高中数学复习专题讲座(第33讲)极限及其运算教学内容

合集下载

高等数学-极限运算法则.ppt

高等数学-极限运算法则.ppt
例1

例2

商的法则不能用
由无穷小与无穷大的关系,得
例3

(消去零因子法)
解:原式
又例 : 求
例4

(无穷小因子分出法)
例5

先变形再求极限.
分母 = 0 , 分子≠0 ,
但因
结论:
2.已知分式函数




去公因子再求
1.已知多项式则练习:求Fra bibliotek解: 原式
例6 . 求
解:
分子分母同除以

“ 抓大头”
原式
先用x3去除分子及分母 然后取极限
解:
例7
例8

所以
说明 : y = 0 是
的水平渐近线 .
二、极限运算法则
定理 3
推论 1 .
( C 为常数 )
推论 2 .
( n 为正整数 )
思考:
是否存在 ? 为什么 ?
答: 不存在 .
否则由
利用极限四则运算法则可知
存在 ,
矛盾.

是否一定不存在 ?

是否一定不存在 ?

1.
2.
3.
答: 不一定不存在 .
一、 无穷小运算法则
定理1. 两个无穷小的和还是无穷小 .
推广: 有限个无穷小之和仍为无穷小 .
无限个无穷小之和是否仍为无穷小???
定理2 . 有界函数与无穷小的乘积是无穷小 .
推论 1 . 常数与无穷小的乘积是无穷小 .
推论 2 . 有限个无穷小的乘积是无穷小 .
例1. 求
解:
利用定理 2 可知

33说课稿:《数列极限》

33说课稿:《数列极限》

《数列极限》教学设计说明一、教材分析1.教材的地位和作用(1)在数学中的地位和作用众所周知,对数列极限这个概念的理解是学习导数所必备的知识.另外,极限也是从初等数学的思维方式到高等数学的思维方式的质的转变,在重点考察思维方法的高考命题中是最好的命题素材之一. (2)在全章中的地位和作用《数列的极限》安排在高中数学第三册(选修2)第二章、第二节,是数列极限的起始课。

这部分内容在课本第73页至76页。

是全章内容的起点,重点。

2.本节内容的课标要求从数列的变化趋势来理解极限的概念;能初步利用极限定义确定某些简单的数列极限;体会极限思想。

3.教学重点、难点、关键的确定教学重点:数列极限的概念教学难点:如何从变化趋势的角度, 来正确理解数列极限的概念教学关键:教学中启发学生在分析问题时抓住问题的本质(即定义)确立依据:这样确定重难点及教学关键,主要是基于课标要求和对本节课全面分析。

二、教学目标分析根据我对教材的分析以及对新课程的教学理念的认识,确定教学目标如下:(1)知识目标:使学生理解极限的概念,能初步利用极限定义确定某些简单的数列极限;(2)能力目标:1、通过设置问题情境、数列变化趋势的分析,使学生理解数列极限的定义,学会数学语言的表述,培养学生观察、分析、概括的能力。

2、通过分层练习,使学生的基础知识得到进一步的巩固,进而学会数列极限的分析方法,体会在探索问题中由静态到动态、由有限到无限的辨证观点和“从具体到抽象,从特殊到一般再到特殊”的认识过程。

(3)情感态度与价值观目标:1、通过介绍我国古代思想家庄周和数学家刘徽,激发学生的民族自尊心和爱国主义思想情感。

2、通过介绍生活中的极限运动和极限精神,激发提高学生的学习积极性,优化学生的思维品质。

确立依据:基于对教材、教学大纲和教学内容的分析,制定相应的教学目标。

数学教学的最终目的是通过思想方法的渗透以及思维品质的锻炼,从而让学生在能力上得到发展.三、教学问题诊断1、对学习者特征分析本节课的学习者特征分析主要是根据教师平时对学生的了解和高三学生学习表现而做出的。

