基于ANSYS的斜齿轮齿条啮合接触分析
基于ANSYS的齿轮接触应力与啮合刚度研究共3篇

基于ANSYS的齿轮接触应力与啮合刚度研究共3篇基于ANSYS的齿轮接触应力与啮合刚度研究1齿轮作为一种常用的传动元件,在机械系统的运转中发挥着重要的作用。
因此,对于齿轮的力学性能研究具有重要的意义。
本文以ANSYS软件为工具,研究齿轮接触应力与啮合刚度的相关问题。
一、齿轮模型的建立齿轮模型的建立是研究齿轮力学性能的基础。
初步建模需要确定齿轮参数、材料参数等。
在本次研究中,我们选取了一个模数为4的齿轮进行建模,在材料参数选取方面,我们选择了常用的20CrMnTi材料,以其为基础进行实验。
建模之后需要进行网格划分,网格密度的选择会影响后续分析的准确性以及计算时间,因此需要选择合适的密度。
选取太粗的网格会导致结果失真,选取太细的网格则会消耗大量的计算时间。
本次研究选取了相对均匀的中等密度网格,以保证结果的准确性。
二、齿轮接触应力分析齿轮在啮合过程中会产生接触应力,这对于齿轮的寿命和工作效率都有着至关重要的作用。
因此,研究齿轮接触应力,选择适当的润滑方式,对齿轮寿命和传动效率都有着重要的意义。
在ANSYS中进行齿轮接触应力的分析和计算,需要考虑到许多复杂的因素,如齿形、材料参数、润滑方式等。
在本次研究中我们采用了基于有限元方法的接触分析(FEM),对齿轮接触应力进行评估。
得到接触应力的结果后,我们可以对齿轮的寿命进行评估,并针对接触应力过大的地方进行优化处理。
三、齿轮啮合刚度分析除了接触应力之外,齿轮的啮合刚度对于传动的效率和精度也有着重要的影响。
啮合刚度是指啮合中两齿之间相对于轴线方向的相对运动能力,也可以视为齿轮在啮合过程中的弹性变形程度。
齿轮的啮合刚度与齿轮副的堆叠误差、硬度、几何尺寸等的影响有关。
在本次研究中,我们采用了ANSYS的非线性有限元分析方法,对齿轮的啮合刚度进行建模和优化。
通过对啮合刚度的研究,我们可以指导齿轮的加工和优化,提高其传动效率和精度。
四、总结本次研究基于ANSYS对齿轮接触应力和啮合刚度进行了研究。
基于ANSYS的Logix齿轮啮合接触分析

0引言差速器作为汽车动力传动系统的重要组成部分,在汽车于凹凸不平的路面上行驶或转弯时,能够限制左右(或前后)驱动轮以不同的速度旋转,确保驱动轮以纯滚动状态行驶。
差速器齿轮的优化设计对保证差速器强度和耐久度,保证车辆安全可靠行驶,提高整车驾驶性,减少能源消耗等具有重要意义。
差速器的齿轮传动性能的影响因素之一是齿形;目前广泛应用于差速器的齿廓曲线齿轮有渐开线齿轮、圆弧齿轮和Logix 齿轮。
日本学者小守勉首次提出了名为Logix 齿轮(Logix Gear )的新型齿轮。
如图1所示,Logix 齿形由多条微段渐开线连接而成,其节圆内外为凹凸形式,在啮合时齿廓上分布着大量相对曲率为0的结合点[1]。
取任一点O 1作夹角为α0的两条射线O 1N 1和O 1n 0,分别与节线P.L 交于N 1和n 0两点,其中O 1N 1与节线P.L 垂直。
取O 1n 0=G 1,并作线段O 1O′1=2G 1,使其与O 1n 0夹角为δ(称为相对压力角[2])。
若以O 1和O′1为圆心,以G 1为半径分别作两个相切的基圆,和节线P.L 分别交于N 1和n 0两点。
取g 1s 1为两圆的发生线,则根据渐开线的形成原理,曲线m 0s 1和m 1s 1分别是发生线g 1s 1沿O 1和O′1的基圆滚过弧长g 1n 1和g 1n 0形成的渐开线。
1Logix 齿轮副有限元模型根据齿轮啮合理论,Logix 齿轮由于各微段渐开线的结合点在啮合时相对曲率为零,大量零点的啮合使得齿轮的滑动系数非常小,基本上能够实现滑动摩擦,从而增加齿轮表面的接触疲劳强度。
差速器是车辆驱动桥的核心部件,建立一套针对差速器Logix 齿轮的高精度、普适性仿真模型,对保证整车动力传递及疲劳耐久性能起着关键作用。
