ANSYS齿轮接触案例讲解
基于ANSYS的齿轮接触应力与啮合刚度研究共3篇

基于ANSYS的齿轮接触应力与啮合刚度研究共3篇基于ANSYS的齿轮接触应力与啮合刚度研究1齿轮作为一种常用的传动元件,在机械系统的运转中发挥着重要的作用。
因此,对于齿轮的力学性能研究具有重要的意义。
本文以ANSYS软件为工具,研究齿轮接触应力与啮合刚度的相关问题。
一、齿轮模型的建立齿轮模型的建立是研究齿轮力学性能的基础。
初步建模需要确定齿轮参数、材料参数等。
在本次研究中,我们选取了一个模数为4的齿轮进行建模,在材料参数选取方面,我们选择了常用的20CrMnTi材料,以其为基础进行实验。
建模之后需要进行网格划分,网格密度的选择会影响后续分析的准确性以及计算时间,因此需要选择合适的密度。
选取太粗的网格会导致结果失真,选取太细的网格则会消耗大量的计算时间。
本次研究选取了相对均匀的中等密度网格,以保证结果的准确性。
二、齿轮接触应力分析齿轮在啮合过程中会产生接触应力,这对于齿轮的寿命和工作效率都有着至关重要的作用。
因此,研究齿轮接触应力,选择适当的润滑方式,对齿轮寿命和传动效率都有着重要的意义。
在ANSYS中进行齿轮接触应力的分析和计算,需要考虑到许多复杂的因素,如齿形、材料参数、润滑方式等。
在本次研究中我们采用了基于有限元方法的接触分析(FEM),对齿轮接触应力进行评估。
得到接触应力的结果后,我们可以对齿轮的寿命进行评估,并针对接触应力过大的地方进行优化处理。
三、齿轮啮合刚度分析除了接触应力之外,齿轮的啮合刚度对于传动的效率和精度也有着重要的影响。
啮合刚度是指啮合中两齿之间相对于轴线方向的相对运动能力,也可以视为齿轮在啮合过程中的弹性变形程度。
齿轮的啮合刚度与齿轮副的堆叠误差、硬度、几何尺寸等的影响有关。
在本次研究中,我们采用了ANSYS的非线性有限元分析方法,对齿轮的啮合刚度进行建模和优化。
通过对啮合刚度的研究,我们可以指导齿轮的加工和优化,提高其传动效率和精度。
四、总结本次研究基于ANSYS对齿轮接触应力和啮合刚度进行了研究。
基于ANSYS的Logix齿轮啮合接触分析

0引言差速器作为汽车动力传动系统的重要组成部分,在汽车于凹凸不平的路面上行驶或转弯时,能够限制左右(或前后)驱动轮以不同的速度旋转,确保驱动轮以纯滚动状态行驶。
差速器齿轮的优化设计对保证差速器强度和耐久度,保证车辆安全可靠行驶,提高整车驾驶性,减少能源消耗等具有重要意义。
差速器的齿轮传动性能的影响因素之一是齿形;目前广泛应用于差速器的齿廓曲线齿轮有渐开线齿轮、圆弧齿轮和Logix 齿轮。
日本学者小守勉首次提出了名为Logix 齿轮(Logix Gear )的新型齿轮。
如图1所示,Logix 齿形由多条微段渐开线连接而成,其节圆内外为凹凸形式,在啮合时齿廓上分布着大量相对曲率为0的结合点[1]。
取任一点O 1作夹角为α0的两条射线O 1N 1和O 1n 0,分别与节线P.L 交于N 1和n 0两点,其中O 1N 1与节线P.L 垂直。
取O 1n 0=G 1,并作线段O 1O′1=2G 1,使其与O 1n 0夹角为δ(称为相对压力角[2])。
若以O 1和O′1为圆心,以G 1为半径分别作两个相切的基圆,和节线P.L 分别交于N 1和n 0两点。
取g 1s 1为两圆的发生线,则根据渐开线的形成原理,曲线m 0s 1和m 1s 1分别是发生线g 1s 1沿O 1和O′1的基圆滚过弧长g 1n 1和g 1n 0形成的渐开线。
1Logix 齿轮副有限元模型根据齿轮啮合理论,Logix 齿轮由于各微段渐开线的结合点在啮合时相对曲率为零,大量零点的啮合使得齿轮的滑动系数非常小,基本上能够实现滑动摩擦,从而增加齿轮表面的接触疲劳强度。
