2.2.1条件概率导学案1

合集下载

2.2.1条件概率(学生学案)

2.2.1条件概率(学生学案)

SCH 南极数学同步教学设计 人教A 版选修2-3 第二章《随机变量及其分布》 班级 姓名 座号2.2.1条件概率(学生学案)例1(课本P53例1).在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2 道题,求: (l )第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第 1 次抽到理科题的条件下,第2次抽到理科题的概率.变式训练1:甲乙两地都位于长江下游,根据一百多年的气象记录,知道甲乙两地一年中雨天所占的比例分别为20%和18%,两地同时下雨的比例为12%,问: (1)乙地为雨天时甲地也为雨天的概率是多少? (2)甲地为雨天时乙地也为雨天的概率是多少? (3)甲乙两市至少一市下雨的概率是多少?例2(课本P53例2).一张储蓄卡的密码共位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过 2 次就按对的概率; (2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.变式训练2:一个袋中有2个黑球和3个白球,如果不放回地抽取两个球,记事件“第一次抽到黑球”为A ;事件“第二次抽到黑球”为B .(1)分别求事件A ,B ,AB 发生的概率; (2)求P (B |A ). 【课时作业】1.设A ,B 为两个事件,且P (A )>0,若P (AB )=13,P (A )=23,则P (B |A )=( ) A.12 B.29 C.19 D.492.把一枚硬币投掷两次,事件A ={第一次出现正面},B ={第二次出现正面},则P (B |A )等于( ) A.14 B.12 C.16 D.183.已知P (B |A )=12,P (AB )=38,则P (A )=( )A.316B.1316C.34D.144.某地一农业科技实验站对一批新水稻种子进行试验,已知这批水稻种子的发芽率为0.8,出芽后的幼苗成活率为0.9,在这批水稻种子中,随机地抽取一粒,则这粒水稻种子成长为幼苗的概率为( ) A.0.02 B.0.08 C.0.18 D.0.725.7名同学站成一排,已知甲站在中间,则乙站在末尾的概率是( ) A.14 B.15 C.16 D.176.一盒中装有5个产品,其中有3个一等品,2个二等品,从中不放回地取出产品,每次1个,取两次,已知第1次取得一等品的条件下,第2次取得的是二等品的概率是( ) A.12 B.13 C.14 D.237.某人一周晚上值2次班,在已知他周日一定值班的条件下,他在周六晚上值班的概率为________.8.假定生男、生女是等可能的,一个家庭中有两个小孩,已知有一个是女孩,则另一个小孩是男孩的概率是________.9.某校高二(1)班有学生56人,其中篮球爱好者25人.全班分成4个小组,第一组有学生16人,其中篮球爱好者7人.从该班任选一人作学生代表.①选到的是第一组的学生的概率是________;②已知选到的是篮球爱好者,他是第一组学生的概率是________. 10.一个袋子里装有大小、形状相同的3个红球和2个白球,如果不放回地依次抽取2个球,求 (1)第1次抽到红球的概率;(2)第1次和第2次都抽到红球的概率; (3)在第1次抽到红球的条件下,第2次抽到红球的概率; (4)抽到颜色相同的球的概率. 11、(课本P59习题2.2 A 组 NO :2)。

1§2.2.1条件概率导学案

1§2.2.1条件概率导学案

高二数学导学案主备人:备课时间:备课组长:§概率条件2.2.1条件概率一、学习目标知识与技能:通过对具体情景的分析,了解条件概率的定义。

过程与方法:掌握一些简单的条件概率的计算。

情感、态度与价值观:通过对实例的分析,会进行简单的应用。

二、学习重、难点学习重点:条件概率定义的理解学习难点: 概率计算公式的应用三、学法指导:教材51—53页,复习古典概型计算公式四、知识链接A1.古典概型:A2. 古典概型计算公式:A3.什么是互斥事件:五、学习过程A问题1:三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小?3名同学抽到中奖奖券的概率分别为多少?B问题2:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率又是多少?有影响吗?B问题3:已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢?B问题4:对于上面的事件A和事件B,P ( B|A)与它们的概率有什么关系呢?((|)P B A读作A 发生的条件下 B 发生的概率.)其中A表示事件“第一名同学没有抽到中奖奖券”.B表示事件“最后一名同学抽到奖券”B问题5:事件AB表示什么意思?B问题6:条件概率的.定义:B问题7:条件概率的性质:(1)非负性:;(2)规范性:P(Ω|B)=1;(Ω表示所有可能结果)(3)可列可加性:如果B和C是两个互斥事件,则。

C例1、在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2 道题,求:(l)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第 1 次抽到理科题的条件下,第2次抽到理科题的概率.C例2、一张储蓄卡的密码共6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过 2 次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.五、课堂检测B1、抛掷一颗质地均匀的骰子所得的样本空间为S={1,2,3,4,5,6},令事件A={2,3,5},B={1,2,4,5,6},求P(A),P(B),P(AB),P(A︱B)。

高中数学《条件概率》导学案

高中数学《条件概率》导学案

2.2 二项分布及其应用2.2.1 条件概率导学案一、学习目标:1.在具体情境中,了解条件概率的概念. 2.掌握求条件概率的两种方法.3.利用条件概率公式解一些简单的实际问题. 教学重点难点(教学重点)掌握求条件概率的两种方法.(教学难点)利用条件概率公式解一些简单的实际问题.二、学习过程 导入新课问题1:三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取一张,那么最后一名同学中奖的概率是否比前两位小?问题2:如果已经知道第一名同学没有中奖,那么最后一名同学中奖的概率是多少?问题1中我们不难用古典概型概率公式计算出先抽与后抽的概率同为1/3 ;而问题2就是我们今天要研 究的条件概率问题.探究点1 条件概率的概念及性质我们来解决引入时提出的问题2,设三张奖券分别为X ,X ,Y 12 ,其中Y 表示中奖奖券,且Ω 为所有结果组成的全体,“最后一名同学中奖”为事件B ,则所研究的样本空间211.423=> 可设“第一名同学没有中奖”为事件A {}12211221.,,,=X YX X YX X X Y X X Y由古典概型概率公式,所求概率为211.423=> 因为已知A 发生导致可能出现的基本事件必然在事件A 中,所以B ⊆ A; 而在事件A 发生的情况下,事件B 发生 ----事件A 和B 同时发生,即事件AB 发生.而此时A ∩B=B. ()()()n AB P B A n A =记和 为事件AB,事件B 和事件A 包含的基本事件个数. 提问:既然前面计算 ()()()=n AB P B A n A ,涉及事件A 和AB ,那么用事件A 和AB 的概率 P(A) 和P(AB)可以表示P (B |A )吗?条件概率一般地,设A ,B 为两条件概率个事件 ,且 ,称为事件A 发生的条件下,事件B 发生的条件概率.事件B 发生的条件概率.P(B |A )读作A 发生的条件下B 发生的概率, P(B|A )相当于把A 当作新的样本空间来计算AB 发生的概率.{}122112211221Ω=X YX ,X YX ,X X Y,X X Y,YX X ,YX X ,{}1221,.B X X Y X X Y =(),()n AB n B ()n A ()()()/()()()()/()()Ω===Ωn AB n AB n P AB P B A n A n A n P A ()0>P A ()()()=P AB P B A P A ()()()()()==n AB P AB P B A n A P A条件概率的性质:(1)有界性:()0 1.≤≤P B A(2) 可加性:如果B 和C 是两个互斥事件,则探究点2 条件概率的简单应用例1 在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求: (1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.【变式练习】掷两颗均匀骰子,问:⑴ “ 第一颗掷出6点”的概率是多少? ⑵ “掷出点数之和不小于10”的概率又是多少?⑶ “已知第一颗掷出6点,则掷出点数之和不小于10”的概率呢?解题总结你能归纳出求解条件概率的一般步骤吗?求解条件概率的一般步骤:1)用字母表示有关事件 (2)求P(AB ),P(A)或n(AB),n(A)(3)利用条件概率公式求例2 一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字.求:(1)任意按最后一位数字,不超过2次就按对的概率.(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率. ()()().=+P B C A P B A P C A ()()()()()==P AB n AB P B A P A n A三、总结反思(a )求条件概率的常见方法有哪些?计算事件A 发生的条件下事件B 发生的条件概率,有两种方法: (1)利用定义计算:分别计算概率P (AB )和P (A ),然后将它们相除得到,即条件概率P (B |A )=P (AB )P (A ).(2)利用缩小样本空间的观点计算:在这种观点下,原来的样本空间Ω缩小为已知的事件A ,原来的事件B 缩小为事件AB ,从而可以在缩小的样本空间上利用古典概型计算概率的公式计算条件概率,即P (B |A )=n (AB )n (A )(b )知识体系小结: 1. 条件概率的定义:2. 条件概率的性质:(1)有界性.(2)可加性.3. 条件概率的计算方法:(古典概型);4. . 求解条件概率的一般步骤用字母表示有关事件---------求相关量---------代入公式求四、随堂检测1.已知P(B|A)=13,P(A)=25,则P(AB)等于( )A. 56B. 910C. 215D. 1152.抛掷红、黄两枚骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是( ) A.14 B.13 C.12 D.353.某学校一年级共有学生100名,其中男生60人,女生40人.来自北京的有20人,其中男生12人,若任选一人是女生,则该女生来自北京的概率是_________.()()()n AB P B A n A =()().()=P A B P B A P A。