极限的概念及其运算

极限的概念及其运算

云南省2010届高三二轮复习专题(三十三)题目 高中数学复习专题讲座极限的概念及其运算 高考要求极限的概念及其渗透的思想,在数学中占有重要的地位,它是人们研究许多问题的工具 旧教材中原有的数列极限一直是历年高考中重点考查的内容之一 本节内容主要是指导考生深入地理解极限的概念,并在此基础上能正确熟练地进行有关极限的运算问题 重难点归纳1 学好数列的极限的关键是真正从数列的项的变化趋势理解数列极限学好函数的极限的关键是真正从函数值或图象上点的变化趋势理解函数极限2 运算法则中各个极限都应存在 都可推广到任意有限个极限的情况,不能推广到无限个 在商的运算法则中,要注意对式子的恒等变形,有些题目分母不能直接求极限3 注意在平时学习中积累一些方法和技巧,如)1|(|0lim ,0)1(lim<==-∞→∞→a a nn n nn ⎪⎪⎪⎩⎪⎪⎪⎨⎧><==++++++--∞→时当不存在时当时当l k l k l k b a b x b x b a x a x a l l k k k n ,,0,lim 01110110 典型题例示范讲解例1已知lim ∞→x (12+-x x -ax -b )=0,确定a 与b 的值命题意图 在数列与函数极限的运算法则中,都有应遵循的规则,也有可利用的规律,既有章可循,有法可依 因而本题重点考查考生的这种能力 也就是本知识的系统掌握能力知识依托 解决本题的闪光点是对式子进行有理化处理,这是求极限中带无理号的式子常用的一种方法错解分析 本题难点是式子的整理过程繁琐,稍不注意就有可能出错 技巧与方法 有理化处理解 bax x x b ax x x b ax x x x x +++-+-+-=--+-∞→∞→1)()1(lim)1(lim 2222bax x x b x ab x a x +++--++--=∞→1)1()21()1(lim2222要使上式极限存在,则1-a 2=0,当1-a 2=0时,1)21(1)21(1111)21(lim 1)1()21(lim 22222=++-++-=+++--++-=+++--+--=∞→∞→a ab a ab ax b xx x b ab b ax x x b x ab x x 由已知得上式 ∴⎪⎩⎪⎨⎧=++-=-01)21(012aab a 解得⎪⎩⎪⎨⎧-==211b a例2设数列a 1,a 2,…,a n ,…的前n 项的和S n 和a n 的关系是S n =1-ba n -nb )1(1+,其中b是与n 无关的常数,且b ≠-1(1)求a n 和a n -1的关系式;(2)写出用n 和b 表示a n 的表达式;(3)当0<b <1时,求极限lim ∞→n S n命题意图 历年高考中多出现的题目是与数列的通项公式,前n 项和S n 等有紧密的联系 有时题目是先依条件确定数列的通项公式再求极限,或先求出前n 项和S n 再求极限,本题考查学生的综合能力知识依托 解答本题的闪光点是分析透题目中的条件间的相互关系错解分析 本题难点是第(2)中由(1)中的关系式猜想通项及n =1与n =2时的式子不统一性技巧与方法 抓住第一步的递推关系式,去寻找规律解 (1)a n =S n -S n -1=-b (a n -a n -1)-1)1(1)1(1-+++n n b b =-b (a n -a n -1)+nb b)1(+ (n ≥2)解得a n =11)1(1+-+++n n b ba b b (n ≥2)代入上式得把由此猜想21113211132321213212221221111)1()1()1(,)1()1()1(])1(1[)1()1()1()1(1])1(1[1)1(,111)2(b ba b b b b b a b b a b bb b a b b b b b b b a b b b b b bb a b b b b b a b b b b a b b a b ba S a n n n n n n n n n n n n n n n +=+++++++=+++++=+++++++=++++=++++++=∴+=∴+--==+--+-+--+-+-),1()11(1)()1(11)1(1)1)(1(1)1(11)3()1(2)1()1)(1()1(111111112≠+---+-=+-+--⋅-=+--=⎪⎪⎩⎪⎪⎨⎧=≠+--=++++=++++++++b b b b b b b b b b b b b b ba S b n b b b b b b b b b a n n nn n n n n n n n n n n n.1lim ,0)11(lim ,0lim ,10=∴=+=<<∞→∞→∞→n n nn n n S bb b 时例3求1122lim +-∞→++n n n n n aa 111121()21:22,;lim lim 22()n nn n n n n n a a a a a a a a a--+→∞→∞++><-==++解当或时 111()212222,;lim lim 242()2n n n n n n n n a a a a a a -+→∞→∞++-<<==++当时 1112123212,;lim lim 262n n n n n n n n a a a --+-→∞→∞+⋅===+⋅当时 2,a =-当时11111111112221()2(2)22232622(2)22323()2222n n n n n n n n n n n n nn nn n n n n n a a n ----+++--+⎧-+-==-⎪+-+⎪+⋅==⎨++-+⋅⎪==-⎪⎩--为奇数为偶数学生巩固练习1 a n 是(1+x )n展开式中含x 2的项的系数,则)111(lim 21nn a a a +++∞→ 等于 A 2 B 0 C 1D -12 若三数a ,1,c 成等差数列且a 2,1,c 2又成等比数列,则nn c a c a )(lim 22++∞→的值是( )A 0B 1C 0或1D 不存在3 )(lim x x x x n -+++∞→ =_________4 若)12(lim 2nb n n a n --+∞→=1,则ab 的值是_________5 在数列{a n }中,已知a 1=53,a 2=10031,且数列{a n +1-101a n }是公比为21的等比数列,数列{lg(a n +1-21a n }是公差为-1的等差数列 (1)求数列{a n }的通项公式;(2)S n =a 1+a 2+…+a n (n ≥1),求lim ∞→n S n6 设f (x )是x 的三次多项式,已知a x x f a x x f a n a n 4)(lim2)(lim42-=-→→=1,试求ax x f n 3)(lim -∞→的值 (a 为非零常数)7已知数列{a n },{b n }都是由正数组成的等比数列,公式分别为p 、q ,其中p >q ,且p ≠1,q ≠1,设c n =a n +b n ,S n 为数列{c n }的前n 项和,求1lim-∞→n nn S S 的值8 已知数列{a n }是公差为d 的等差数列,d ≠0且a 1=0,b n =2n a (n ∈N *),S n 是{b n }的前n 项和,T n =nn b S (n ∈N *) (1)求{T n }的通项公式; (2)当d >0时,求lim ∞→n T n参考答案 1 解析 )111(21,2)1(C 2nn a n n a n n n --=∴-==, 2)11(2lim )111(lim 21=-=+++∴∞→∞→na a a n n n答案 A 2 解析 ⎩⎨⎧=+=+⎩⎨⎧=+=+⎩⎨⎧==+6222 ,12222222c a c a c a c a c a c a 或得 答案 C二、3 解析 xx x x x x x x x x x x x x +++-++=-+++∞→+∞→lim)(lim.21111111lim23=++++=+∞→x xx x 答案 21 4 解析原式=112)2(lim12)12(lim22222222222=+-+-+-=+-+--+∞→∞→nbn n a a n a n b a nbn n a b n n n a n n⎩⎨⎧==⇒⎪⎩⎪⎨⎧=+=-422120222b a b b a ∴a ·b =82 答案 825 解 (1)由{a n +1-101a n }是公比为21的等比数列,且a 1=53,a 2=10031, ∴a n +1-101a n =(a 2-101a 1)(21)n -1=(10031-53×101)(21)n -1=1121)21(41+-=n n ,∴a n +1=101a n +121+n ①又由数列{lg(a n +1-21a n )}是公差为-1的等差数列,且首项lg(a 2-21a 1)=lg(10031-21×53)=-2,∴其通项lg(a n +1-21a n )=-2+(n -1)(-1)=-(n +1),∴a n +1-21a n =10-(n +1),即a n +1=21a n +10-(n +1)②①②联立解得a n =25[(21)n +1-(101)n +1](2)S n =])101()21([2511111∑∑∑==++=-=n k n k k k nk k a911]1011)61(211)21([25lim 22=---=∴∞→n n S6 解 由于ax x f a x 2)(lim2-→=1,可知,f (2a )=0 ①同理f (4a )=0 ②由①②可知f (x )必含有(x -2a )与(x -4a )的因式,由于f (x )是x 的三次多项式,故可设f (x )=A (x -2a )(x -4a )(x -C ),这里A 、C 均为待定的常数,,1))(4(lim 2))(4)(2(lim ,12)(lim 222=--=----=-→→→C x a x A ax C x a x a x A a x x f a x a x a x 即由1)2)(42(=--C a a a A 得,即4a 2A -2aCA =-1③同理,由于ax x f a x 4)(lim4-→=1,得A (4a -2a )(4a -C )=1,即8a 2A -2aCA =1 ④由③④得C =3a ,A =221a ,因而f (x )= 221a(x -2a )(x -4a )(x -3a ),21)(21)4)(2(21lim 3)(lim 2233-=-⋅⋅=--=-∴→→a a a a x a x a a x x f a x a x 1111111111111111111)1()1()1()1()1()1()1()1(1)1(1)1(1)1(1)1(1)1(1)1(:.7----------+------+-=--+----+--=∴--+--=n n nn n n n n n nn n n q p b p q a p b q a q p b p q a p b q a qq b p p a q q b p p a S S q q b p p a S 解由数列{a n }、{b n }都是由正数组成的等比数列,知p >0,q >0.01)1(00)1(01))(1(1)1()1()1())(1()1()1()1(lim )1()1()1()1()1()1()1()1(lim lim 111111111111111111111111p pq a q a p p q p b p q a p p b q a p q p b q a pp b q a p q p b p q a p b q a p q p b p q a p b q a S S p n n nnn nn n nnn n n n n =------=-----+------+-=-----+------+-=>--∞→--∞→-∞→时当当p <1时,q <1, 0lim lim lim lim 11====-∞→∞→-∞→∞→n n n n n n n n q q p p1lim 1=∴-∞→n nn S S8 解 (1)a n =(n -1)d ,b n =2n a =2(n -1)dS n =b 1+b 2+b 3+…+b n =20+2d +22d +…+2(n -1)d由d ≠0,2d≠1,∴S n =dnd 21)2(1--∴T n =nddn nd d n d nd n n b S 2221221)2(1)1()1(--=--=-- (2)当d >0时,2d>1122121101211)2(1lim )2()2()2(1lim 2221lim lim 1)1(-=--=--=--=--=∴∞→-∞→-∞→∞→dd dd nd n nd n d nd n nd d n nd n n n T 课前后备注(注:本资料素材和资料部分来自网络,仅供参考。

