,过原点作一条倾斜角为直线分别交双曲线左、右两支,两点,以线段为直径的圆过右焦点,则双曲线离心率为()A. B. C. 2 D.【答案】B【解析】【分析】求得直线的方程,联立直线的方程和双曲线的方程,求得两点坐标的关系,根据列方程,化简后求得离心率.【详解】设,依题意直线的方程为,代入双曲线方程并化简得,故,设焦点坐标为,由于以为直径的圆经过点,故,即,即,即,两边除以得,解得.故,故选B.【点睛】本小题主要考查直线和双曲线的交点,考查圆的直径有关的几何性质,考查运算求解能力,属于中档题.11.已知三棱锥的6条棱代表6种不同的化工产品,有公共顶点的两条棱代表的化工产品放在同一仓库是安全的,没有公共顶点的两条棱代表的化工产品放在同一仓库是危险的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3图题
数学试卷(理科)
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间为120分钟. 2.本试卷分试题卷和答题卷,第Ⅰ卷(选择题)的答案应填在答题卷卷首相应的空格内,做在第Ⅰ卷 的无效.
第Ⅰ卷(选择题共60分)
一、 选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目
要求的. 1.已知集合21A x
x ⎧⎫
=>⎨⎬⎩⎭
,{}(2)(1)0B x x x =+->,则A B 等于( ) A .(0,2) B .(1,2) C .(2,2)- D .(,2)(0,)-∞-+∞
2.设(12)i x x yi +=+,其中y x ,是实数, 则
y
i x
=+( ) A .1
B
C D 3.下面框图的S 的输出值为 ( ) A .5 B .6 C .8 D .13
4.已知随机变量X 服从正态分布2
(2,)N σ且(4)0.88P x ≤=, 则(04)P x <<=( ) A .0.88
B .0.76
C .0.24
D .0.12
5.在各项不为零的等差数列{}n a 中,2
201720182019220a a a -+=,数列{}n b 是等比数列,且20182018b a =,则
220172019log ()b b 的值为( )
A .1
B .2 C. 4 D .8
6.下列命题正确的个数是( )
(1)函数22cos sin y ax ax =-的最小正周期为π”的充分不必要条件是“1a =”.
(2)设1
{1,1,,3}2
a ∈-,则使函数a y x =的定义域为R 且为奇函数的所有a 的值为1,1,3-. (3)已知函数()2ln f x x a x =+在定义域上为增函数,则0a ≥.
A .1
B .2
C .3
D .0
7.已知向量2(,2),(3,1),(1,3)a x x b c =+=--=,若//a b ,则a 与c 夹角为( )
A .
6
π B .
3
π C .
23
π D .
56
π 8.如图,网格纸上小正方形的边长为1,粗线所画出的是某几何体的三视图,则该几何体的各条棱中最 长的棱长为( ) A.52 B.24 C.6 D.34
9.若关于x 的不等式a x a a sin )6(2
<-+无解,则=a ( ) A.3- B.2- C.2 D.3
10.若()()()11221,2,,,,A B x y C x y 是抛物线24y x =上不同的点,且AB BC ⊥,则2y 的取值范围是( )
A .
∞⋃∞(-,-6)[10,+) B .∞⋃∞(-,-6](8,+)
C .∞⋃∞(-,-5][8,+)
D .
∞⋃∞(-,-5][10,+) 11.已知动点),(y x P 满足:2402323x y y x x y x --+≤⎧⎪
≥⎨⎪+≥+⎩
,则22+4x y y +的最小值为(
)
A
B 4
C . 1-
D .2-
12.已知函数()f x =20540.
x e
e x x x x ⎧⎪≥⎨⎪+<⎩,,+,(e 为自然对数的底数),则函数(())()y
f f x f x =-的零点
的个数为( )
A .2
B .3
C .
4 D .5
第II 卷(非选择题共90分)
二、填空题:本大题共4小题,每小题5分,共20分. 13.3)1
2)(1(x
x x x -+
的展开式中的常数项为 . 14.已知F 1、F 2为双曲线的焦点,过F 2作垂直于实轴的直线交双曲线于A 、B 两点,BF 1交y 轴于点C ,
若AC ⊥BF 1,则双曲线的离心率为 .
15.已知矩形ABCD 的两边长分别为3=AB ,4=BC ,O 是对角线BD 的中点,
E 是AD 边上一点,沿BE 将ABE ∆折起,使得A 点在平面BDC 上的投影恰
为O (如右图所示),则此时三棱锥BCD A -的外接球的表面积是 . 16.在ABC ∆中,内角A,B,C 所对的边分别是,,a b c ,sin 1cos ,2sin cos A b A
b a C B
-=
=
则有如下结论:(1)1c =;(2)ABC S ∆的最大值为
14
; (3)当ABC S ∆取最大值时,b =则上述说法正确的结论的序号为 .
三、解答题:共70分。
解答应写出必要的文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生
都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(本小题满分12分)若数列{}n a 是正项数列,且n n a a a a n +=++++2321 ,
(1)求{n a }的通项公式; (2)设n b ={}n b 的前n 项和n S .
18.(本小题满分12分)如图,在四棱锥P ABCD -中,PB ⊥底面ABCD ,底
面
ABCD 为梯形,A D B ,AD AB ⊥,且
3,P B A B A D B C
====. (1)求二面角B PD A --的大小;
(2)在线段PD 上是否存在一点M ,使得CM PA ⊥?
若存在,求出PM 的长;若不存在,说明理由.
15图题
19.(本小题满分12分)汽车的普及给人们的出行带来了诸多方便,但汽车超速行驶也造成了诸多隐患.
为了解某一段公路汽车通过时的车速情况,现随机抽测了通过
这段公路的200辆汽车的时速,所得数据均在区间[40,80]中, 其频率分布直方图如图所示.
)1(求被抽测的200辆汽车的平均时速.
(2)该路段路况良好,但属于事故高发路段,交警部门对此路段
过往车辆限速h km 60.对于超速行驶,交警部门对超速车辆 有相应处罚:记分(扣除驾驶员驾照的分数)和罚款.罚款情 况如下:
②该路段车流量比较大,按以前统计该路段每天来往车辆约2000辆.试预估每天的罚款总数.
20.(本小题满分12分)已知椭圆2222:1x y C a b
+=过点()()2,0,0,1A B 两点.
(1)求椭圆C 的方程及离心率;
(2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,
求证:四边形ABNM 的面积为定值.
21.(本小题满分12分)已知函数22ln )(2
-+=x x x x f .
(1)若函数)(x g y =的图像与)(x f 的图像关于直线e x =对称,试求)(x g y =在零点处的切线方程.. (2)函数x x x f x h --=2
8
17)()(在定义域内的两极值点为21,x x ,且21x x <,试比较221x x ⋅与3e 大 小,并说明理由.
(二)选考题:共10分。
请考生在22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
22.(本小题满分10分)【选修4-4:坐标系与参数方程】
已知曲线C 的极坐标方程为θρ2
2
sin 314
+=
,直线l 的参数方程为⎩⎨⎧=+=
33t y t x (t 为参数),32(P ,1),
直线l 与曲线C 相交与A ,B 两点.
(1)求曲线C 和直线l 的平面直角坐标方程; (2)求PB PA -的值.
23.(本小题满分10分)【选修4-5:不等式选讲】
设 ()11f x x x =-++ . (1)求 ()2f x x ≤+ 的解集; (2)若不等式121
()a a f x a
+--≥,对任意实数0a ≠恒成立,求实数x 的取值范围.。