学案7:2.2.1 条件概率

学案7:2.2.1 条件概率

2.2 二项分布及其应用2.2.1 条件概率[学习目标] 1.通过对具体情境的分析,了解条件概率的定义.2.掌握求条件概率的两种方法.3利用条件概率公式解决一些简单的问题.[自主预习][新知提炼]1.条件概率2.条件概率的性质(1)P (B |A )∈ .(2)如果B 与C 是两个互斥事件,则P (B ∪C |A )= . [注意] (1)前提条件:P (A )>0.(2)P (B ∪C |A )=P (B |A )+P (C |A ),必须B 与C 互斥,并且都是在同一个条件A 下.[自我尝试]1. 判断正误(正确的打“√”,错误的打“×”)(1)若事件A ,B 互斥,则P (B |A )=1.( )(2)P (B |A )与P (A |B )不同.( )2. 已知P (AB )=310,P (A )=35,则P (B |A )为( ) A.950 B.12 C.910 D .143. 由“0”“1”组成的三位数组中,若用事件A 表示“第二位数字为0”,用事件B 表示“第一位数字为0”,则P (A |B )等于( )A.12B.13C.14D.184. 一个盒子里有6只好晶体管,4只坏晶体管,任取两次,每次取1只,每次取出后不放回,则若已知第一次取出的是好的,则第二次取出的也是好的概率为________.讲练互动探究点1利用定义求条件概率例1:甲、乙两地都位于长江下游,根据多年的气象记录知道,甲、乙两地一年中雨天所占的比例分别为20%和18%,两地同时下雨的比例为12%,问:(1)乙地为雨天时甲地为雨天的概率是多少?(2)甲地为雨天时乙地为雨天的概念是多少?[跟踪训练]以O为圆心,1为半径的圆的内接正方形,将一颗豆子随机地掷到圆内,用A 表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形HOE(阴影部分)内”,则P(A)=________,P(B|A)=________.探究点2缩小基本事件范围求条件概率例2:集合A={1,2,3,4,5,6},甲、乙两人各从A中任取一个数,若甲先取(不放回),乙后取,在甲抽到奇数的条件下,求乙抽到的数比甲抽到的数大的概率.[互动探究]1.[变问法]本例条件不变,求乙抽到偶数的概率.2.[变条件]若甲先取(放回),乙后取,若事件A:“甲抽到的数大于4”;事件B:“甲、乙抽到的两数之和等于7”,求P(B|A).[跟踪训练] 4个产品,其中3个一等品,1个二等品,从中取两次,每次任取1个,作不放回抽取.设事件A为“第一次取到的是一等品”,事件B为“第二次取到的是一等品”,试求条件概率P(B|A).探究点3条件概率性质的应用例3:袋子中装有10个球,设有1个红球,2个黄球,3个黑球,4个白球,从中依次摸2个,求在第一个球是红球的条件下,第二个球是黄球或黑球的概率.[跟踪训练] 外形相同的球分装在三个盒子中,每盒10个.第一个盒子中有7个球标有字母A,3个球标有字母B,第二个盒子中有红球和白球各5个,第三个盒子中有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A 的球,则在第二个盒子中任取一个球;若第一次取得标有字母B 的球,则在第三个盒子中任取一个球.如果第二次取出的是红球,则称试验为成功.求试验成功的概率.当堂检测1.已知P (B |A )=13,P (A )=25,则P (AB )等于( ) A.56 B.910C.215D.1152.甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A 为“三个人去的景点不相同”,B 为“甲独自去一个景点”,则概率P (A |B )等于( )A.49B.29C.12D.133.考虑恰有两个小孩的家庭.(1)若已知某家有男孩,求这家有两个男孩的概率;(2)若已知某家第一个是男孩,求这家有两个男孩(相当于第二个也是男孩)的概率(假定生男生女为等可能).课堂知识小结巩固提升[A 基础达标]1.已知甲在上班途中要经过两个路口,在第一个路口遇到红灯的概率为0.5,两个路口连续遇到红灯的概率为0.4,则甲在第一个路口遇到红灯的条件下,第二个路口遇到红灯的概率为( )A .0.6B .0.7C .0.8D .0.92.(2018·西安高二检测)7名同学站成一排,已知甲站在中间,则乙站在末尾的概率是( ) A.14B.15C.16D.173.(2018·洛阳高二检测)一盒中装有5个产品,其中有3个一等品,2个二等品,从中不放回地取出产品,每次1个,取两次,已知第一次取得一等品的条件下,第二次取得的是二等品的概率是( )A.12B.13C.14D.234.在区间(0,1)内随机投掷一个点M (其坐标为x ),若A ={x |0<x <12},B ={x |14<x <34},则P (B |A )等于( )A.12B.14C.13D.345.(2018·四川广安期末)甲、乙两人从1,2,…,15这15个数中,依次任取一个数(不放回),则在已知甲取到的数是5的倍数的情况下,甲所取的数大于乙所取的数的概率是( ) A.12B.715C.815D.914 6.已知P (A )=0.4,P (B )=0.5,P (A |B )=0.6,则P (B |A )为________.7.抛掷红、蓝两颗骰子,若已知蓝骰子的点数为3或6,则两骰子点数之和大于8的概率为________.8.从一副不含大、小王的52张扑克牌中不放回地抽取2次,每次抽1张.已知第1次抽到A ,则第2次也抽到A 的概率是________.9.(2018·福建厦门六中高二下学期期中)一个袋子中,放有大小、形状相同的小球若干,其中标号为0的小球有1个,标号为1的小球有2个,标号为2的小球有n 个.从袋子中任取2个小球,取到标号都是2的小球的概率是110. (1)求n 的值;(2)从袋子中任取2个球,已知其中一个的标号是1的条件下,求另一个标号也是1的概率.10.已知男人中有5%患色盲,女人中有0.25%患色盲,从100个男人和100个女人中任选一人.(1)求此人患色盲的概率;(2)如果此人是色盲,求此人是男人的概率.[B 能力提升]11.先后掷两次骰子(骰子的六个面上分别是1,2,3,4,5,6点),落在水平桌面后,记正面朝上的点数分别为x ,y ,记事件A 为“x +y 为偶数”,事件B 为“x ,y 中有偶数且x ≠y ”,则概率P (B |A )的值为( )A.12B.13C.14D.1612.从1~100共100个正整数中,任取一数,已知取出的一个数不大于50,则此数是2或3的倍数的概率为________.13.一个口袋内装有2个白球和2个黑球,那么:(1)先摸出1个白球不放回,再摸出1个白球的概率是多少?(2)先摸出1个白球后放回,再摸出1个白球的概率是多少?14.(选做题)在某次考试中,要从20道题中随机地抽出6道题,若考生至少能答对其中的4道题即可通过;若能答对其中的5道题就能获得优秀.已知某考生能答对其中的10道题,并且已知道他在这次考试中已经通过,求他获得优秀成绩的概率.【参考答案】[自主预习][新知提炼]1. n (AB )n (A ) P (AB )P (A )2. (1) [0,1](2) P (B |A )+P (C |A )[自我尝试]1. 【答案】(1)× (2)√2. B3. A4. 59讲练互动探究点1 利用定义求条件概率例1:【解】设“甲地为雨天”为事件A ,“乙地为雨天”为事件B ,根据题意,得P (A )=0.2,P (B )=0.18,P (AB )=0.12.(1)乙地为雨天时甲地为雨天的概率是P (A |B )=P (AB )P (B )=0.120.18=23. (2)甲地为雨天时乙地为雨天的概率是P (B |A )=P (AB )P (A )=0.120.2=35. [方法归纳]利用定义计算条件概率的步骤(1)分别计算概率P (AB )和P (A ).(2)将它们相除得到条件概率P (B |A )=P (AB )P (A ),这个公式适用于一般情形,其中AB 表示A ,B 同时发生.[跟踪训练] 【答案】2π 14【解析】因为圆的半径为1,所以圆的面积S =πr 2=π,正方形EFGH 的面积为⎝⎛⎭⎫2r 22=2,所以P (A )=2π. P (B |A )表示事件“已知豆子落在正方形EFGH 中,则豆子落在扇形HOE (阴影部分)”的概率,所以P (B |A )=14. 探究点2 缩小基本事件范围求条件概率例2:【解】将甲抽到数字a ,乙抽到数字b ,记作(a ,b ),甲抽到奇数的情形有(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,6),共15个,在这15个中,乙抽到的数比甲抽到的数大的有(1,2),(1,3),(1,4),(1,5),(1,6),(3,4),(3,5),(3,6),(5,6),共9个,所以所求概率P =915=35. [互动探究]1.解:在甲抽到奇数的情形中,乙抽到偶数的有(1,2),(1,4),(1,6),(3,2),(3,4),(3,6),(5,2),(5,4),(5,6),共9个,所以所求概率P =915=35. 2.