本文主要选用有限元软件ANSYS 进行Logix 齿轮接触应力和齿根弯曲应力的仿真分析,一方面充分利用ANSYS 接触分析功能强大和后处理操作简便,运算速度快,结果可靠性高等优点,另一方面考虑ANSYS 前处理与ProE 等建模软件的契合度高,建好的模型导入过程顺利,节省了模型导入过程中可能的数据错误,提高了解算的准确性,有利于提高产品设计的优化效率。
斜齿轮的参数化建模及接触有限元分析

《装备制造技术》2007年第12期设计与计算!!!!"!"!!!!"!"收稿日期:2007-10-07作者简介:王宝昆(1982—),男,在读硕士研究生,研究方向:机械设计及理论。
斜齿轮的参数化建模及接触有限元分析王宝昆,张以都(北京航空航天大学,北京100083)摘要:在UG/OpenGrip中的实现了渐开线以及螺旋线的设计,建立了斜齿轮的三维参数化模型,并利用AnsysWorkbench对斜齿轮进行了接触应力分析。
关键词:斜齿轮;UG/OpenGrip;ANSYS;参数化设计;FEA中图分类号:TH132.413文献标识码:A文章编号:1672-545X(2007)12-0037-02UG的CAD/CAM/CAE系统提供了一个基于过程的产品设计环境,但UG并没有提供专用产品所需要的完整计算机辅助设计与制造功能。
利用UG/OpenGrip语言开发的程序,可以直接完成与UG的各种交互操作,与UG系统集成[1]。
ANSYSWorkbench整合了ANSYS各项顶尖产品,可以简单快速地进行各项分析及前后处理操作。
ANSYSWorkbench与CAD系统的实体及曲面模型具有双向连结,导入CAD几何模型成功率高,可大幅降低除错时间且缩短设计与分析流程。
笔者利用UG/NX的参数化建模技术和它所提供的二次开发语言模块UG/OpenGrip实现了成斜齿轮三维实体的参数化设计,并运用ANSYS最新的WorkBench模块实现了CAD/CAE的无缝集成,对斜齿轮进行啮合过程中接触状态进行了分析。
1渐开线斜齿圆柱齿轮参数化设计1.1编程思路将UG的三维参数化造型、自由曲面扫描等功能有机结合起来,采用去除材料法生成三维模型。
由于斜齿轮的齿面为渐开螺旋面,故其端面的齿形和垂直于螺旋线方向的法面齿形是不相同的,法面参数和端面参数也不相同。
在UG/OpenGrip中建模的方法是,画出端面齿形然后通过投影关系获得其法面轮廓线,再画出能表达端面齿顶圆上某一点沿轴向运动的螺旋线轨迹;然后用特征命令扫描出完成斜齿轮的齿坯,通过布尔运算获得单个齿槽,并通过环形阵列最终获得斜齿轮的完整轮齿。
ANSYS齿轮传动接触(论坛转载,感谢作者)

齿轮机构动力学分析齿轮接触的基础步骤:
首先在proe中建立模型。
然后导入ANSYS中,设置单元网格,定义材料。
将坐标系转换成柱坐标系。
然后将大齿轮的节点转入柱坐标系。
然后,在大齿轮上施加约束和位移。
Preprocessor-----solution----define load-----structural-----apply----displacement
单击apply之后,出现如下对话框。
之后施加约束。
方法跟上面一样。
之后建立局域坐标。
方法如下。
现在小齿轮的内圆心中建立一个点node。
之后,在此点处建立局域坐标。
选择柱坐标
之后将小齿轮节点导入当前坐标系,做法跟之前一样。
Preprocessor------modeling-----move/modify------rotate node to current cs
我就不介绍了哈~~~~~
之后,在小齿轮上施加位移和约束。
之后,建立接触。
建一个齿的就行啦~~~~(建多了很麻烦,当然,如果你有兴趣的话,全建上我也不反对)
方法如下:
之后,求解吧~~~solve
结果云图,我就不晒了,太累了!