差速器是车辆驱动桥的核心部件,建立一套针对差速器Logix 齿轮的高精度、普适性仿真模型,对保证整车动力传递及疲劳耐久性能起着关键作用。
本文主要选用有限元软件ANSYS 进行Logix 齿轮接触应力和齿根弯曲应力的仿真分析,一方面充分利用ANSYS 接触分析功能强大和后处理操作简便,运算速度快,结果可靠性高等优点,另一方面考虑ANSYS 前处理与ProE 等建模软件的契合度高,建好的模型导入过程顺利,节省了模型导入过程中可能的数据错误,提高了解算的准确性,有利于提高产品设计的优化效率。
基于ANSYS的直齿面齿轮的承载接触分析

时, 面齿轮轮齿在一个啮合周期内 5 个啮合位置的 接触情况。其中: 图 7( a)为初始啮合位置的接触情 况, 图 7( e)为啮合终了位置的接触情况。 (图中 U 为啮合点处面齿轮相对于 初始啮合位置的转角 )。 图 7( a)和图 7( b)为前一个啮合周期的状态, 从图 7 ( c) 开始齿 轮进入与 下一齿的 啮合位 置。图 中清 晰、直观地显示了不同啮合位置面齿轮轮齿接触区
表 3 接触区椭圆长轴 ( 300 N# m )
图7
右齿
中间齿
左齿
位置 1 位置 2
31 261 mm 21 832 mm
101 673 mm 91 327 mm
0 41 616 mm 61 720 mm
位置 4
0
51 787 mm 91 827 mm
位置 5
0
41 382 mm 111235 mm
域的位置和形状变化, 反映了 齿轮副的啮合性 能。 理论上讲, 面齿轮啮合时为点接触, 而在加载时齿面 形成椭圆状接触区, 接触区的大小用接触椭圆的长 轴来衡量。
93 4
机械科学与技术
第 28卷
表 2 齿面最大接触应力 ( 300 N# m)
图7
右齿
中间齿
左齿
位置 1 位置 2
4431 168 M Pa 4991108 MP a
3. 2 当等效转矩为 500 N# m时的齿面接触状况 从图 8的仿真结果和 表 4、表 5 显示的数据结
果可以看出: 面齿轮在加大载荷情况下的啮合状态 与 300 N# m 相比, 总体接触情况变化不大, 但随着 载荷的增加, 接触 椭圆长轴变长, 接触区域 相对变 大, 接触应力增加。在位置 2和位置 3也都发生了 边缘接触 (对应于面齿轮初始位置旋转 1b~ 2b), 最 大接触应力从 300 N# m时的 1150 MP a增加到 500 N# m 时的 1491 MPa, 由此可见, 载荷增大时, 会引 起在边缘接触时的接触应力急剧增加。
ANSYS齿轮传动接触(论坛转载,感谢作者)

齿轮机构动力学分析齿轮接触的基础步骤:
首先在proe中建立模型。
然后导入ANSYS中,设置单元网格,定义材料。
将坐标系转换成柱坐标系。
然后将大齿轮的节点转入柱坐标系。
然后,在大齿轮上施加约束和位移。
Preprocessor-----solution----define load-----structural-----apply----displacement
单击apply之后,出现如下对话框。
之后施加约束。
方法跟上面一样。
之后建立局域坐标。
方法如下。
现在小齿轮的内圆心中建立一个点node。
之后,在此点处建立局域坐标。
选择柱坐标
之后将小齿轮节点导入当前坐标系,做法跟之前一样。
Preprocessor------modeling-----move/modify------rotate node to current cs
我就不介绍了哈~~~~~
之后,在小齿轮上施加位移和约束。
之后,建立接触。
建一个齿的就行啦~~~~(建多了很麻烦,当然,如果你有兴趣的话,全建上我也不反对)
方法如下:
之后,求解吧~~~solve
结果云图,我就不晒了,太累了!