解:甲抽到的数大于4的情形有:(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共12个,其中甲、乙抽到的两数之和等于7的情形有:(5,2),(6,1),共2个.所以P (B |A )=212=16. [方法归纳]利用缩小基本事件范围计算条件概率的方法将原来的基本事件全体Ω缩小为已知的条件事件A ,原来的事件B 缩小为AB .而A 中仅包含有限个基本事件,每个基本事件发生的概率相等,从而可以在缩小的概率空间上利用古典概型公式计算条件概率,即P (B |A )=n (AB )n (A ),这里n (A )和n (AB )的计数是基于缩小的基本事件范围的.[跟踪训练]解:将产品编号为1,2,3号的看作一等品,4号为二等品,以(i ,j )表示第一次,第二次分别取得第i 号,第j 号产品,则试验的基本事件空间Ω={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)},事件A 有9种情况,事件AB 有6种情况,P (B |A )=n (AB )n (A )=69=23. 探究点3 条件概率性质的应用例3:【解】设“摸出第一个球为红球”为事件A ,“摸出第二个球为黄球”为事件B ,“摸出第三个球为黑球”为事件C ,则P (A )=110,P (AB )=1×210×9=145,P (AC )=1×310×9=130. 所以P (B |A )=P (AB )P (A )=145÷110=29,P (C |A )=P (AC )P (A )=130÷110=13. 所以P (B ∪C |A )=P (B |A )+P (C |A )=29+13=59. 所以所求的条件概率为59. [求解策略]利用条件概率性质的解题策略(1)分析条件,选择公式:首先看事件B ,C 是否互斥,若互斥,则选择公式P (B ∪C |A )=P (B |A )+P (C |A ).(2)分解计算,代入求值:为了求比较复杂事件的概率,一般先把它分解成两个(或若干个)互不相容的较简单的事件之和,求出这些简单事件的概率,再利用加法公式即得所求的复杂事件的概率.[跟踪训练] 解:设A ={从第一个盒子中取得标有字母A 的球},B ={从第一个盒子中取得标有字母B 的球},R ={第二次取出的球是红球},W ={第二次取出的球是白球},则P (A )=710,P (B )=310, 所以P (R |A )=12,P (W |A )=12,P (R |B )=45,P (W |B )=15, 所以P (RA ∪RB )=P (RA )+P (RB )=P (R |A )P (A )+P (R |B )P (B )=12×710+45×310=0.59. 当堂检测1.【解析】选C.P (AB )=P (B |A )·P (A )=13×25=215,故选C. 2.【解析】选C.由题意可知.n (B )=C 1322=12,n (AB )=A 33=6. 所以P (A |B )=n (AB )n (B )=612=12. 3.解:Ω={(男,男),(男,女),(女,男),(女,女)}.设B =“有男孩”,则B ={(男,男),(男,女),(女,男)}.A =“有两个男孩”,则A ={(男,男)},B 1=“第一个是男孩”,则B 1={(男,男),(男,女)},于是得(1)P (B )=34,P (BA )=P (A )=14,所以P (A |B )=P (BA )P (B )=13; (2)P (B 1)=12,P (B 1A )=P (A )=14,所以P (A |B 1)=P (B 1A )P (B 1)=12. 巩固提升[A 基础达标]1.【解析】选C.设“第一个路口遇到红灯”为事件A ,“第二个路口遇到红灯”为事件B , 则P (A )=0.5,P (AB )=0.4,则P (B |A )=P (AB )P (A )=0.8.2.【解析】选C.记“甲站在中间”为事件A ,“乙站在末尾”为事件B , 则n (A )=A 66,n (AB )=A 55,P (B |A )=A 55A 66=16. 3.【解析】选A.设事件A 表示“第一次取得的是一等品”,B 表示“第二次取得的是二等品”.则P (AB )=3×25×4=310,P (A )=35.由条件概率公式知P (B |A )=P (AB )P (A )=31035=12.4.【解析】选A.P (A )=121=12.因为A ∩B ={x |14<x <12},所以P (AB )=141=14,所以P (B |A )=P (AB )P (A )=1412=12.5.【解析】选D.设事件A =“甲取到的数是5的倍数”,B =“甲所取的数大于乙所取的数”,又因为本题为古典概型概率问题,所以根据条件概率可知, P (B |A )=n (A ∩B )n (A )=4+9+143×14=914.故选D.6.【解析】因为P (A |B )=P (AB )P (B ),所以P (AB )=0.3.所以P (B |A )=P (AB )P (A )=0.30.4=0.75.【答案】0.75 7.512【解析】令A =“抛掷出的红、蓝两颗骰子中蓝骰子的点数为3或6”,B =“两骰子点数之和大于8”,则A ={(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)},AB ={(3,6),(6,3),(6,4),(6,5),(6,6)}. 所以P (B |A )=P (AB )P (A )=n (AB )n (A )=512.8.117【解析】设“第1次抽到A ”为事件A ,“第2次也抽到A ”为事件B , 则AB 表示两次都抽到A ,P (A )=452=113,P (AB )=4×352×51=113×17,所以P (B |A )=P (AB )P (A )=117.9.解:(1)由题意得C 2nC 2n +3=n (n -1)(n +3)(n +2)=110,解得n =2(负值舍去).所以n =2.(2)记“一个的标号是1”为事件A ,“另一个的标号也是1”为事件B ,所以P (B |A )=n (AB )n (A )=C 22C 25-C 23=17.10.解:设“任选一人是男人”为事件A ;“任选一人是女人”为事件B ,“任选一人是色盲”为事件C .(1)P (C )=P (AC )+P (BC )=P (A )P (C |A )+P (B )P (C |B )=100200×5100+100200×0.25100=21800. (2)P (A |C )=P (AC )P (C )=520021800=2021.[B 能力提升]11.【解析】选B.根据题意,事件A 为“x +y 为偶数”,则x ,y 两个数均为奇数或偶数, 共有2×3×3=18个基本事件.所以事件A 发生的概率为P (A )=2×3×36×6=12,而A ,B 同时发生,基本事件有“2+4”“2+6”“4+2”“4+6”“6+2”“6+4”,一共有6个基本事件, 所以事件A ,B 同时发生的概率为P (AB )=66×6=16,所以P (B |A )=P (AB )P (A )=1612=13.12.3350【解析】设事件C 为“取出的数不大于50”,事件A 为“取出的数是2的倍数”,事件B 是“取出的数是3的倍数”. 则P (C )=12,且所求概率为P (A ∪B |C )=P (A |C )+P (B |C )-P (AB |C )=P (AC )P (C )+P (BC )P (C )-P (ABC )P (C ) =2×(25100+16100-8100)=3350.13.解:(1)设“先摸出1个白球不放回”为事件A ,“再摸出1个白球”为事件B , 则“先后两次摸出白球”为事件AB ,“先摸一球不放回,再摸一球”共有4×3种结果, 所以P (A )=12,P (AB )=2×14×3=16,所以P (B |A )=1612=13.所以先摸出1个白球不放回,再摸出1个白球的概率为13.(2)设“先摸出1个白球放回”为事件A 1,“再摸出1个白球”为事件B 1,“两次都摸出白球”为事件A 1B 1,P (A 1)=12,P (A 1B 1)=2×24×4=14,所以P (B 1|A 1)=P (A 1B 1)P (A 1)=1412=12.所以先摸出1个白球后放回,再摸出1个白球的概率为12.14.解:设“该考生6道题全答对”为事件A ,“该考生恰好答对了5道题”为事件B ,“该考生恰好答对了4道题”为事件C ,“该考生在这次考试中通过”为事件D ,“该考生在这次考试中获得优秀”为事件E ,则D =A ∪B ∪C ,E =A ∪B ,且A ,B ,C 两两互斥, 由古典概型的概率公式知P (D )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=C 610C 620+C 510C 110C 620+C 410C 210C 620=12 180C 620,又AD =A ,BD =B ,所以P (E |D )=P (A ∪B |D )=P (A |D )+P (B |D )=P (AD )P (D )+P (BD )P (D )=P (A )P (D )+P (B )P (D )=C 610C 62012 180C 620+C 510C 110C 62012 180C 620=1358.。

