基于ANSYS的齿轮接触应力有限元分析【文献综述】
基于ANSYS的齿轮接触应力与啮合刚度研究共3篇

基于ANSYS的齿轮接触应力与啮合刚度研究共3篇基于ANSYS的齿轮接触应力与啮合刚度研究1齿轮作为一种常用的传动元件,在机械系统的运转中发挥着重要的作用。
因此,对于齿轮的力学性能研究具有重要的意义。
本文以ANSYS软件为工具,研究齿轮接触应力与啮合刚度的相关问题。
一、齿轮模型的建立齿轮模型的建立是研究齿轮力学性能的基础。
初步建模需要确定齿轮参数、材料参数等。
在本次研究中,我们选取了一个模数为4的齿轮进行建模,在材料参数选取方面,我们选择了常用的20CrMnTi材料,以其为基础进行实验。
建模之后需要进行网格划分,网格密度的选择会影响后续分析的准确性以及计算时间,因此需要选择合适的密度。
选取太粗的网格会导致结果失真,选取太细的网格则会消耗大量的计算时间。
本次研究选取了相对均匀的中等密度网格,以保证结果的准确性。
二、齿轮接触应力分析齿轮在啮合过程中会产生接触应力,这对于齿轮的寿命和工作效率都有着至关重要的作用。
因此,研究齿轮接触应力,选择适当的润滑方式,对齿轮寿命和传动效率都有着重要的意义。
在ANSYS中进行齿轮接触应力的分析和计算,需要考虑到许多复杂的因素,如齿形、材料参数、润滑方式等。
在本次研究中我们采用了基于有限元方法的接触分析(FEM),对齿轮接触应力进行评估。
得到接触应力的结果后,我们可以对齿轮的寿命进行评估,并针对接触应力过大的地方进行优化处理。
三、齿轮啮合刚度分析除了接触应力之外,齿轮的啮合刚度对于传动的效率和精度也有着重要的影响。
啮合刚度是指啮合中两齿之间相对于轴线方向的相对运动能力,也可以视为齿轮在啮合过程中的弹性变形程度。
齿轮的啮合刚度与齿轮副的堆叠误差、硬度、几何尺寸等的影响有关。
在本次研究中,我们采用了ANSYS的非线性有限元分析方法,对齿轮的啮合刚度进行建模和优化。
通过对啮合刚度的研究,我们可以指导齿轮的加工和优化,提高其传动效率和精度。
四、总结本次研究基于ANSYS对齿轮接触应力和啮合刚度进行了研究。
基于ANSYS WORKBENCH的齿轮接触应力分析

基于ANSYS WORKBENCH 的齿轮接触应力分析蓝娆1 杨良勇 2 罗昌贤3(1柳州市采埃孚机械有限公司 广西柳州5450072四川工程职业技术学院 四川 德阳 6180003广西柳工机械股份有限公司 广西柳州545007) 摘要:在理论分析的基础上,建立齿轮接触对的有限元模型,在有限元分析软件ANSYS Workbench 建立接触对,添加约束和加载,得到齿轮接触应力大小,齿轮应力集中主要发生在齿根圆角处,和理论计算分析对比。
得出相关结论为以后齿轮接触的有限元分析提供了依据。
关键词:齿轮接触对;ANSYS Workbench ;接触应力;有限元分析0引言齿轮是传动系统中承受载荷和传动动力的主要零部件,也是最容易出故障的零件之一。
据统计,在各种机械故障中,齿轮失效就占总数的6 0 %以上,其齿面损坏又是齿轮失效的主要原因之一。
因此,工程中需要发大量工作对齿面强度及其应力进行分析。
ANSYS Workbench 是用 A NS YS 求解实际问题的新一代产品,它是专门从事于模型分析的有限元软件,拥有与CAD 的无缝接口、新一代的参数化建模工具,其强大的分析功能可以很准确地反映实际物体的状态。
可进行静力学分析、动力学分析、非线性分析等。
本文从柳州市采埃孚机械有限公司实际问题出发,建立齿轮接触对的三维有限元模型,在有限元分析软件ANSYS Workbench 计算得到齿轮接触对的接触应力,与传统理论计算公式得出比较,为齿轮的快速设计和进一步的优化设计提供条件。
1齿轮参数化建模齿轮的设计,加工,生产是一个复杂、严格的过程 ,如果能够实现齿轮在设计上的参数化建模,那么就避免了齿轮的反复设计,每次只要改变参数就能得到自己想要的齿轮,这将为齿轮的生产带来极大的方便。
利用CAD 软件UG ,其与ANSYS Workbench 可以实现无缝连接,其参数化建模功能和有限元分析模块可以在同一平台完成,避免了从CAD 软件到CAE 软件的转换,提高了设计效率,同时又有利于设计数据的统一管理。
基于ANSYS的齿轮弯曲应力、接触应力以及模态分析

基于ANSYS的齿轮弯曲应力、接触应力以及模态分析随着汽车性能和速度的提高,对变速箱齿轮也提出了更高的要求。
为较好地改善齿轮传动性能,有必要对齿轮进行静力学以及动力学分析。
对于齿轮的静力学分析,本文利用ANSYS对齿轮进行了齿根弯曲应力分析以及齿轮接触应力分析。
对于齿轮的动力学分析,本文利用ANSYS对其进行了模态分析,提取了齿轮的前十阶固有频率和固有振型。