注意:如果结果显示某个齿轮不转,例如小齿轮不转,那你就重新在定义一遍小齿轮的位移和约束,最好局域坐标系啥的也重新做一遍,ansys 这个软件有时候他就范毛病! 这个例子就是玩,简单玩一下,你也可以在此基础上,变某些东西,比如说不加位移,加转速或角加速度,有兴趣可以试一试,我试了,没转起来,不知道啥原因,呵呵! 本人水平有限,还望各路高人教两招有关这类分析的好方法!。
ansys齿轮接触分析案例

加载与求解
01
施加约束
根据实际情况,对齿轮的轴孔、 端面等部位施加适当的约束,如 固定约束、旋转约束等。
02
03
施加接触力
求解设置
根据齿轮的工作状态,在齿面之 间施加接触力,模拟实际工作情 况。
设置合适的求解器、迭代次数、 收敛准则等,确保求解的准确性 和稳定性。
后处理
结果查看
查看齿轮接触分析的应力分布、应变分布、接触压力分布等 结果。
02
分析接触区域的大小、应力分布情况,评估齿轮的传动性能和
寿命。
根据分析结果,优化齿轮的设计和制造工艺,提高其传动性能
03
和寿命。
06
CATALOGUE
ansys齿轮接触分析案例四:蜗轮蜗杆
问题描述
蜗轮蜗杆传动是一种常见的减速传动 方式,具有传动比大、传动平稳、噪 音低等优点。但在实际应用中,蜗轮 蜗杆的接触问题常常成为影响其性能 和寿命的关键因素。
属性。
边界条件和载荷
01
约束蜗杆的轴向位移,固定蜗轮的底面。
02 在蜗杆的输入端施加扭矩,模拟实际工作状态。
03 考虑温度场的影响,在模型中设置初始温度和环 境温度,并考虑热传导和热对流。
求解和结果分析
进行静力分析和瞬态动力学分析,求解接触应力 分布、摩擦力变化以及温度场分布等。
对求解结果进行后处理,提取关键数据,进行可 视化展示。
通过齿轮接触分析,可以发现潜在的 应力集中区域和齿面磨损问题,提高 齿轮的可靠性和寿命。
齿轮接触分析的应用领域
汽车工业
用于研究汽车变速器、发动机和传动系统中的齿轮接触行为,优 化齿轮设计以提高燃油经济性和可靠性。
风电领域
用于研究风力发电机组中齿轮箱的齿轮接触行为,提高风力发电设 备的效率和可靠性。
基于ANSYS的齿轮接触问题研究

基 于 AN Y S S的齿 轮 接 触 问题 研 究
江 阴职 业技 术 学院机 电 工程 系 庞 晓琛
摘
要 :通 过 齿 轮 接 触 分 析 应 用 实 例 ,分 析 了 齿 轮 接 触 应 力 的 分 布 和 最 大应 力 ,介 绍 了 C X 电 子 图 板 齿 A A
时设 计夹 轨 器打 开机 构 ,保 证 大车行 走 时 ,夹轨 器 能够 打 开 ,这样 夹轨 器更 复杂 。 ( )为 了保 证 现 港 机 已经 使 用 的 自锁 夹 轨 器 3 良好 的工作 状 态 ,保 证 偏心 轮旋 转灵 活 ;经常检 查 夹 持偏 心轮 或 偏心块 的磨 损情 况 ,并及 时 更换 ;对 轨 道 两侧 面 的凸起 要及 时 打磨 ,保证 轨道 两侧 面平 面精 度 ;保 证 偏心 轮 与轨道 接触 部分 硬度 大 于轨道 的硬 度 ;调整 夹 持偏 心轮 与轨 道 的间 隙 ,使 夹持偏
s cfc g a s p ro me o s o t a h t d me to e n hi a e s fe tv .I s c n l d d h te ma i pe i e r i e fr d t h w h tt e meho n in d i t s p p r i e c ie t o c u e tat h x mum i i c na tsr s pp a s wh n o l n i e t o t c . o tc te s a e r e ny o e parte h c n a t Ke wo d y r s: g a e r; fni l me n l i c na tsrs i t e e nta ayss; o tc te s; n ln a e oni e r
基于ANSYS的齿轮仿真分析

基于ANSYS的齿轮仿真分析齿轮是一种常见的机械传动元件,广泛应用于工业生产中的各种机械设备中。
齿轮的工作性能直接影响着整个传动系统的性能和可靠性。
为了确保齿轮的正常工作和延长使用寿命,需要对齿轮进行仿真分析。
本文将介绍基于ANSYS软件的齿轮仿真分析方法和流程。
首先,进行齿轮的几何建模。
使用ANSYS软件中的几何建模工具,根据实际齿轮的参数进行几何建模。