注意:如果结果显示某个齿轮不转,例如小齿轮不转,那你就重新在定义一遍小齿轮的位移和约束,最好局域坐标系啥的也重新做一遍,ansys 这个软件有时候他就范毛病! 这个例子就是玩,简单玩一下,你也可以在此基础上,变某些东西,比如说不加位移,加转速或角加速度,有兴趣可以试一试,我试了,没转起来,不知道啥原因,呵呵! 本人水平有限,还望各路高人教两招有关这类分析的好方法!。
ANSYS齿轮接触应力分析案例

ANSYS齿轮接触应力分析案例齿轮是机械传动系统中常用的零部件,用于传递动力和转速。
在齿轮的工作过程中,由于受力情况复杂,容易发生接触应力过大导致齿轮损坏的情况。
为了确保齿轮的工作性能和寿命,需要进行接触应力的分析和优化设计。
ANSYS作为常用的有限元分析软件,可以用于进行齿轮接触应力的模拟和分析。
本文将以一个齿轮接触应力分析案例为例,介绍如何使用ANSYS软件进行接触应力的分析。
本案例以一对齿轮为例,通过对齿轮的建模、加载和分析过程,展示如何通过ANSYS软件进行齿轮接触应力的分析。
1.齿轮建模首先,在ANSYS软件中建立齿轮的几何模型。
可以通过CAD软件绘制齿轮的几何形状,然后导入到ANSYS中进行网格划分。
在建模过程中,需要考虑齿轮的齿形、齿数、模数等参数,并根据实际情况设置合适的几何形状。
2.设置加载在建模完成后,需要设置加载条件。
在本案例中,以齿轮传递动力时的载荷为例,可以通过施加力或扭矩来模拟齿轮的工作情况。
根据实际情况设置载荷大小和方向,以便进行接触应力的仿真分析。
3.网格划分接着对齿轮的几何模型进行网格划分,生成有限元网格。
在ANSYS中,可以通过自动网格划分功能或手动划分网格,确保模型的几何形状与加载条件得到合理的分析精度。
4.设置材料属性在进行齿轮接触应力分析前,需要设置材料的力学性质。
根据齿轮的实际材料属性,设置材料的弹性模量、泊松比等参数,以便进行接触应力的仿真分析。
5.运行分析设置完加载和材料属性后,可以进行齿轮接触应力的仿真分析。
在ANSYS中选择适当的分析模型和求解器,进行接触应力的计算和分布分析。
通过分析结果可以得到齿轮接触区域的应力分布情况,确定是否存在应力集中的问题。
6.结果分析最后,分析计算结果并进行结果的分析和优化。
根据接触应力的分布情况,确定齿轮的工作性能是否满足要求,是否存在应力过大导致损坏的风险。
如果需要,可以对齿轮的设计参数进行调整和优化,以提高齿轮的工作性能和寿命。
ansys齿轮接触分析案例

加载与求解
01
施加约束
根据实际情况,对齿轮的轴孔、 端面等部位施加适当的约束,如 固定约束、旋转约束等。
02
03
施加接触力
求解设置
根据齿轮的工作状态,在齿面之 间施加接触力,模拟实际工作情 况。
设置合适的求解器、迭代次数、 收敛准则等,确保求解的准确性 和稳定性。
后处理
结果查看
查看齿轮接触分析的应力分布、应变分布、接触压力分布等 结果。
02
分析接触区域的大小、应力分布情况,评估齿轮的传动性能和
寿命。
根据分析结果,优化齿轮的设计和制造工艺,提高其传动性能
03
和寿命。
06
CATALOGUE
ansys齿轮接触分析案例四:蜗轮蜗杆
问题描述
蜗轮蜗杆传动是一种常见的减速传动 方式,具有传动比大、传动平稳、噪 音低等优点。但在实际应用中,蜗轮 蜗杆的接触问题常常成为影响其性能 和寿命的关键因素。
属性。
边界条件和载荷
01
约束蜗杆的轴向位移,固定蜗轮的底面。
02 在蜗杆的输入端施加扭矩,模拟实际工作状态。