最后实验表明,基于ANSYS的齿轮弯曲应力和接触应力相比较传统方法具有一定的裕度,而模态分析能较形象地展现其振型。
标签:齿轮;弯曲应力;接触应力;模态分析引言随着汽车性能和速度的提高,对变速箱齿轮也提出了更高的要求。
改善齿轮传动性能成为齿轮设计中的重要内容。
为了避免由于齿轮接触疲劳而引发的行驶事故,有必要对齿轮的齿根弯曲应力和齿面接触应力进行分析和评估。
同理,为避免由于齿轮共振引起的轮体破坏,有必要对齿轮进行固有特性分析,通过调整齿轮的固有振动频率使其共振转速离开工作转速。
齿轮的工作寿命与最大弯曲应力值的六次方成反比,因此最大弯曲应力略微减小,齿轮工作寿命即会大大提高[1]。
齿轮的最大弯曲应力往往出现在齿轮的齿根过渡曲线处,因此精确计算渐开线齿轮齿根过渡曲线处的应力,进而合理设计过渡曲线,对延长齿轮工作寿命、提高齿轮承载能力至关重要。
为了进行齿面接触强度计算,分析齿面失效和润滑状态,必须分析齿面的接触应力。
经典的齿面接触应力计算公式是建立在弹性力学基础上,而对于齿轮的接触强度计算均以两平行圆柱体对压的赫兹公式为基础。
但由于齿轮副啮合齿面的几何形状十分复杂,采用上面的方法准确计算轮齿应力和载荷分配等问题非常困难甚至无法实现。
随着计算机的普及,齿轮接触问题的数值解法获得了越来越广泛的应用。
齿轮副在工作时,在内部和外部激励下将发生机械振动。
振动系统的固有特性,一般包括固有频率和主振型,它是系统的动态特性之一,同时也可以作为其它动力学分析的起点,对系统的动态响应、动载荷的产生与传递以及系统振动的形式等都具有重要的影响。
基于ANSYSWorkbench的直齿轮接触分析_周钊

为 max 为 0.3 σH, 最大切应力的理论解为 221 MPa。 最大接触应力和最大切应力的理论解与有限元解 误差很大。 一般来说,小的接触刚度会导致大的穿 透深度,会产生较大的误差。 增大接触刚度来抵抗 穿透,使有限元仿真结果更可靠。
图 1 齿轮分割几何模型 齿轮接触处应力变化急剧, 需要设定较密网 格,而远离关注部位的非接触区域,改用较大尺寸
收 稿 日 期 :2011-10-06 基 金 项 目 :湖 北 省 教 育 厅 优 秀 中 青 年 课 题 (Q20082301);湖 北 汽 车 工 业 学 院 学 生 科 研 项 目 (S201003018)
Abstract: Taking a pair of meshing involute spur gears as the research object, the finite element model is established for spur gears contact by ANSYS Workbench. The gears are simulated based on nonlinear contact method and finite element analysis. The corresponding calculation results of different contact stiffness values are listed and the convergence is analyzed. The simulation results are compared with the traditional theory. The results show it is feasible to analyze gear contact by using finite element method. Key words: finite element; spur gear; contact stress; contact stiffness
基于ANSYS的齿轮弹流润滑的有限元应力分析

1.0 山一
望o.8 《
O.6
.6 A
.3
O
B Pc J,mm
3
6
D
图1 油膜中心压力沿啮合线变化曲线 Fig 1 Variation of central film pressure along the line of action
2齿轮建模及有限元分析 2.1齿轮三维建模
在有限元分析过程中,建模是非常关键的步骤, 模型是否准确将直接影响计算结果的正确性。一个渐 开线轮齿,其截面曲线是由齿顶圆、渐开线、齿根过 度曲线和齿根圆4部分组成。建模的关键是如何获得 精确的齿面曲线方程及如何生成齿面曲线。
有限元分析软件中对齿轮进行网格划分,并设置加载 区;在轮齿上选取5个特殊啮合点,将油膜压力作为 载荷,建立了油膜压力条件下齿轮的有限元模型;考
【4】刘哲,陈定方.基于ANSYS的渐开线齿轮建模和有限元分 析[J].湖北工业大学学报,2008(2):35—37.