高考数学复习考点知识专题讲解课件第33讲 等差数列及其前n项和

高考数学复习考点知识专题讲解课件第33讲 等差数列及其前n项和
求出
1 + 4 = 5,
首项和公差,然后求出通项公式和前n项和即可;
4×3

2
1 = −3,
= 0,
[解析]设等差数列{an}的公差为d,由题意有ቐ
解得ቊ

=
2,
1 + 4 = 5,
41 +
(−1)
课堂考点探究
(2)[2022·福建莆田二检] 已知等差数列{an}满足a3+a6+a8+a11=12,则a4-3a6的
从而求出{an}的通项公式,最终得证.
证明:由{ }是等差数列,a2=3a1,得 2 - 1 = 41 - 1 = 1 ,即{ }的公
差为 1 ,所以 = 1 +(n-1) 1 =n
2
2
1 ,所以Sn=n a1.当n≥2时,Sn-1=(n-1) a1,
所以an=Sn-Sn-1=(2n-1)a1=a1+(n-1)·2a1,故{an}是公差为2a1的等差数列.
12a6=36,故a6=3,所以S11=
2
=11a6=33,故选D.
课堂考点探究
角度2 等差数列前n项和的性质
例4 (1)已知等差数列{an}的前n项和为Sn,且a8-a5=-6,S9-S4=75,则Sn取得最大值
5 − 2
=1,且
5−2
=12,可得a13=12×12=144.故选B.
1 =0,满足题意,则有 13 = 1 +(13-1)d
课堂考点探究
(3)[2020·全国卷Ⅱ] 记Sn为等差数列{an}的前n项和,若a1=-2,a2+a6=2,则
25
S10=
.
[解析]设等差数列{an}的公差为d,则a2+a6=a1+d+a1+5d=2,∴2a1+6d=2,又a1=-2,

高中数学教案极限的运算法则与无穷小量

高中数学教案极限的运算法则与无穷小量

高中数学教案极限的运算法则与无穷小量高中数学教案:极限的运算法则与无穷小量一、引言数学中的极限是一种重要的概念,在高中数学中也是一个重要的内容。

本教案将重点介绍极限的运算法则与无穷小量的相关知识。

通过深入了解这些内容,学生将能够更好地理解和应用极限的概念。

二、极限的运算法则与无穷小量的定义1. 无穷小量的定义及性质无穷小量是指当自变量趋于某一确定值时,函数值也趋于零的量。

常见的无穷小量有极限为零的数列和极限为零的函数。

2. 极限的四则运算法则在计算极限时,可以利用四则运算法则简化计算过程。

四则运算法则包括:- 两个极限的和等于极限的和;- 两个极限的差等于极限的差;- 两个极限的积等于极限的积;- 两个极限的商等于极限的商(其中除数极限不为零)。

三、极限的运算法则的应用1. 极限的运算示例通过具体的例子来演示极限的运算法则的应用,例如计算以下极限:- lim(x→2) [3x^2 + 2x - 1]- lim(x→1) [√(2x+1) + 4]2. 极限的运算法则的推理在应用极限的运算法则时,有时需要进行推理和证明。