人教A版选修2-3 2.2.1 条件概率 学案

人教A版选修2-3 2.2.1 条件概率 学案

2.2.1 条件概率知识点条件概率的定义一般地,设A,B为两个事件,且P(A)>0,称P(B|A)=P ABP A为在事件A发生的条件下,事件B发生的条件概率.一般把P(B|A)读作□01A发生的条件下,B发生的概率,变形公式(即乘法公式):P(AB)=□02P(A)·P(B|A).知识点条件概率的性质性质1:□010≤P(B|A)≤□021.性质2:如果B和C是两个互斥事件,那么P(B∪C|A)=□03P(B|A)+P(C|A).每一个随机试验,都是在一定条件下进行的,条件概率则是当试验结果的一部分已经知道,即在原随机试验的条件又加上一定的条件,已知事件A发生,在此条件下事件AB发生,要求P(B|A),相当于把A看作新的基本事件,空间计算事件AB发生的概率,即P(B|A)=n ABn A =n ABnΩn AnΩ=P ABP A.1.判一判(正确的打“√”,错误的打“×”)(1)若事件A,B互斥,则P(B|A)=1.( )(2)事件A发生的条件下,事件B发生,相当于A,B同时发生.( )(3)P(B|A)≠P(AB).( )答案(1)×(2)√(3)√2.做一做(1)已知P(B|A)=13,P(A)=25,则P(AB)等于________.(2)把一枚硬币任意掷两次,事件A={第一次出现正面),事件B=(第二次出现反面),则P(B|A)=________.(3)甲、乙两市都位于长江下游,根据一百多年来的气象记录,知道一年中下雨天的比例甲市占20%,乙市占18%,两地同时下雨占12%,记P(A)=0.20,P(B)=0.18,P(AB)=0.12,则P(A|B)=________,P(B|A)=________.答案(1)215(2)12(3)2335解析(1)P(AB)=P(B|A)·P(A)=13×25=215.(2)P(A)=12,P(AB)=14,则P(B|A)=P ABP A=12.(3)由条件概率的概念可知,P(A|B)=P ABP B=0.120.18=23,P(B|A)=P ABP A=0.120.2=35.探究1 条件概率的计算例1 5个乒乓球,其中3个新的,2个旧的,每次取一个,不放回地取两次,求:(1)第一次取到新球的概率;(2)第二次取到新球的概率;(3)在第一次取到新球的条件下第二次取到新球的概率.[解] 记第一次取到新球为事件A,第二次取到新球为事件B.(1)P(A)=3 5 .(2)P(B)=3×2+2×35×4=35.(3)解法一:因为P(AB)=3×25×4=310,所以P(B|A)=P ABP A=31035=12.解法二:因为n(A)=C13C14=12,n(AB)=C13C12=6,所以P(B|A)=n ABn A=612=12.拓展提升计算条件概率的两种方法(1)在缩小后的样本空间ΩA中计算事件B发生的概率,即P(B|A)=事件AB所含基本事件的个数事件A所含基本事件的个数;(2)在原样本空间Ω中,先计算P(AB),P(A),再按公式P(B|A)=P ABP A计算,求得P(B|A).[跟踪训练1]从一副扑克牌(去掉大、小王,共52张)中随机取出1张,用A表示“取出的牌是Q”,用B表示“取出的牌是红桃”,求P(A|B).解解法一:由于52张牌中有13张红桃,则B发生(即取出的牌是红桃)的概率为P(B)=1352=14.而52张牌中,既是红桃又是“Q ”的牌只有一张,故P (AB )=152,∴P (A |B )=P AB P B =152÷14=113. 解法二:根据题意,即求“已知取出的牌是红桃”的条件下,事件A :“取出的牌是Q ”的概率.∵n (A ∩B )=1,n (B )=13,从而P (A |B )=n A ∩B n B =113.探究2 有关几何概型的条件概率例2 一个正方形被平均分成9个部分,向大正方形区域随机地投掷一个点(每次都能投中).设投中最左侧3个小正方形区域的事件记为A ,投中最上面3个小正方形或正中间的1个小正方形区域的事件记为B ,求P (AB ),P (A |B ).[解] 如图,n (Ω)=9,n (A )=3,n (B )=4, n (AB )=1,∴P (AB )=19,P (A |B )=n AB n B =14.拓展提升本例是面积型的几何概型,利用小正方形的个数来等价转化,将样本空间缩小为n(B).[跟踪训练2]如图,四边形EFGH是以O为圆心,半径为1的圆的内接正方形,将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH 内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则(1)P(A)=________;(2)P(B|A)=________.答案(1)2π(2)14解析(1)由题意可得,事件A发生的概率P(A)=S正方形EFGHS圆O=2×2π×12=2π.(2)事件AB表示“豆子落在△EOH内”,则P(AB)=S△EOHS圆O=12×12π×12=12π.故P(B|A)=P ABP A=12π2π=14.探究3 条件概率的实际应用例3 一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘了密码的最后一位数字.求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率. [解] 设第i 次按对密码为事件A i (i =1,2),则A =A 1∪(A -1A 2)表示不超过2次按对密码.(1)因为事件A 1与事件A -1A 2互斥,由概率的加法公式得P (A )=P (A 1)+P (A -1A 2)=110+9×110×9=15. (2)用B 表示最后一位按偶数的事件,则P (A |B )=P (A 1|B )+P ((A -1A 2)|B )=15+4×15×4=25. 拓展提升若事件B ,C 互斥,则P (B ∪C |A )=P (B |A )+P (C |A ),即为了求得比较复杂事件的概率,往往可以先把它分解成两个(或若干个)互斥的较简单事件,求出这些简单事件的概率,再利用加法公式即得所求的复杂事件的概率.[跟踪训练3] 在某次考试中,要从20道题中随机地抽出6道题,若考生至少能答对其中4道题即可通过,至少能答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.解 记事件A 为“该考生6道题全答对”,事件B 为“该考生答对了其中5道题,另1道题答错”,事件C 为“该考生答对了其中4道题,另2道题答错”,事件D 为“该考生在这次考试中通过”,事件E 为“该考生在这次考试中获得优秀”,则A ,B ,C 两两互斥,且D =A ∪B ∪C ,E =A ∪B ,可知P (D )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=C 610C 620+C 510C 110C 620+C 410C 210C 620=12180C 620, P (AD )=P (A ),P (BD )=P (B ), P (E |D )=P (A |D )+P (B |D )=P AP D+P BP D=210C62012180C620+2520C62012180C620=1358.故所求的概率为13 58.1.条件概率:P(B|A)=P ABP A=n ABn A.2.概率P(B|A)与P(AB)的区别与联系:P(AB)表示在样本空间Ω中,计算AB发生的概率,而P(B|A)表示在缩小的样本空间ΩA中,计算B发生的概率.用古典概型公式,则P(B|A)=AB中样本点数ΩA中样本点数,P(AB)=AB中样本点数Ω中样本点数.3.利用公式P(B∪C|A)=P(B|A)+P(C|A)求解有些条件概率问题较为简捷,但应注意这个性质是在“B与C互斥”这一前提下才具备的,因此不要忽视这一条件而乱用这个公式.1.已知P(B|A)=12,P(AB)=38,则P(A)等于( )A.316B.1316C.34D.14答案 C解析由P(AB)=P(A)P(B|A)可得P(A)=3 4 .2.某地区气象台统计,该地区下雨的概率为415,刮风的概率为215,既刮风又下雨的概率为110,则在下雨天里,刮风的概率为( )A.8225B.12C.38D.34答案 C解析设A为下雨,B为刮风,由题意知P(A)=415,P(B)=215,P(AB)=110,P(B|A)=P ABP A=110415=38.故选C.3.抛掷红、黄两枚质地均匀的骰子,当红色骰子的点数为4或6时,两枚骰子的点数之积大于20的概率是( ) A.14 B.13 C.12 D.35答案 B解析 抛掷红、黄两枚骰子共有6×6=36个基本事件,其中红色骰子的点数为4或6的有12个基本事件,此时两枚骰子点数之积大于20包含4×6,6×4,6×5,6×6,共4个基本事件,所求概率为13. 4.在区间(0,1)内随机投掷一个点M (其坐标为x ),若A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 0<x <12,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 14<x <34,则P (B |A )等于________. 答案 12解析 P (A )=121=12.∵A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 14<x <12, ∴P (AB )=141=14,∴P (B |A )=P AB P A =1412=12. 5.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱中随机取出一球,则从2号箱中取出红球的概率是多少?解 记事件A =“最后从2号箱中取出的是红球”,事件B =“从1号箱中取出的是红球”,则P (B )=42+4=23,P (B -)=1-P (B )=13,P (A |B )=3+18+1=49,P (A |B -)=38+1=13,从而P (A )=P (AB )+P (A B -)=P (A |B )P (B )+P (A |B -)P (B -)=49×23+13×13=1127.。