03 考虑温度场的影响,在模型中设置初始温度和环 境温度,并考虑热传导和热对流。
求解和结果分析
进行静力分析和瞬态动力学分析,求解接触应力 分布、摩擦力变化以及温度场分布等。
对求解结果进行后处理,提取关键数据,进行可 视化展示。
通过齿轮接触分析,可以发现潜在的 应力集中区域和齿面磨损问题,提高 齿轮的可靠性和寿命。
齿轮接触分析的应用领域
汽车工业
用于研究汽车变速器、发动机和传动系统中的齿轮接触行为,优 化齿轮设计以提高燃油经济性和可靠性。
风电领域
用于研究风力发电机组中齿轮箱的齿轮接触行为,提高风力发电设 备的效率和可靠性。
基于ANSYS WORKBENCH 的空间曲线啮合齿轮接触分析

课程论文(2015-2016学年第二学期)基于ANSYS WORKBENCH 的空间曲线啮合齿轮接触分析基于ANSYS WORKBENCH 的空间曲线啮合齿轮接触分析摘要:空间曲线啮合齿轮是近几年来华南理工大学教授陈扬枝提出的新型齿轮,对该齿轮的弯曲应力和强度设计准则都有了一定的研究。
因此,本文主要是利用ANSYS WORKBENCH软件来对该齿轮来进行接触分析的进行探讨,介绍了接触分析的方法,为空间曲线啮合齿轮提供了一种新的分析方法。
用两个初始参数几乎完全一样的两个齿轮对来进行比较分析,得到交错轴齿轮比交叉轴齿轮的等效应力更大;安装位置对分析的结果的影响也很大;等效应变和变形都能够满足我们实际的需求等这些结论。
关键词:ANSYS WORKBENCH 空间曲线啮合齿轮接触分析1.引言传统的齿轮的形式多种多样,用有限元对传统齿轮的机构进行分析是目前研究采用得最多的一种方法。
而齿轮啮合过程作为一种接触行为,因涉及接触状态的改变而成为一个复杂的非线性问题。
因此近年来,国内外学者开始采用接触有限元法对齿轮进行分析。
接触有限元法来分析齿轮结构,为齿轮的快速设计和进一步的优化设计提供条件。
空间曲线啮合齿轮(Space Curve Meshing Wheel, SCMW) [1~3]是近几年来由华南理工大学教授陈扬枝提出的新型齿轮,而空间曲线啮合交错轴齿轮则是可以运用于空间交错轴上的啮合齿轮。
不同于基于齿面啮合理论的传统齿轮机构[4、5],它们是基于一对空间共轭曲线的点啮合理论。
它的特点是:传动比大、小尺寸、质量轻等。
课题组前期已经研究了适用于该空间曲线啮合轮机构的空间曲线啮合方程[6],重合度计算公式[7],强度设计准则[8]以及制造技术[9]等,并设计出微小减速器[10]。
同时,对于该齿轮的等强度设计等方面正在进行研究。
ANSYS WORKBENCH是用ANSYS 求解实际问题的产品,它是专门从事于模型分析的有限元软件,能很好地和现有的CAD三维软件无缝接口,来对模型进行静力学、动力学和非线性分析等功能。
ANSYS接触分析实例

ANSYS接触分析实例接触分析是指在模拟两个物体在接触过程中的力学行为。
在工程设计中,接触分析能够解决各种复杂的机械接触问题,例如轴承、齿轮传动、接头连接等。
ANSYS通过它的接触分析功能,能够模拟物体间的精确接触行为,包括接触压力、接触区域、接触力和摩擦力等,并提供准确的力学分析结果。
举一个实际的例子,假设我们需要分析一个摩擦力的问题。
一辆汽车正在上坡行驶,车轮与路面之间的接触处产生了摩擦力。
我们希望通过ANSYS来模拟并计算摩擦力的大小。
首先,我们需要建立一个三维模型,包括车轮和路面。
可以使用ANSYS提供的建模工具进行绘制,也可以导入其他CAD软件中的模型。