通过给出一些列的推理步骤和相应的证明过程,学生可以更好地理解极限的运算法则的原理。

四、极限的运算法则与函数的性质1. 连续函数的性质连续函数在定义域内具有连续性的特点,具体包括:- 在定义域内无间断点;- 函数值与自变量在定义域内的微小变化成正比。

2. 极限的运算法则与连续函数的关系利用极限的运算法则,可以更好地理解和证明连续函数的性质。

通过给出一些典型的连续函数和相应的极限运算,学生可以加深对连续函数性质的理解。

五、总结通过学习本教案,我们对极限的运算法则与无穷小量有了更深入的了解。

极限的四则运算法则为我们计算极限提供了方便,而无穷小量的概念则帮助我们更好地理解函数的趋势。

希望同学们通过本教案的学习,能够在高中数学中更加熟练地运用极限的运算法则与无穷小量的概念。

高考数学回归课本教案:极限与导数

高考数学回归课本教案:极限与导数

高考数学回归课本教案:极限与导数一、教学目标1. 理解极限的概念,掌握极限的计算方法。

2. 理解导数的定义,掌握基本导数公式和导数的计算方法。

3. 能够运用极限和导数解决实际问题。

二、教学内容1. 极限的概念和性质2. 极限的计算方法3. 导数的定义和性质4. 基本导数公式5. 导数的计算方法三、教学重点与难点1. 重点:极限的概念,极限的计算方法,导数的定义和性质,基本导数公式,导数的计算方法。

2. 难点:极限的计算方法,基本导数公式的记忆和应用,导数的计算方法。

四、教学方法1. 采用问题驱动的教学方法,引导学生主动探索和发现。

2. 通过例题讲解,让学生理解和掌握极限和导数的计算方法。

3. 利用多媒体教学,形象直观地展示极限和导数的概念和计算过程。

五、教学过程1. 导入:通过生活中的实例,引导学生思考极限和导数的概念。

2. 讲解极限的概念和性质,通过例题让学生掌握极限的计算方法。

3. 讲解导数的定义和性质,通过例题让学生掌握基本导数公式和导数的计算方法。

4. 课堂练习:让学生独立完成相关的练习题,巩固所学知识。

6. 作业布置:布置相关的练习题,巩固所学知识。

六、教学评价1. 课堂讲解:观察学生对极限与导数概念的理解程度,以及对极限和导数计算方法的掌握情况。

2. 课堂练习:检查学生完成练习题的正确率,巩固学生对极限与导数的应用能力。

3. 课后作业:通过批改学生的作业,了解学生对课堂所学知识的掌握情况,发现问题并及时给予反馈。

七、教学拓展1. 引入实际应用案例,让学生了解极限与导数在生活中的应用,提高学生的学习兴趣。

2. 讲解极限与导数在数学分析中的重要作用,激发学生对数学分析的兴趣。

3. 引导学生思考极限与导数在其他学科中的应用,如物理学、经济学等。

八、教学反思2. 根据学生的反馈,调整教学方法,提高教学效果。

3. 关注学生的学习进度,针对性地进行辅导,确保学生掌握极限与导数的相关知识。

九、课后作业1. 复习极限与导数的概念、性质和计算方法。

高中数学极限教案

高中数学极限教案

高中数学极限教案
教学内容:极限的概念及运算法则
教学目标:
1. 了解极限的概念,掌握极限的定义;
2. 掌握求极限的常用方法,如代入法、夹逼定理等;
3. 能够熟练运用极限的运算法则,解决相关题目。