高二数学下册§2.2.1条件概率(一)公开课导学案

高二数学下册§2.2.1条件概率(一)公开课导学案

§2.2.1条件概率(一)使用时间:2014年5月13日班级姓名一.学习目标1. 理解条件概率的定义.2. 掌握条件概率的计算方法.3. 利用条件概率解决一些简单的实际问题.二. 课前准备回忆古典概型、几何概型的特点,以及如何求这两种概率模型的概率?例如:(1)袋中有红、黄、蓝三个不同的小球,从中不放回的任取两个小球,取到红球的概率是多少?(2)在区间(0,1)上任取一个数,这个数落在区间1(0,)4的概率是多少?三. 新课探究问题1. 三张奖券中只有一张能中奖,现分别由三名同学无放回的抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小?(记事件B表示“最后一名同学抽到中奖奖券”)问题2. 如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率是多少?(记事件A表示“第一名同学没有抽到中奖奖券”,记“已知第一名同学没有抽到中奖奖券的条件下,最后一名同学抽到中奖奖券的概率为()P B A)问题3. 对上面的事件A和事件B,()P B A与它们的概率有什么关系?条件概率定义:一般地,设A,B 为两个事件,且()0P A >,称()()()P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率.()P B A 读作A 发生的条件下B 发生的概率. 条件概率性质:(1)0()1P B A #(2)若B,C 是互斥事件,则()P B C A =()P B A +(C )P A四. 典型例题例1. 在5道题中有3道理科和2道文科题,如果不放回的依次抽取2道题,求:(1)第一次抽到理科题的概率;(2)第一次和第二次都抽到理科题的概率;(3)在第一次抽到理科题的条件下,第二次抽到理科题的概率.例2. 一只口袋内装有2个白球和2个黑球,求:(1)先摸出1个白球不放回,再摸出一个白球的概率;(2)先摸出一个白球后放回,再摸出一个白球的概率.练习:抛掷一枚骰子,观察出现的点数,若已知出现的点数不超过4,求出现的点数是奇数的概率.。

2.2.1条件概率1

2.2.1条件概率1
练习 抛掷两颗均匀的骰子,已知第一颗骰子掷
出6点,问:掷出点数之和大于等于10的概率。
变式 :抛掷两颗均匀的骰子,已知点数不同,求至少
有一个是6点的概率?
例 2 考虑恰有两个小孩的家庭.(1)若已知某一家
有一个女孩,求这家另一个是男孩的概率;(2)若 已知某家第一个是男孩,求这家有两个男孩(相当于 第二个也是男孩)的概率.(假定生男生女为等可能)
P( AB) P( A)
n()
P(B |A)相当于把A看作新的
基本事件空间求A∩B发生的 概率
BA
基本概念
1.条件概率
对任意事件A和事件B,在已知事件A发生的 条件下事件B发生的条件概率”,叫做条件概率。 记作P(B |A).
2.条件概率计算公式: P( A | B ) P( AB )
P( A )
例 1 一张储蓄卡的密码共有6位数字,每位数字都可从
0—9中任选一个。某人在银行自动取款机上取钱时,忘记 了密码的最后一位数字,求:
(1)任意按最后一位数字,不超过2次就按对的概率; (2)如果他记得密码的最后一位是偶数,不超过2次就按
对的概率。
例 2 甲、乙两地都位于长江下游,根据一百多年的气象记
录,知道甲、乙两地一年中雨天占的比例分别为20%和18%, 两地同时下雨的比例为12%,问: (1)乙地为雨天时,甲地为雨天的概率为多少? (2)甲地为雨天时,乙地也为雨天的概率为多少?
例 3 某种动物出生之后活到20岁的概率为0.7,活到
25岁的概率为0.56,求现年为20岁的这种动物活到25 岁的概率。
(1)两人都击中目标的概率;
解(2:)(1其) 中记恰“由甲1人射击击中1次目,标击的中概目率标”为事件A.“乙 射(3)击至1少次有,击一中人目击标中”目为标事的件且概B率A.与B相互独立, 又A与B各射击1次,都击中目标,就是事件A,B同