Liu Zhe,Chen Dingfang.Modeling and Finite Element Analysis
图2齿轮三维模型
2.2
Fig 2 Thine.dimensional model of gear
ANSYS有限元分析
通过接口,可以把在Pro/E建好的齿轮三维模型
直接导入ANSYS中,对齿轮的应力场进行有限元仿 真分析,确定齿轮的最大齿根应力值和相应啮合位 置。
(1)添加材料常数,划分网格。在对模型进行 网格划分之前,要定义所需要的单元类型,不同的单 元类型会直接影响网格化分以及最终求解的效果。针 对不同的结构模型,选择不同的单元类型。由于对于 此齿轮划分采用先对端面进行网格划分,然后通过体 扫掠生成单元体网格。在端面网格划分中选择的单元 类型为Quad8node82。体扫掠网格划分选择单元类型 为Brick20node95。定义材料的弹性模量为2.06×10“ Pa和材料的泊松比为0.3。最终生成的网格如图3所 示。
基于ANSYS的齿轮接触非线性有限元分析

基于ANSYS的齿轮接触非线性有限元分析XXXX大学(硕、博士)研究生试卷本考试课程名称有限元方法与应用考试考查学科专业机械工程学号XXXXX姓名XXX题目序号 1 2 3 4 5 6 7 8 9 10 总计评卷教师基于ANSYS的齿轮接触非线性有限元分析摘要:通过研究接触问题有限元基本理论,应用大型有限元分析软件ANSYS对齿轮啮合对进行接触非线性有限元分析。
有限元处理传统解析法无法处理的啮合问题结果比传统计算公式更为准确,且可定量的分析齿轮啮合应变与应力分布情况。
关键词:有限元;ANSYS齿轮;应变;应力Abstract:By studying the basic theory of finite element contact problem, using large-scale finite element analysis software ANSYS to the gear mesh to the contact nonlinear finite element analysis. The finite element mesh of dealing with the traditional analytic method cannot handle problems more accurate results than the traditional calculation formula, and the quantitative analysis of the gear meshing of strain and stress distribution.Key words: finite element; ANSYS gear; strain; stress一、研究背景接触是一种常见的物理现象,它涉及到接触状态的改变,还可能伴随有热、电等过程,因此成为一个复杂的非线性问题。
齿轮啮合就是一种接触行为,传统的齿轮理论分析是建立在弹性力学基础上的,对于齿轮的接触强度计算均以两平行圆柱体对压的赫兹公式为基础,在计算过程中存在许多假设,不能准确反映齿轮啮合过程中的应力以及应变。
基于ANSYS软件的齿轮接触强度分析

10.16638/ki.1671-7988.2018.08.013基于ANSYS软件的齿轮接触强度分析季景方1,黎遗铃2(1.汽车动力传动与电子控制湖北省重点实验室(湖北汽车工业学院),湖北十堰442002;2.比亚迪汽车工业有限公司,广东深圳518000)摘要:齿轮传动是汽车传动的主要形式,其强度不足导致的失效问题给汽车企业造成巨大经济损失,文章基于ANSYS软件对齿轮接触强度进行分析。
首先使用CATIA软件建立了一对渐开线直齿圆柱齿轮的三维模型,并将三维模型导入ANSYS软件中进行了齿轮强度接触分析,得到了齿面、齿根等处的应力分布规律。
论文的研究为齿轮的设计提供了理论参考。
关键词:齿轮;接触强度;有限元中图分类号:U467 文献标识码:B 文章编号:1671-7988(2018)08-36-03Contact strength analysis of gear based on ANSYSJi Jingfang1, Li Yiling2( 1.Key Laboratory of Automotive Power Train and Electronics (Hubei University of Automotive Technology), Hubei Shiyan, 442002; 2.BYD Automotive Industry Limited Company. Guangdong Shenzhen 518000 )Abstract: The gear transmission is the main form of automobile transmission and the failure of gear causes great economic