教学重点:
1. 极限的定义及性质;
2. 极限的计算方法。

教学难点:
1. 运用夹逼定理求极限;
2. 掌握极限的运算法则。

教学准备:
1. 教材:高中数学教材;
2. 教具:黑板、彩色粉笔、教学PPT等。

教学步骤:
一、复习导入(5分钟)
通过回顾前几节课的内容,引导学生了解极限的基本概念及性质。

二、新知讲解(15分钟)
1. 讲解极限的定义及性质;
2. 介绍极限的运算法则:四则运算法则、三角函数的极限、指数函数的极限等。

三、示例演练(20分钟)
1. 通过几道例题,让学生熟悉求极限的常用方法;
2. 演示如何运用极限的运算法则解题。

四、练习巩固(15分钟)
布置一定数量的练习题,让学生独立完成,并及时纠正错误。

五、课堂总结(5分钟)
对本节课的内容进行总结,强调学生应掌握的重点和难点。

教学反思:
1. 学生是否能够理解极限的定义及性质;
2. 学生是否能够熟练运用极限的运算法则解题;
3. 教学过程中是否能够引导学生主动思考及互动讨论。

教学扩展:
可以通过拓展练习或应用题,加深学生对极限概念的理解及掌握。

高中数学新课极限教案

高中数学新课极限教案

高中数学新课——极限一、教学目标1. 理解极限的概念,掌握极限的表示方法。

2. 学会求函数在某一点的极限。

3. 理解无穷小和无穷大的概念,并能比较无穷小和无穷大的大小。

4. 了解极限在数学分析中的应用。

二、教学内容1. 极限的概念:函数在某一点的极限,无穷小,无穷大。

2. 极限的表示方法:极限符号“\(\lim\)”,极限表达式。

3. 求函数在某一点的极限:直接求极限,定义法求极限,夹逼定理求极限。

4. 无穷小和无穷大的比较:无穷小比较,无穷大比较。

5. 极限在数学分析中的应用:导数,积分。

三、教学重点与难点1. 重点:极限的概念,极限的表示方法,求函数在某一点的极限。

2. 难点:无穷小和无穷大的比较,极限在数学分析中的应用。

四、教学方法1. 采用讲解法,引导学生理解极限的概念,掌握极限的表示方法。

2. 采用案例分析法,让学生通过具体的例子学会求函数在某一点的极限。

3. 采用比较法,让学生理解无穷小和无穷大的概念,并能比较它们的大小。

4. 采用联系实际法,让学生了解极限在数学分析中的应用。

五、教学准备1. 教学课件:极限的概念,极限的表示方法,求函数在某一点的极限,无穷小和无穷大的比较,极限在数学分析中的应用。

2. 例题:求函数在某一点的极限的例题。

3. 练习题:巩固极限的概念和求函数在某一点的极限的方法。

教案一、导入(5分钟)1. 引入极限的概念,引导学生思考函数在某一点的极限是什么。

2. 介绍极限的表示方法,让学生熟悉极限符号“\(\lim\)”和极限表达式。

二、新课内容(15分钟)1. 讲解极限的概念,解释无穷小和无穷大的概念。

2. 讲解求函数在某一点的极限的方法:直接求极限,定义法求极限,夹逼定理求极限。

三、案例分析(15分钟)1. 通过具体的例子,让学生学会求函数在某一点的极限。

2.让学生尝试解决一些求极限的问题,并及时给予指导和解答。

四、无穷小和无穷大的比较(10分钟)1. 讲解无穷小比较和无穷大比较的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学复习专题讲座 极限的概念及其运算高考要求极限的概念及其渗透的思想,在数学中占有重要的地位,它是人们研究许多问题的工具 旧教材中原有的数列极限一直是历年高考中重点考查的内容之一 本节内容主要是指导考生深入地理解极限的概念,并在此基础上能正确熟练地进行有关极限的运算问题重难点归纳1 学好数列的极限的关键是真正从数列的项的变化趋势理解数列极限学好函数的极限的关键是真正从函数值或图象上点的变化趋势理解函数极限2 运算法则中各个极限都应存在 都可推广到任意有限个极限的情况,不能推广到无限个 在商的运算法则中,要注意对式子的恒等变形,有些题目分母不能直接求极限3 注意在平时学习中积累一些方法和技巧,如)1|(|0lim ,0)1(lim<==-∞→∞→a a nn n nn ⎪⎪⎪⎩⎪⎪⎪⎨⎧><==++++++--∞→时当不存在时当时当l k l k l k b a b x b x b a x a x a l l k k k n ,,0,lim 01110110ΛΛ 典型题例示范讲解例1已知lim ∞→x (12+-x x -ax -b )=0,确定a 与b 的值命题意图 在数列与函数极限的运算法则中,都有应遵循的规则,也有可利用的规律,既有章可循,有法可依 因而本题重点考查考生的这种能力 也就是本知识的系统掌握能力知识依托 解决本题的闪光点是对式子进行有理化处理,这是求极限中带无理号的式子常用的一种方法错解分析 本题难点是式子的整理过程繁琐,稍不注意就有可能出错技巧与方法 有理化处理解 bax x x b ax x x b ax x x x x +++-+-+-=--+-∞→∞→1)()1(lim)1(lim 2222bax x x b x ab x a x +++--++--=∞→1)1()21()1(lim2222要使上式极限存在,则1-a 2=0, 当1-a 2=0时,1)21(1)21(1111)21(lim 1)1()21(lim 