包括齿轮的齿数、模数、齿宽等参数。
建立三维模型后,对齿轮进行网格划分,生成有限元模型。
接下来,进行材料属性的定义。
根据实际齿轮的材料,定义材料属性。
包括弹性模量、泊松比、材料密度等参数。
这些参数将被用于后续的载荷和刚度分析。
然后,进行齿轮的载荷分析。
齿轮在工作过程中受到来自外界的载荷作用,主要包括径向力、切向力和轴向力等。
通过ANSYS中的载荷工具,对齿轮进行载荷加载。
可以根据实际工况设置载荷大小和方向。
进行齿轮的接触分析。
齿轮的接触是齿轮传动中的重要性能指标之一、通过ANSYS中的接触分析工具,可以计算齿轮接触面上的应力分布、接触区域和接触压力等参数。
这些参数对于齿轮的寿命和工作性能有重要影响。
进行齿轮的动力学分析。
齿轮在传动过程中会产生振动和噪声。
通过ANSYS中的动力学分析工具,可以计算齿轮的振动模态、固有频率和振动幅度等参数。
这些参数对于齿轮的运行平稳性和噪声控制有重要意义。
最后,进行疲劳分析。
齿轮在长时间使用过程中,容易出现疲劳破坏。
通过ANSYS中的疲劳分析工具,可以预测齿轮的寿命和疲劳破坏位置。
通过疲劳分析结果,可以调整齿轮的设计参数,提高其工作寿命。
综上所述,基于ANSYS的齿轮仿真分析包括几何建模、材料属性定义、载荷分析、接触分析、动力学分析和疲劳分析等步骤。
通过这些分析,可以评估齿轮的工作性能,指导齿轮的设计和改进。
同时,齿轮仿真分析可以帮助优化整个传动系统的工作性能和可靠性,提高机械设备的制造水平和整体效益。
基于ANSYS的齿轮弯曲应力、接触应力以及模态分析

基于ANSYS的齿轮弯曲应力、接触应力以及模态分析随着汽车性能和速度的提高,对变速箱齿轮也提出了更高的要求。
为较好地改善齿轮传动性能,有必要对齿轮进行静力学以及动力学分析。
对于齿轮的静力学分析,本文利用ANSYS对齿轮进行了齿根弯曲应力分析以及齿轮接触应力分析。
对于齿轮的动力学分析,本文利用ANSYS对其进行了模态分析,提取了齿轮的前十阶固有频率和固有振型。
最后实验表明,基于ANSYS的齿轮弯曲应力和接触应力相比较传统方法具有一定的裕度,而模态分析能较形象地展现其振型。
标签:齿轮;弯曲应力;接触应力;模态分析引言随着汽车性能和速度的提高,对变速箱齿轮也提出了更高的要求。
改善齿轮传动性能成为齿轮设计中的重要内容。
为了避免由于齿轮接触疲劳而引发的行驶事故,有必要对齿轮的齿根弯曲应力和齿面接触应力进行分析和评估。
同理,为避免由于齿轮共振引起的轮体破坏,有必要对齿轮进行固有特性分析,通过调整齿轮的固有振动频率使其共振转速离开工作转速。
齿轮的工作寿命与最大弯曲应力值的六次方成反比,因此最大弯曲应力略微减小,齿轮工作寿命即会大大提高[1]。
齿轮的最大弯曲应力往往出现在齿轮的齿根过渡曲线处,因此精确计算渐开线齿轮齿根过渡曲线处的应力,进而合理设计过渡曲线,对延长齿轮工作寿命、提高齿轮承载能力至关重要。
为了进行齿面接触强度计算,分析齿面失效和润滑状态,必须分析齿面的接触应力。
经典的齿面接触应力计算公式是建立在弹性力学基础上,而对于齿轮的接触强度计算均以两平行圆柱体对压的赫兹公式为基础。
但由于齿轮副啮合齿面的几何形状十分复杂,采用上面的方法准确计算轮齿应力和载荷分配等问题非常困难甚至无法实现。
随着计算机的普及,齿轮接触问题的数值解法获得了越来越广泛的应用。
齿轮副在工作时,在内部和外部激励下将发生机械振动。
振动系统的固有特性,一般包括固有频率和主振型,它是系统的动态特性之一,同时也可以作为其它动力学分析的起点,对系统的动态响应、动载荷的产生与传递以及系统振动的形式等都具有重要的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文华学院
学生毕业设计(论文)任务书
(2015年11月20日至2016年5月20日)
学部(系):机电学院机械系专业班级:机电124班学生姓名:雷国安指导教师:孟超莹
一、毕业设计(论文)题目
基于ANSYS的斜齿轮齿条啮合接触分析
二、毕业设计(论文)的主要内容
1.设计确定斜齿轮齿条的基本结构尺寸;
2.分析斜齿轮齿条的受力;
3.用pro/E软件或者ANSYS软件完成斜齿轮齿条的三维建模;
4.用ANSYS软件对斜齿轮齿条进行静力学分析。
三、毕业设计(论文)的进度安排及任务要求
阶段工作内容时间备注
第一阶段查阅有关资料、外文翻译、开
题报告