高中数学 2.2.1 条件概率学案 新人教A版选修23

高中数学 2.2.1 条件概率学案 新人教A版选修23

2.2.1 条件概率1.了解条件概率的概念.2.掌握求条件概率的两种方法.(难点)3.能利用条件概率公式解一些简单的实际问题.(重点)[基础·初探]教材整理 条件概率阅读教材P 51~P 53,完成下列问题. 1.条件概率的概念一般地,设A ,B 为两个事件,且P (A )>0,称P (B |A )=P ABP A为在事件A 发生的条件下,事件B 发生的条件概率.P (B |A )读作A 发生的条件下B 发生的概率.2.条件概率的性质 (1)P (B |A )∈[0,1].(2)如果B 与C 是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ).1.设A ,B 为两个事件,且P (A )>0,若P (AB )=13,P (A )=23,则P (B |A )=________.【解析】 由P (B |A )=P ABP A =1323=12.【答案】 122.设某动物由出生算起活到20岁的概率为0.8,活到25岁的概率为0.4,现有一个20岁的这种动物,则它活到25岁的概率是________.【解析】 根据条件概率公式知P =0.40.8=0.5.【答案】 0.5[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:[小组合作型]利用定义求条件概率一个袋中有2个黑球和3个白球,如果不放回地抽取两个球,记事件“第一次抽到黑球”为A ;事件“第二次抽到黑球”为B.(1)分别求事件A ,B ,AB 发生的概率; (2)求P (B |A ).【精彩点拨】 首先弄清“这次试验”指的是什么,然后判断该问题是否属于古典概型,最后利用相应公式求解.【自主解答】 由古典概型的概率公式可知 (1)P (A )=25,P (B )=2×1+3×25×4=820=25,P (AB )=2×15×4=110. (2)P (B |A )=P ABP A =11025=14.1.用定义法求条件概率P (B |A )的步骤 (1)分析题意,弄清概率模型; (2)计算P (A ),P (AB ); (3)代入公式求P (B |A )=P ABP A.2.在(2)题中,首先结合古典概型分别求出了事件A 、B 的概率,从而求出P (B |A ),揭示出P (A ),P (B )和P (B |A )三者之间的关系.[再练一题]1.(1)甲、乙两市都位于长江下游,根据一百多年来的气象记录,知道一年中下雨天的比例甲市占20%,乙市占18%,两地同时下雨占12%,记P (A )=0.2,P (B )=0.18,P (AB )=0.12,则P (A |B )=________,P (B |A )=________. 【导学号:97270036】(2)(2016·烟台高二检测)有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.【解析】 (1)由公式P (A |B )=P AB P B =23,P (B |A )=P AB P A =35.(2)设“种子发芽”为事件A ,“种子成长为幼苗”为事件AB (发芽,又成活为幼苗),出芽后的幼苗成活率为P (B |A )=0.8,又P (A )=0.9,P (B |A )=P ABP A,得P (AB )=P (B |A )·P (A )=0.8×0.9=0.72. 【答案】 (1)23 35(2)0.72利用基本事件个数求条件概率现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求:(1)第1次抽到舞蹈节目的概率;(2)第1次和第2次都抽到舞蹈节目的概率;(3)在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率.【精彩点拨】 第(1)、(2)问属古典概型问题,可直接代入公式;第(3)问为条件概率,可以借用前两问的结论,也可以直接利用基本事件个数求解.【自主解答】 设第1次抽到舞蹈节目为事件A ,第2次抽到舞蹈节目为事件B ,则第1次和第2次都抽到舞蹈节目为事件AB.(1)从6个节目中不放回地依次抽取2个的事件数为n (Ω)=A 26=30, 根据分步计数原理n (A )=A 14A 15=20,于是P (A )=n A n Ω=2030=23.(2)因为n (AB )=A 24=12,于是P (AB )=n AB n Ω=1230=25.(3)法一:由(1)(2)可得,在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率为P (B |A )=P ABP A =2523=35.法二:因为n (AB )=12,n (A )=20, 所以P (B |A )=n AB n A =1220=35.1.本题第(3)问给出了两种求条件概率的方法,法一为定义法,法二利用基本事件个数直接作商,是一种重要的求条件概率的方法.2.计算条件概率的方法(1)在缩小后的样本空间ΩA 中计算事件B 发生的概率,即P (B |A ). (2)在原样本空间Ω中,先计算P (AB ),P (A ),再利用公式P (B |A )=P ABP A计算求得P (B |A ).(3)条件概率的算法:已知事件A 发生,在此条件下事件B 发生,即事件AB 发生,要求P (B |A ),相当于把A 看作新的基本事件空间计算事件AB 发生的概率,即P (B |A )=n ABn A =n AB n ΩnA nΩ=P ABP A .[再练一题]2.盒内装有16个球,其中6个是玻璃球,10个是木质球.玻璃球中有2个是红色的,4个是蓝色的;木质球中有3个是红色的,7个是蓝色的.现从中任取1个,已知取到的是蓝球,问该球是玻璃球的概率是多少?【解】 由题意得球的分布如下:玻璃 木质 总计 红 2 3 5 蓝 4 7 11 总计61016设A ={取得蓝球},B 则P (A )=1116,P (AB )=416=14.∴P (B |A )=P ABP A =141116=411.[探究共研型]利用条件概率的性质求概率探究1 掷一枚质地均匀的骰子,有多少个基本事件?它们之间有什么关系?随机事件出现“大于4的点”包含哪些基本事件?【提示】 掷一枚质地均匀的骰子,可能出现的基本事件有“1点”“2点”“3点”“4点”“5点”“6点”,共6个,它们彼此互斥.“大于4的点”包含“5点”“6点”两个基本事件.探究2 “先后抛出两枚质地均匀的骰子”试验中,已知第一枚出现4点,则第二枚出现“大于4”的事件,包含哪些基本事件?【提示】 “第一枚4点,第二枚5点”“第一枚4点,第二枚6点”.探究3 先后抛出两枚质地均匀的骰子,已知第一枚出现4点,如何利用条件概率的性质求第二枚出现“大于4点”的概率?【提示】 设第一枚出现4点为事件A ,第二枚出现5点为事件B ,第二枚出现6点为事件C .则所求事件为B ∪C |A .∴P (B ∪C |A )=P (B |A )+P (C |A )=16+16=13.将外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中有7个球标有字母A,3个球标有字母B ;第二个盒子中有红球和白球各5个;第三个盒子中有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A 的球,则在第二个盒子中任取一个球;若第一次取得标有字母B 的球,则在第三个盒子中任取一个球.如果第二次取出的是红球,则试验成功.求试验成功的概率.【精彩点拨】 设出基本事件,求出相应的概率,再用基本事件表示出“试验成功”这件事,求出其概率.【自主解答】 设A ={从第一个盒子中取得标有字母A 的球},B ={从第一个盒子中取得标有字母B 的球}, R ={第二次取出的球是红球}, W ={第二次取出的球是白球},则容易求得P (A )=710,P (B )=310,P (R |A )=12,P (W |A )=12,P (R |B )=45,P (W |B )=15.事件“试验成功”表示为RA ∪RB ,又事件RA 与事件RB 互斥,所以由概率的加法公式得P(RA∪RB)=P(RA)+P(RB)=P(R|A)·P(A)+P(R|B)·P(B)=12×710+45×310=59100.条件概率的解题策略分解计算,代入求值:为了求比较复杂事件的概率,一般先把它分解成两个(或若干个)互不相容的较简单的事件之和,求出这些简单事件的概率,再利用加法公式即得所求的复杂事件的概率.[再练一题]3.已知男人中有5%患色盲,女人中有0.25%患色盲,从100个男人和100个女人中任选一人.(1)求此人患色盲的概率;(2)如果此人是色盲,求此人是男人的概率.【解】 设“任选一人是男人”为事件A ,“任选一人是女人”为事件B ,“任选一人是色盲”为事件C .(1)此人患色盲的概率P (C )=P (A ∩C )+P (B ∩C ) =P (A )P (C |A )+P (B )P (C |B ) =5100×100200+25100×100200=21800. (2)P (A |C )=P ACP C =520021800=2021.[构建·体系]1.已知P (B |A )=13,P (A )=25,则P (AB )等于( )A.56B.910 C.215D.115【解析】 由P (B |A )=P AB P A ,得P (AB )=P (B |A )·P (A )=13×25=215.【答案】 C2.4张奖券中只有1张能中奖,现分别由4名同学无放回地抽取.若已知第一名同学没有抽到中奖券,则最后一名同学抽到中奖券的概率是( )A.14B.13C.12 D .1 【解析】 因为第一名同学没有抽到中奖券,所以问题变为3张奖券,1张能中奖,最后一名同学抽到中奖券的概率,显然是13.