22222=++-++-=+++--++-=+++--+--=∞→∞→a ab a ab ax b xx x b ab b ax x x b x ab x x 由已知得上式 ∴⎪⎩⎪⎨⎧=++-=-01)21(012aab a 解得⎪⎩⎪⎨⎧-==211b a例2设数列a 1,a 2,…,a n ,…的前n 项的和S n 和a n 的关系是S n =1-ba n -nb )1(1+,其中b 是与n 无关的常数,且b ≠-1(1)求a n 和a n -1的关系式;(2)写出用n 和b 表示a n 的表达式; (3)当0<b <1时,求极限lim ∞→n S n命题意图 历年高考中多出现的题目是与数列的通项公式,前n 项和S n 等有紧密的联系 有时题目是先依条件确定数列的通项公式再求极限,或先求出前n 项和S n 再求极限,本题考查学生的综合能力知识依托 解答本题的闪光点是分析透题目中的条件间的相互关系错解分析 本题难点是第(2)中由(1)中的关系式猜想通项及n =1与n =2时的式子不统一性技巧与方法 抓住第一步的递推关系式,去寻找规律解 (1)a n =S n -S n -1=-b (a n -a n -1)-1)1(1)1(1-+++n n b b =-b (a n -a n -1)+nb b)1(+ (n ≥2) 解得a n =11)1(1+-+++n n b ba b b (n ≥2) 代入上式得把由此猜想21113211132321213212221221111)1()1()1(,)1()1()1(])1(1[)1()1()1()1(1])1(1[1)1(,111)2(b ba b b b b b a b b a b bb b a b b b b b b b a b b b b b bb a b b b b b a b b b b a b ba b ba S a n n n n n n n n n n n n n n n +=+++++++=+++++=+++++++=++++=++++++=∴+=∴+--==+--+-+--+-+-ΛΛΘ),1()11(1)()1(11)1(1)1)(1(1)1(11)3()1(2)1()1)(1()1(111111112≠+---+-=+-+--⋅-=+--=⎪⎪⎩⎪⎪⎨⎧=≠+--=++++=++++++++b b b b b b b b b b b b b b ba S b n b b b b b b b b b a n n nn n n n n n n n n n n n Λ.1lim ,0)11(lim ,0lim ,10=∴=+=<<∞→∞→∞→n n nn n n S bb b 时Θ例3求1122lim +-∞→++n n n n n aa 111121()21:22,;lim lim 22()n nn n n n n n a a a a a a a a a--+→∞→∞++><-==++解当或时 111()212222,;lim lim 242()2n n n n n n n n a a a a a a -+→∞→∞++-<<==++当时 1112123212,;lim lim 262n n n n n n n n a a a --+-→∞→∞+⋅===+⋅当时 2,a =-当时11111111112221()2(2)22232622(2)22323()2222n n n n n n n n n nn n nn nn n n n n n a a n ----+++--+⎧-+-==-⎪+-+⎪+⋅==⎨++-+⋅⎪==-⎪⎩--为奇数为偶数学生巩固练习1 a n 是(1+x )n 展开式中含x 2的项的系数,则)111(lim 21nn a a a +++∞→Λ等于A 2B 0C 1D -12 若三数a ,1,c 成等差数列且a 2,1,c 2又成等比数列,则nn c a c a )(lim 22++∞→的值是( )A 0B 1C 0或1D 不存在3 )(lim x x x x n -+++∞→ =_________4 若)12(lim 2nb n n a n --+∞→=1,则ab 的值是_________5 在数列{a n }中,已知a 1=53,a 2=10031,且数列{a n +1-101a n }是公比为21的等比数列,数列{lg(a n +1-21a n }是公差为-1的等差数列 (1)求数列{a n }的通项公式; (2)S n =a 1+a 2+…+a n (n ≥1),求lim ∞→n S n6 设f (x )是x 的三次多项式,已知ax x f a x x f a n a n 4)(lim2)(lim42-=-→→=1,试求a x x f n 3)(lim-∞→的值 (a 为非零常数)7已知数列{a n },{b n }都是由正数组成的等比数列,公式分别为p 、q ,其中p >q ,且p ≠1,q ≠1,设c n =a n +b n ,S n 为数列{c n }的前n 项和,求1lim -∞→n nn S S 的值8 已知数列{a n }是公差为d 的等差数列,d ≠0且a 1=0,b n =2n a (n ∈N *),S n 是{b n }的前n 项和,T n =nn b S (n ∈N *) (1)求{T n }的通项公式;(2)当d >0时,求lim ∞→n T n参考答案1 解析 )111(21,2)1(C 