在建模过程中,我们需要设置适当的边界条件和材料属性,例如路面的摩擦系数和车轮的材料参数。
接下来,我们需要定义接触边界条件。
在这个例子中,车轮与路面之间发生接触的区域称为接触区域。
可以在ANSYS中使用接触探测器来自动识别接触区域,或者手动定义接触区域。
在定义接触区域后,需要设置接触界面的行为,包括摩擦系数、接触刚度和接触阻尼等。
这些参数将影响接触力和摩擦力的计算结果。
完成模型和边界条件的设置后,我们可以进行接触力的计算。
首先,需要进行非线性静力分析,通过施加一个外力或位移来激活接触区域。
ANSYS将自动求解力学平衡方程并计算出接触力。
我们可以通过结果后处理功能来可视化和分析接触力的分布情况。
得到接触力的结果后,我们可以根据需要进一步分析摩擦力。
ANSYS提供了丰富的后处理工具,例如力矩计算和摩擦力分析工具,可以帮助我们准确地计算和分析摩擦力的大小和方向。
通过以上的步骤,我们可以使用ANSYS进行接触分析,并得到准确的接触力和摩擦力结果。
这个例子只是接触分析的一个简单示例,实际应用中的接触分析可能涉及更复杂的几何形状、材料特性和接触行为等,并需要更深入的分析和验证。
但是通过ANSYS强大的功能和易用性,工程师们可以更高效地解决接触分析问题,提高产品设计的质量和性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
齿轮的接触分析实例
(2)在弹出的对话框中点击【OK】,弹出如下对 话框,点击【OK】,在弹出的对话框中将厚度设 置为4。设置完毕,点击【OK】。
齿轮的接触分析实例
设置完毕后, 点击【Close】关闭实常数对 话框。
齿轮的接触分析实例
2.4 定义材料属性 (1)从主菜单中选择Preprocessor>Material Props>Material Models,如下图所示依次双击 Structural>Linear>Elastic>Isotropic。
齿轮的接触分析实例 分析问题:一对啮合的齿轮在工作时产生接触,分析其接触 的位置、面积和接触力的大小。
齿轮的接触分析实例
1. 相关系数 • • • • • • • • 齿顶直径:24 齿底直径:20 齿数:10 厚度:4 密度:7.8E3 弹性模量:2.06E11 摩擦系数:0.1 中心距:44
齿轮的接触分析实例
齿轮的接触分析实例
2. 2 定义单元类型 (1)从主菜单中选择Preprocessor>Element Type>Add/Edit/Delete,打开“Element Type”对话 框,单击【Add】。 (2)在下图的列表框中选择“Solid”, “4node 182”, 单击【OK】。
齿轮的接触分析实例
齿轮的接触分析实例
(3)定义一个点作为辅助点。 a.从主菜单选择 Preprocessor>Modeling>Create>Keypoints>In Active CS。 b.建立辅助点110。如下图,完毕点击【OK】。
齿轮的接触分析实例
(4)偏移工作平面到给定位置。 a.从实用菜单中选择 WorkPlane>Offset WP to>Keypoints + 。 b.在ANSYS图形窗口选择110号辅 助点,点击【OK】。 (5)旋转工作平面 a.从实用菜单中选择 WorkPlane>Offset WP by Increments。 b.在“XY,YZ,ZX,ZXAngles”文本 框中输入-50,0,0,点击【OK】.