loss for automobile enterprise. Contact strength analysis of gear is researched based on ANSYS in this paper. The three- dimensional model of a pair of involutes spur gear is established by using CATIA and the three dimensional model is introduced into the ANSYS to carry out contact strength analysis, and the stress distribution law of the tooth surface and the tooth root is obtained. The research provides a theoretical reference for gear design in this paper.Keywords: gear; contact strength; finite elementCLC NO.: U467 Document Code: B Article ID: 1671-7988(2018)08-36-03前言齿轮传动以其工作可靠、寿命长等特点在汽车传动系中具有非常广泛的应用,其齿轮的质量和性能直接影响了产品的品质。
基于ANSYS的齿轮应力有限元分析报告

本科毕业设计论文题目:基于ansys的齿轮应力有限元分析学生:所在院系:机电学院所学专业:机电技术教育导师:完成时间:摘要本文主要分析了在ansys中齿轮参数化建模的过程。
通过修改参数文件中的齿轮相关参数,利用APDL语言在ANSYS软件中自动建立齿轮的渐开线。
再利用图形界面操作模式,通过一系列的镜像、旋转等命令,生成两个相互啮合的大小齿轮。
运用有限元分析软件ANSYS对齿轮齿根应力和齿轮接触应力进行分析计算,得出两个大小齿轮的接触应力分布云图。
通过与理论分析结果的比较,验证了ANSYS在齿轮计算中的有效性和准确性。
关键词:ANSYS,APDL,有限元分析,渐开线,接触应力。
Modeling and Finite Element Analysis of InvoluteSpur Gear Based on ANSYSAbstractWe have mainly analyzed spur gear parametrization modelling process in the ansys software. using the APDL language through revises the gear related parameter in the parameter document,we establishesgear's involute automatically in the ANSYS software.Then, using the graphical interface operator schema, through a series of orders ,mirror images, revolving and so on, we produce the big and small gear which two mesh mutually. Carring on the stress analysis of the gearby using the finite element analysis software-- ANSYS, we obtain two big and small gear's contact stress distribution cloud charts. through with the theoretical analysis result's comparison,we explain ANSYS in the gear computation validity and the accuracy.Keywords:ANSYS; APDL;finite element analysis;involute line;contact stress目录1绪论52齿轮仿真分析方法63齿轮实体模型的建立方法63.1直齿轮建模要求描述73.2渐开线的生成原理73.3创建渐开线曲线73.4齿根过渡曲线生成原理93.5创建齿廓特征104齿轮接触应力分析124.1模型网格划分124.2创建接触对144.3施加边界条件和载荷154.4求解164.5计算结果分析174.5.1仿真计算分析174.5.2理论分析175齿根弯曲应力分析175.1建立齿轮模型175.2划分网格185.3施加载荷和约束185.4求解185.5仿真分析与理论结果对比19 6结论19参考文献21附录22[1]大齿轮渐开线生成的命令流22[2]大小齿轮的基本参数表23辞241绪论齿轮是机械中广泛应用的传动零件之一,形式很多,应用广泛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业论文文献综述机械设计制造及其自动化基于ANSYS的齿轮接触应力有限元分析一、研究现状及研究主要成果1. 《基于ANSYS的渐开线啮合齿轮有限元分析》中指出:采用有限元软件ANSYS建立了啮合齿轮的有限元模型,利用ANSYS软件的非线性接触分析功能,对啮合齿轮的接触问题进行仿真,计算出接触应力,为齿轮的强度计算和设计在方法上提供了参考和依据。