2nn a n n a n n n --=∴-==, 2)11(2lim )111(lim 21=-=+++∴∞→∞→na a a n n n Λ答案 A2 解析 ⎩⎨⎧=+=+⎩⎨⎧=+=+⎩⎨⎧==+6222 ,12222222c a c a c a c a c a c a 或得 答案 C二、3 解析 xx x x x x x x x x x x x x +++-++=-+++∞→+∞→lim)(lim.21111111lim23=++++=+∞→x xx x 答案21 4 解析原式=112)2(lim12)12(lim22222222222=+-+-+-=+-+--+∞→∞→nbn n a a n a n b a nbn n a b n n n a n n⎩⎨⎧==⇒⎪⎩⎪⎨⎧=+=-422120222b a b b a Θ ∴a ·b =82 答案 825 解 (1)由{a n +1-101a n }是公比为21的等比数列,且a 1=53,a 2=10031,∴a n +1-101a n =(a 2-101a 1)(21)n -1=(10031-53×101)(21)n -1=1121)21(41+-=n n ,∴a n +1=101a n +121+n ①又由数列{lg(a n +1-21a n )}是公差为-1的等差数列,且首项lg(a 2-21a 1)=lg(10031-21×53)=-2,∴其通项lg(a n +1-21a n )=-2+(n -1)(-1)=-(n +1),∴a n +1-21a n =10-(n +1),即a n +1=21a n +10-(n +1)②①②联立解得a n =25[(21)n +1-(101)n +1](2)S n =])101()21([2511111∑∑∑==++=-=n k n k k k nk k a911]1011)61(211)21([25lim 22=---=∴∞→n n S6 解 由于ax x f a x 2)(lim2-→=1,可知,f (2a )=0①同理f (4a )=0②由①②可知f (x )必含有(x -2a )与(x -4a )的因式,由于f (x )是x 的三次多项式,故可设f (x )=A (x -2a )(x -4a )(x -C ),这里A 、C 均为待定的常数,,1))(4(lim 2))(4)(2(lim ,12)(lim222=--=----=-→→→C x a x A ax C x a x a x A a x x f a x a x a x 即由1)2)(42(=--C a a a A 得,即4a 2A -2aCA =-1 ③同理,由于ax x f a x 4)(lim4-→=1,得A (4a -2a )(4a -C )=1,即8a 2A -2aCA =1 ④由③④得C =3a ,A =221a ,因而f (x )= 221a(x -2a )(x -4a )(x -3a ),21)(21)4)(2(21lim 3)(lim 2233-=-⋅⋅=--=-∴→→a a a a x a x a a x x f a x a x 1111111111111111111)1()1()1()1()1()1()1()1(1)1(1)1(1)1(1)1(1)1(1)1(:.7----------+------+-=--+----+--=∴--+--=n n nn n n n n n nn n n q p b p q a p b q a q p b p q a p b q a qq b p p a q q b p p a S S q q b p p a S 解由数列{a n }、{b n }都是由正数组成的等比数列,知p >0,q >0.1)1(00)1(01))(1(1)1()1()1())(1()1()1()1(lim)1()1()1()1()1()1()1()1(lim lim 111111111111111111111111p pq a q a p p q p b p q a pp b q a p q p b q a p p b q a p q p b p q a p b q a p q p b p q a p b q a S S p n n nnn nn n nnn n n n n =------=-----+------+-=-----+------+-=>--∞→--∞→-∞→时当当p <1时,q <1, 0lim lim lim lim 11====-∞→∞→-∞→∞→n n n n n n n n q q p p1lim1=∴-∞→n nn S S8 解 (1)a n =(n -1)d ,b n =2n a =2(n -1)dS n =b 1+b 2+b 3+…+b n =20+2d +22d +…+2(n -1)d由d ≠0,2d≠1,∴S n =dnd 21)2(1--∴T n =nddn nd d n d nd n n b S 2221221)2(1)1()1(--=--=-- (2)当d >0时,2d>1122121101211)2(1lim )2()2()2(1lim 2221lim lim 1)1(-=--=--=--=--=∴∞→-∞→-∞→∞→dd dd nd n nd n d nd n nd d n nd n n n T。

相关文档
最新文档