【答案】 B3.把一枚硬币投掷两次,事件A ={第一次出现正面},B ={第二次出现正面},则P (B |A )=________.【解析】 ∵P (AB )=14,P (A )=12,∴P (B |A )=12.【答案】 124.抛掷骰子2次,每次结果用(x 1,x 2)表示,其中x 1,x 2分别表示第一次、二次骰子的点数.若设A ={(x 1,x 2)|x 1+x 2=10},B ={(x 1,x 2)|x 1>x 2}.则P (B |A )=________. 【导学号:97270037】【解析】 ∵P (A )=336=112,P (AB )=136,∴P (B |A )=P ABP A =136112=13.【答案】 135.一个口袋内装有2个白球和2个黑球,那么(1)先摸出1个白球不放回,再摸出1个白球的概率是多少? (2)先摸出1个白球后放回,再摸出1个白球的概率是多少?【解】 (1)设“先摸出1个白球不放回”为事件A ,“再摸出1个白球”为事件B ,则“先后两次摸出白球”为事件AB ,“先摸一球不放回,再摸一球”共有4×3种结果,所以P (A )=12,P (AB )=2×14×3=16,所以P (B |A )=1612=13.所以先摸出1个白球不放回,再摸出1个白球的概率为13.(2)设“先摸出1个白球放回”为事件A 1,“再摸出1个白球”为事件B 1,“两次都摸出白球”为事件A 1B 1,P (A 1)=12,P (A 1B 1)=2×24×4=14,所以P (B 1|A 1)=P A 1B 1P A 1=1412=12.所以先摸出1个白球后放回,再摸出1个白球的概率为12.我还有这些不足:(1)(2)我的课下提升方案:(1)(2)学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P(B|A)=( )A.18B.14C.25D.12【解析】 ∵P (A )=C 22+C 23C 25=410,P (AB )=C 22C 25=110,∴P (B |A )=P AB P A =14.【答案】 B2.下列说法正确的是( ) A .P (B |A )<P (AB ) B .P (B |A )=P BP A是可能的 C .0<P (B |A )<1 D .P (A |A )=0 【解析】 由条件概率公式P (B |A )=P ABP A及0≤P (A )≤1知P (B |A )≥P (AB ),故A选项错误;当事件A 包含事件B 时,有P (AB )=P (B ),此时P (B |A )=P BP A,故B 选项正确,由于0≤P (B |A )≤1,P (A |A )=1,故C ,D 选项错误.故选B.【答案】 B3.(2014·全国卷Ⅱ)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .0.8B .0.75C .0.6D .0.45【解析】 已知连续两天为优良的概率是0.6,那么在前一天空气质量为优良的前提下,要求随后一天的空气质量为优良的概率,可根据条件概率公式,得P =0.60.75=0.8.【答案】 A4.(2016·泉州期末)从1,2,3,4,5中任取两个不同的数,事件A 为“取到的两个数之和为偶数”,事件B 为“取到的两个数均为偶数”,则P (B |A )等于( )A.18B.14C.25D.12【解析】 法一:P (A )=C 23+C 22C 25=25,P (AB )=C 22C 25=110,P (B |A )=P AB P A =14.法二:事件A 包含的基本事件数为C 23+C 22=4,在A 发生的条件下事件B 包含的基本事件为C 22=1,因此P (B |A )=14.【答案】 B5.抛掷两枚骰子,则在已知它们点数不同的情况下,至少有一枚出现6点的概率是( )A.13B.118 C.16 D.19【解析】 设“至少有一枚出现6点”为事件A ,“两枚骰子的点数不同”为事件B ,则n (B )=6×5=30,n (AB )=10,所以P (A |B )=n AB n B =1030=13.【答案】 A 二、填空题6.已知P (A )=0.2,P (B )=0.18,P (AB )=0.12,则P (A |B )=________,P (B |A )=________.【解析】 P (A |B )=P AB P B =0.120.18=23;P (B |A )=P AB P A =0.120.2=35.【答案】 23 357.设A ,B 为两个事件,若事件A 和B 同时发生的概率为310,在事件A 发生的条件下,事件B 发生的概率为12,则事件A 发生的概率为________. 【导学号:97270038】【解析】 由题意知,P (AB )=310,P (B |A )=12.由P (B |A )=P AB P A ,得P (A )=P AB P B |A =35.【答案】 358.有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机任取出两瓶,若取出的两瓶中有一瓶是蓝色,则另一瓶是红色或黑色的概率是________.【解析】 设事件A 为“其中一瓶是蓝色”,事件B 为“另一瓶是红色”,事件C 为“另一瓶是黑色”,事件D 为“另一瓶是红色或黑色”,则D =B ∪C ,且B 与C 互斥, 又P (A )=C 12C 13+C 22C 25=710,P (AB )=C 12·C 11C 25=15,P (AC )=C 12C 12C 25=25,故P (D |A )=P (B ∪C |A ) =P (B |A )+P (C |A ) =P AB P A +P AC P A =67.【答案】 67三、解答题9.甲、乙两个袋子中,各放有大小、形状和个数相同的小球若干.每个袋子中标号为0的小球为1个,标号为1的2个,标号为2的n 个.从一个袋子中任取两个球,取到的标号都是2的概率是110.(1)求n 的值;(2)从甲袋中任取两个球,已知其中一个的标号是1的条件下,求另一个标号也是1的概率.【解】 (1)由题意得:C 2nC 2n +3=n n -1n +3n +2=110,解得n =2.(2)记“其中一个标号是1”为事件A ,“另一个标号是1”为事件B ,所以P (B |A )=n AB n A =C 22C 25-C 23=17.10.任意向x 轴上(0,1)这一区间内掷一个点,问:(1)该点落在区间⎝ ⎛⎭⎪⎫0,13内的概率是多少?(2)在(1)的条件下,求该点落在⎝ ⎛⎭⎪⎫15,1内的概率. 【解】 由题意知,任意向(0,1)这一区间内掷一点,该点落在(0,1)内哪个位置是等可能的,令A =⎩⎨⎧⎭⎬⎫x |0<x <13,由几何概率的计算公式可知.(1)P (A )=131=13.(2)令B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪15<x <1,则AB =⎩⎨⎧⎭⎬⎫x |15<x <13,P (AB )=13-151=215.故在A 的条件下B 发生的概率为 P (B |A )=P ABP A =21513=25.[能力提升]1.一个家庭有两个小孩,假设生男生女是等可能的,已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率是( )A.14B.23C.12D.13【解析】 一个家庭中有两个小孩只有4种可能:(男,男),(男,女),(女,男),(女,女).记事件A 为“其中一个是女孩”,事件B 为“另一个是女孩”,则A ={(男,女),(女,男),(女,女)},B ={(男,女),(女,男),(女,女)},AB ={(女,女)}.于是可知P (A )=34,P (AB )=14.问题是求在事件A 发生的情况下,事件B 发生的概率,即求P (B |A ),由条件概率公式,得P (B |A )=1434=13.【答案】 D2.(2016·开封高二检测)将3颗骰子各掷一次,记事件A 表示“三个点数都不相同”,事件B 表示“至少出现一个3点”,则概率P (A |B )等于( )A.91216B.518 C.6091D.12【解析】 事件B 发生的基本事件个数是n (B )=6×6×6-5×5×5=91,事件A ,B 同时发生的基本事件个数为n (AB )=3×5×4=60.所以P (A |B )=n AB n B =6091.【答案】 C3.袋中有6个黄色的乒乓球,4个白色的乒乓球,做不放回抽样,每次抽取一球,取两次,则第二次才能取到黄球的概率为________.【解析】 记“第一次取到白球”为事件A ,“第二次取到黄球”为事件B ,“第二次才取到黄球”为事件C ,所以P (C )=P (AB )=P (A )P (B |A )=410×69=415.【答案】4154.如图2­2­1,三行三列的方阵有9个数a ij (i =1,2,3,j =1,2,3),从中任取三个数,已知取到a 22的条件下,求至少有两个数位于同行或同列的概率.()a 11 a 12 a 13a 21 a 22 a 23a 31 a 32 a 33图2­2­1【解】 事件A ={任取的三个数中有a 22},事件B ={三个数至少有两个数位于同行或同列},则B ={三个数互不同行且不同列},依题意得n (A )=C 28=28,n (A B )=2,故P (B |A )=n A Bn A=228=114,则 P (B |A )=1-P (B |A )=1-114=1314.即已知取到a 22的条件下,至少有两个数位于同行或同列的概率为1314.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2.1条件概率导学案1
姓名班级时间制作人审核人高二数学组
一、学习目标
1、知识与技能:通过具体情景的分析,了解条件概率的定义。