齿轮的接触分析实例
(6)将激活的坐标系设置为工作平面坐标系: WorkPlane>Change Actives CS to>Working Plane。 (7)建立第二个关键点。 a.从主菜单选择 Preprocessor>Modeling>Create>Keypoints>In Active CS。 b.建立关键点2。如下图,完毕点击【OK】。
齿轮的接触分析实例
(10)按照步骤(4),将工作平面平移到第二个辅助点。 (11)旋转工作平面。 a.从实用菜单中选择WorkPlane>Offset WP by Increments。 b.在“XY,YZ,ZX,ZX Angles”文本框中输入3,0,0,点击 【OK】。 (12)将激活的坐标系设置为工作平面坐标系: WorkPlane>Change Actives CS to>Working Plane。 (13)建立第三个关键点。 a.从主菜单选择 Preprocessor>Modeling>Create>Keypoints>In Active CS。 b.建立关键点3。如设置材料的弹性模量 EX=2.06E11,泊松比PRXY=0.3。如下图所示。设 置完毕后点击【OK】,回到材料属性对话框界面。
齿轮的接触分析实例 (2)依次双击Structural>Density,设置材料密
度为7.8E3。完毕点击【OK】退出。
齿轮的接触分析实例 (3)依次双击Structural>Friction Coefficient,
(3)在下图的Element Types对话框中单击【Options】 弹出单元选项对话框,对PLANE182单元进行设 置。设置完成后点击【OK】,然后【Close】。
齿轮的接触分析实例
2.3 定义实常数 (1)从主菜单中选择Preprocessor>Real Constants>Add/Edit/Delete,打开如下图的“实 常数”对话框,点击【Add】,设置实常数单元类 型。
打开材料摩擦系数对话框。如下图,设置摩擦系 数为0.1。完毕点击【OK】,并退出材料属性设 置对话框。
齿轮的接触分析实例
2.5 建立齿轮面模型
(1)将当前坐标系设置为总体柱坐标系。从实用菜单中选择 WorkPlane>Change Actives CS to>Global Cylindrical。 (2)定义一个关键点。 a.从主菜单选择 Preprocessor>Modeling>Create>Keypoints>In Active CS。 b.建立关键点1。如下图,完毕点击【OK】。
2. 建立模型
2.1 设定分析作业名和标题 (1)从菜单中选择File>Change Jobname,打开“Change Jobname”命令,修改文件名。自定义新的文件名为 “gearscontact”,单击【OK】按钮,完成文件名的修改。
齿轮的接触分析实例
(2)从实用菜单中选择File>Change Directory,打开 “Change Directory”命令,可以自定义该文件的目标文件 夹,单击【确定】按钮。
齿轮的接触分析实例
(3)从实用菜单中选择File>Change Title,打开“Change Title”命令,可以自定义修改文件标题。新的文件标题为 “contact analysis of two gears”,为本实例的标题名。
单击【OK】按钮确定。
齿轮的接触分析实例
(4) 从实用菜单中选择Plot>Replot命令,自定 义的标题”contact analysis of two gears” 将显示在窗口左下角。 (5)从主菜单中选择Preference命令,在对 话框中选择“Structural”复选框,单击 【OK】按钮。
齿轮的接触分析实例
(8)将当前坐标系设置为总体柱坐标系。从实用菜单中选 择WorkPlane>Change Actives CS to>Global Cylindrical。 (9)建立其余的辅助点。 按照与(3)同样的步骤建立其余的辅助点,设置编 号一次为120,130,140,150,160,其坐标依次为 (16,43)、(16,46)、(16,49)、(16,52)、 (16,55)。