建立了渐开线圆柱啮合齿轮的三维有限元模型;研究了齿轮系统整体分析中接触对的建立、齿轮加载方式的选择;研究了齿轮副结构有限元分析方法。
采用在圆柱面的节点上加切向力来代替力矩的加载方式,对齿轮面接触参数进行设置,并且得到了接触分析的最终结果,说明该有限元建模的方法是可行的,为将来齿轮系统动力学的研究奠定基础。
2.《基于ANSYS的多齿差摆线齿轮有限元分析》中指出:应用ANSYS分析软件对多齿差摆线齿轮进行建模,推导出不同啮合相位角摆线齿轮根部应力计算公式,计算了不同啮合相位角摆线齿轮根部应力,找出齿轮齿根过渡圆弧半径与齿根处最大应力的关系和摆线齿轮根部过渡圆弧半径对齿轮根部应力的影响。
摆线齿轮在齿顶啮合时齿轮根部具有最大应力值,采用了过渡圆弧的摆线齿轮齿根危险截面处的最大应力值明显比未采用过渡圆弧的摆线齿轮低,危险截面处的最大应力值随着过渡圆弧半径的增大而减小,当圆弧半径较小时最大应力减小趋势较快,当圆弧半径逐渐增大时应力减小趋势逐渐变缓。
3.《齿轮接触有限元分析》指出:计算接触非线性问题有许多方法,例如罚函数法、拉格朗日乘子法等,其中罚函数法由于其经济和方便而得到广泛使用。
过去使用点-点接触单元,求解接触问题,对于象齿轮类接触,模型构造很麻烦,计算结果精度和准确性很难保证。
随着计算机和有限元法的发展,新的接触单元法产生精确的几何模型,自动划分网格,适应求解。
通过接触仿真分析研究了通用接触单元在轮齿变形和接触应力计算中的应用。
建立了一对齿轮接触仿真分析的模型,并使用新的接触单元法计算了轮齿变形和接触应力,与赫兹理论比较,同时也计算了摩擦力对接触应力的影响。
计算分析了单元离散、几何、边界范围与加载或约束处理方式的误差,建立了一个计算轮齿变形和接触应力的标准,说明了新的接触单元法的精确性、有效性和可靠性。
4.《渐开线直齿圆柱齿轮有限元仿真分析》中指出:ANSYS软件对齿轮变形和齿根应力进行了有限元计算,建立了一对齿轮接触仿真分析的模型,利用ANSYS的面面接触单元进行齿轮接触仿真分析,计算了齿轮啮合中的接触应力和接触变形,说明了ANSYS在齿轮计算尤其在接触分析上的有效性,为齿轮的优化设计和可靠性设计及CAE奠定了基础。
利用ANSYS大型通用分析软件以直齿圆柱齿轮为例分析了齿轮受载时单齿齿根应力分布以及轮齿加载点处法向和对称中心点变形值,通过一对齿轮轮齿接触仿真分析,分析了轮齿变形和应力在齿轮啮合过程中的变化。
二、发展趋势有限元的发展概况1943年 courant在论文中取定义在三角形域上分片连续函数,利用最小势能原理研究St.Venant的扭转问题。
1960年 clough的平面弹性论文中用了“有限元法”这个名称。
1965年冯康发表了论文“基于变分原理的差分格式”,这篇论文是国际学术界承认我国独立发展有限元方法的主要依据。
1970年随着计算机和软件的发展,有限元发展起来。
ANSYS是一个多用途的有限元分析软件,用来求结构、流体、电力、电磁场及碰撞等问题的解答。
它包含了前置处理、解题程序以及后置处理,将有限元分析、计算机图形学和优化技术相结合,已成为现代工程学问题必不可少的有力工具。
利用ANSYS有限元分析,可以对各种机械零件,构件进行应力,应变,变形,疲劳分析,并对某些复杂系统进行仿真,实现虚拟的设计,从而大大节省人力,财力和物力。
由于其方便性、实用性和有效性,ANSYS软件在各个领域,特别是机械工程当中得到了广泛的应用。
齿轮是现代机器设备的基础元件之一,广泛应用于机械传动,如飞机、汽车等。
精确描述齿轮传动中齿轮内部的应力,应变状况,对优化齿轮结构,获得高性能的齿轮传动机构具有重大意义。
由于其形状比较复杂,用传统的计算方法不能确定其真实的应力及变形分布规律,因此从弹性力学出发,用现代设计方法研究齿轮的受载变形情况和接触强度,具有广泛的用途,它可以提高整个齿轮结构的设计水平。
随着计算机技术的发展和大型有限元分析软件的出现,基于CAD/CAE技术的结构仿真分析方法给人们展示了在实际工况下,齿轮的应力,应变分布情况,为齿轮的设计和制造提供了有力的依据。
相对于传统的计算方法,有限元由于其能快速、准确可靠、灵活地分析计算,在国内外齿轮设计和计算中得到广泛应用。
齿轮变形的有限元分析七十年代已开始,但仅仅计算挠曲变形,接触变形和接触应力的有限元分析在九十年代才真正开始,主要方法有罚函数法,拉格朗日乘子法等,其中罚函数法由于经济和方便,得到了广泛使用。