2、过程与方法:掌握一些简单的条件概率的计算。

3、情感、态度与价值观:通过对实例的分析,会进行简单的应用。

二、重点,难点:
1、重点:条件概率定义的理解。

2、难点:条件概率计算公式的应用。

三、学习指导
(一)复习引入:
探究:三张奖券中只有一张能中奖,现分别由3名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两位小?
若抽到中奖奖券用:“Y”表示,没抽到中奖奖券用:“Y”表示,那么三名同学的抽奖结果共有三种可能:Y Y Y,Y Y Y,Y Y Y。

用B表示事件“最后一名同学抽到”,则B仅包
含一个基本事件Y Y Y,由古典概率计算公式可知,最后一名同学抽到中奖奖券的概率是P(B)= 1
3。

思考?如果已经知道第一名同学没抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率又是多少?
因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有Y Y Y和Y Y Y,而“最后一名同学抽到中奖奖券”包含的基本事件仍是Y Y Y,
由古典概率计算公式可知,最后一名同学抽到中奖奖券的概率是1
2
,不妨记为P(B|A),其中A
表示事件“第一名同学没抽到中奖奖券”
已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢?
在这个问题中,第一名同学没有抽到中奖奖券,等价于知道事件A一定会发生,导致可能出现的基本事件必然在事件A中,从而影响事件B发生的概率,使得P(B|A)≠P(B)。

思考?对于上面的事件A和事件B,P(B|A)与它们的概率有什关系呢?
用Ω表示三名同学可能抽取的结果全体,则它由三个基本事件组成,即Ω=
{ Y Y Y,Y Y Y,Y Y Y}。

既然已知事件A必然发生,那么只需在A={Y Y Y,Y Y Y}的范围内考虑问题,即只有两个基本事件Y Y Y,Y Y Y,在事件A发生的情况下B发生,等
价于事件A 和事件B 同时发生。

而事件AB 中只含一个基本事件Y Y Y ,因此P(B|A)= 12=()()
n AB n A ,其中n(A)和n(AB)分别表示事件A 和事件AB 所包含的基本事件个数。

另一方面,根据古典概型的计算公式,P(AB)=
()()n AB n Ω, P(A)= ()()n A n Ω其中n(Ω)表示Ω中包含的基本事件个数,所以 P(B|A)= ()()n AB n A =()()n AB n Ω/()()n A n Ω=()()
P AB P A 因此,可以通过事件A 和事件AB 的概率来表示P(B|A)。

条件概率定义
一般地,设A ,B 为两个事件,且P(A)>0,称P(B|A)= ()()
P AB P A 为在事件A 发生的条件下,事件B 发生的条件概率, P(B|A)读作 A 发生的条件下B 发生的概率。

条件概率性质:1、0≤P(B|A)≤1
2、如果B 和C 是两个互斥事件,则P(B ∪C|A)= P(B|A)+ P(C|A)。

例1 在5道题中有3道理科题和2道文科题。

如果不放回地依次抽取2道题,求:
(1)第1次抽到理科题的概率;
(2)第1次和第2次都抽到理科题的概率;
(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率。

解:设第1次抽到理科题为事件A ,第2次抽到理科题为事件B ,则第1次和第2次都抽到理科题为事件AB.
(1)从5道题中不放回地依次抽取2道的事件数为
n (Ω)=35A =20.
根据分步乘法计数原理,n (A )=1134A A ⨯=12 .于是 ()123()()205
n A P A n ===Ω. (2)因为 n (AB)=23A =6 ,所以
()63()()2010
n AB P AB n ===Ω. (3)解法 1 由( 1 ) ( 2 )可得,在第 1 次抽到理科题的条件下,第 2 次抽到理科题的概
3
()110(|)3()2
5
P AB P B A P A ===. 解法2 因为 n (AB )=6 , n (A )=12 ,所以
()61(|)()122
P AB P B A P A ===.
例2 一张储蓄卡的密码共有6位数字,每位数字都可以从0~9中任选一个。

某人在银行自动提款机上取钱时,忘记了密码的最后一位数字。

求:
(1)任意按最后一位数字,不超过2次就按对的概率。

(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率。

解:设第i 次按对密码为事件i A (i=1,2) ,则112()A A A A =表示不超过2次就按对密码.
(1)因为事件1A 与事件12A A 互斥,由概率的加法公式得
1121911()()()101095
P A P A P A A ⨯=+=+=⨯. (2)用B 表示最后一位按偶数的事件,则
112(|)(|)(|)P A B P A B P A A B =+14125545
⨯=+=⨯. 例3 已知100件产品中有4件次品,无放回地从中抽取2次,每次抽取1件,求下列事件的概率:
(1)两次都取到正品;
(2) 第一次取到正品,第二次取到正品;
(3)在第一次取到正品条件下,第二次取到正品;
练习1。

.抛掷一枚质地均匀的硬币两次。

(1)两次都是正面的概率是多少?
(2)在已知第一次出现正面向上的条件下,两次都是正面向上的概率是多少?
练习2。

.掷两颗均匀骰子,已知第一颗掷出6点, 问“掷出点数之和不小于10”的概率是多少? 练习3.。

考虑恰有两个小孩的家庭,已知这个家庭有一个是男孩,问这时另一个小孩是女孩的概率是多少?(假定生男生女为等可能)。

相关文档
最新文档