2015.11.20~2016.01.10
第二阶段设计确定齿轮齿条的基本结构
尺寸,并对其进行受力分析计
算
2016.02.29~2016.03.20
第三阶段用pro/E软件或者ANSYS软件
进行齿轮齿条的三维建模
2016.03.21~2016.04.03
第四阶段用ANSYS软件对齿轮齿条进行
静力学分析
2016.04.04~2016.04.17
第五阶段写毕设论文2016.04.18~2016.05.09 第六阶段修改论文、答辩2016.05.10~2016.05.20
四、同组设计者
无
五、主要参考文献(不少于10篇)
[1] 王新荣,初旭宏. ANSYS有限元基础教程[M].北京:电子工业出版社.2011;
[2] 张乐乐,谭南林,焦凤川.ANSYS辅助分析应用基础教程[M].北京:清华大学出版社,2006;
[3] 钟毅芳,吴昌林等.机械设计[M].华中科技大学出版社.2001;
[4] 傅祥志.机械原理[M].华中科技大学出版社.2000年10月
[5] 董建国、高鸿庭.机械专业英语[M].西安:西安电子科技大学出版社,2004
[6] 田绪东,管殿柱.Pro/ENGINEER Wildfire 4.0三维机械设计[M].北京:机械工业出版社.2009
[7] 祝凌云等.PRO/ENGINEER野火版入门指南[M].北京:人民邮电出版社,2003,1-356
[8]黄圣杰.Pro/E野火版基础教程(上册) [M].北京:人民邮电出版社,2004,1-265
[9]曹宇光,张卿,张士华.自升式平台齿轮齿条强度有限元分析[J].中国石油大学学报(自然科学版).2010
[10] 张兴权,何广德,郑如,张俊.齿轮齿条的接触应力研究[J].机械传动.2011
[11] 薛军,孙宝玉,辛宏伟,张建国,吴澜涛.基于有限元法的齿轮齿条动态应力分析[J].长春工业大学学报(自然科学版).2008
[12] F. Farukh, L.G. Zhao, R. Jiang et al.. Realistic microstructure-based modelling of cyclic deformation and crack growth using crystal plasticity[J].Computational Materials Science, 2016, 111.
[13] Kruzic J J, Scott J A, Nalla R K et al.Propagation of surface fatigue cracks in human cortical bone.[J].Journal of Biomechanics, 2005, 39(5).
[14]Lacitignola D,Tebaldi C.Effects of ecological differentiation on Lotka-Volterra systems for species with behavioral adaptation and variable growth rates.[J].Mathematical Biosciences,2005, 194(1).
[15] Presser K A, Ross TModelling the growth limits (growth/no growth interface) of Escherichia coli as a function of temperature, pH, lactic acid concentration,and water activity.[J].Applied and environmental microbiology, 1998, 64(5).
[16]Carmelo Vecchio, Sushant Sonde, Corrado Bongiorno et al.Nanoscale structural characterization of epitaxial graphene grown on off-axis 4H-SiC (0001)[J].Nanoscale Research Letters,2011,6(1). , Ratkowsky D A.
指导教师(签名):
20 年月日
系(专业)负责人(签名):
20 年月日
(说明:任务书由指导教师负责填写。
一式3份,学部教务、指导教师、学生各存1份)。