三、存在问题1)虽然有较多研究对齿轮的几何模型作了精确的模拟,对齿轮传动中齿根应力因几何非线性而产生的应力集中作了详尽描述,但没有提及材料非线性产生的应力集中对齿根应力分布的影响。
在以后的研究中应增加加工刀痕产生的应力集中的模拟。
2) 在动力分析方面,本文仅考虑静力低速情况下的应力响应。
以后应增加在高速冲击情况下的应力、模态分析,因为高速情况下,齿轮因离心作用将产生预应力,使应力分布更加复杂。
3)应进一步考虑摩擦及热效应的影响,从而能真正模拟实际工况下的齿轮传动。
4)应进一步进行复杂齿轮的静力动力的结构仿真研究,将研究的范围进一步扩大到包括齿轮轴及其支撑件的接触仿真分析。
参考文献[1] 孙桓等.机械原理[M].第七版.北京:高等教育出版社,2006.5,174-189.[2] 杜白石等.三维机械设计基础教程[M].陕西:西北农林科技大学,2009.[3] 易日.使用ANSYS6.1进行结构力学分析[M].北京:北京大学出版社,第四版.[4] 杨创创等.有限元软件ANSYS 11.0上机指导[M].陕西:西北农林科技大学机电学院,2010.[5] 曾攀.有限元分析基础教程[M].北京:清华大学,2008年.[6] ansys适合初学者教程,网址:ftp:///.[7] ANSYS LS-DYNA 教程及练习,网址:ftp:///.[8] 王新敏.王新敏ANSYS讲义,网址:ftp:///.[9] 刘斌彬.ANSYS有限元齿轮接触及弯曲应力研究[J].机电技术,2009,3.[10] ANSYS接触分析实例,网址:/p-26093486.html.[11] 基于ANSYS的齿轮有限元分析,网址:/p-29729628906.html.[12] 吴宗泽等.机械设计课程设计手册[M].第三版.北京:高等教育出版社,2006年.[13] 黄亚玲.基于ANSYS的斜齿轮接触非线性有限元分析[J].理论与探索,2006,4.[14]王丽娟等.基于ANSYS的齿轮模型建立及齿根弯曲应力分析[J].机械工程与自动化,2008,2.[15] 戴进.基于齿轮加工原理的精确建模及ANSYS有限元分析[J].CAD/CAM/CAPP应用,2007.[16] 李珊珊等.基于ANSYS的斜齿轮接触应力有限元分析[J].机械工程与自动化,2009年,第四期.[17] 雷镭等.基于ANSYS有限元软件的直齿轮接触应力分析[J].机械传动,2006年.[18] 林吉靓等.基于ANSYS的齿轮参数化建模和弯曲应力分析[J].制造业信息化,2007.[19] 周秦源.基于Pro/E和ANSYS的齿轮接触应力的有限元分析[J].沈阳航空工业学院学报,2007, 24(4).[20] 杨会霞等.基于Pro/E和ANSYS的斜齿轮建模和应力分析[J].设计与研究,2008.[21] 邱宣怀等.机械设计[M].北京:高等教育出版社,1997年,第四版,204-232.[22] 董文俊等.精确建模条件下标准直齿轮啮合传动分析[J].机械设计与制造,2009,6.[23] 龚曙光等.ANSYS操作命令与参数化编程[M].第三版.北京:机械工业出版社,2004.[24] Handschuh RF, Lewicki DG,Bossler RB. Experimental testing of prototype facegears for helicopter transmissions [J]. Journal of Aerospace Engineering,1994, 208(2):129~136.[25] Litvin FL. Development of Face-Gear Technology for Industrial and AerospacePower Transmission [R]. NASA /CR220022211320.[26] Litvin FL, Wang JC, Bossler RB. Application of face-gear drives inhelicopter transmissions [J]. Journal of Mechanical Design, Transactions of the ASME, 1994,116(3):672~676.[27] Robert C B. Advanced rotorcraft transmission program[A].46th Annual Forum,Proceedings of the American Helicopter Society[C], Washington: Publish by American Helicopter Soc, 1990.[28] Litvin FL,Zhang Y, Wang JC, et al. Design and geometryofface-geardrives[J].Journal of Mechanical Design, Transactions of the ASME,1992(114):642~647.。