江苏专用2018高考数学一轮复习第七章数列推理与证明第38课直接证明与间接证明课时分层训练

合集下载

高考数学(理)一轮资源库 第七章 7.5直接证明与间接证明

高考数学(理)一轮资源库  第七章  7.5直接证明与间接证明
x2≥0, x1+ x2≤1, 都 有 f(x1+ x2)≥f(x1)+f(x2)成立,则称函数 (2)对照新定义中的 3 个条件,
f(x)为理想函数.
逐一代入验证,只有满足所
(1)若函数 f(x)为理想函数,证明:
f(0)=0;
有条件,才能得出“是理想
(2)试判断函数 f(x)=2x(x∈[0,1]), 函 数 ”的 结 论 , 否 则 得 出
论成立的条件和已知事
实吻合为止.
思维 过程
由因导果
执果索因
基础知识
题型分类
思想方法
练出高分
基础知识·自主学习
要点梳理
证题 P(已知)⇒P1 步骤 ⇒P2⇒…
⇒Pn⇒Q(结论) 文字 因为…,所以… 语言 或由…,得… 符号
⇒ 语言
知识回顾 理清教材
Q(结论)⇐Q1 ⇐Q2⇐… ⇐Qn⇐P(已知) 要证…,只需证…,即 证…
f(x) = x2(x∈[0,1]) , f(x) = (x∈[0,1])是否是理想函数.
x
“不是理想函数”的结论.
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型一
综合法的应用
【例 1】 对于定义域为[0,1]的函 思维启迪 解析 思维升华
数 f(x),如果同时满足: ① 对 任 意 的 x∈[0,1] , 总 有 f(x)≥0;②f(1)=1;③若 x1≥0,
数学 苏(理)
§7.5 直接证明与间接证明
第七章 不等式、推理与证明
基础知识·自主学习
要点梳理
知识回顾 理清教材
1.直接证明
综合法
分析法
从 已知条件 出发,以已知 从 问题的结论 出发,

(江苏专用)高考数学一轮复习 第七章 数列、推理与证明 第38课 直接证明与间接证明教师用书-人教版

(江苏专用)高考数学一轮复习 第七章 数列、推理与证明 第38课 直接证明与间接证明教师用书-人教版

第38课直接证明与间接证明[最新考纲]内容要求A B C分析法与综合法√反证法√1.直接证明(1)综合法①定义:从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止,这种证明方法常称为综合法.②框图表示:已知条件⇒…⇒…⇒结论③思维过程:由因导果.(2)分析法①定义:从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止.这种证明方法常称为分析法.②框图表示:结论⇐…⇐…⇐已知条件③思维过程:执果索因.2.间接证明(1)反证法:假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立的证明方法.(2)反证法的步骤:①反设——假设命题的结论不成立,即假定原结论的反面为真;②归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果;③存真——由矛盾结果,断定反设不真,从而肯定原结论成立.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)综合法的思维过程是由因导果,逐步寻找已知的必要条件.( )(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( )(3)用反证法证明时,推出的矛盾不能与假设矛盾.( )(4)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( )[答案] (1)√ (2)× (3)× (4)√2.用反证法证明命题:“已知a ,b 为实数,则方程x 2+ax +b =0至少有一个实根”时,要做的假设是____________.方程x 2+ax +b =0没有实根 [“方程x 2+ax +b =0至少有一个实根”的反面是“方程x 2+ax +b =0没有实根”.]3.要证明3+7<25,可选择的方法有以下几种,其中最合理的是____________.(填序号)①综合法; ②分析法; ③反证法; ④归纳法.② [要证明3+7<25成立,可采用分析法对不等式两边平方后再证明.] 4.已知a ,b ,x 均为正数,且a >b ,则b a 与b +xa +x的大小关系是__________.b +x a +x >b a [∵b +x a +x -b a =x a -ba +x a>0, ∴b +x a +x >ba.] 5.(教材改编)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,则△ABC 的形状为__________三角形.等边 [由题意2B =A +C ,又A +B +C =π,∴B =π3,又b 2=ac ,由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac , ∴a 2+c 2-2ac =0,即(a -c )2=0,∴a =c , ∴A =C ,∴A =B =C =π3,∴△ABC 为等边三角形.]综合法如图38­1所示,在四棱锥P ­ABCD 中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,且PA =PD =22AD = 2. (1)求证:平面PAB ⊥平面PCD ;(2)求三棱锥D ­PBC 的体积.图38­1[解] (1)因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD , 又CD ⊥AD ,所以CD ⊥平面PAD ,所以CD ⊥PA . 因为PA =PD =22AD ,所以△PAD 是等腰直角三角形,且∠APD =π2,即PA ⊥PD . 又CD ∩PD =D ,所以PA ⊥平面PCD又PA ⊂平面PAB ,所以平面PAB ⊥平面PCD . (2)取AD 的中点O ,连接OP ,如图因为PA =PD ,所以PO ⊥AD .因为平面PAD ⊥平面ABCD ,平面ABCD ,平面PAD ∩平面ABCD =AD , 所以PO ⊥平面ABCD . 即PO 为三棱锥P ­BCD 的高, 由PA =PD =22AD =2,知OP =1. 因为底面ABCD 是正方形,所以S △BCD =12×2×2=2.所以V三棱锥D ­PBC=V三棱锥P ­BCD=13PO ·S △BCD=13×1×2=23. [规律方法] 综合法是“由因导果”的证明方法,其逻辑依据是三段论式的演绎推理方法,常与分析法结合使用,用分析法探路,综合法书写,但要注意有关定理、性质、结论题设条件的正确运用.[变式训练1] 已知函数f (x )=ln(1+x ),g (x )=a +bx -12x 2+13x 3,函数y =f (x )与函数y =g (x )的图象在交点(0,0)处有公共切线.(1)求a ,b 的值;(2)证明:f (x )≤g (x ). 【导学号:62172205】[解] (1)f ′(x )=11+x,g ′(x )=b -x +x 2,由题意得⎩⎪⎨⎪⎧g 0=f 0,f ′0=g ′0,解得a =0,b =1.(2)证明:令h (x )=f (x )-g (x ) =ln(x +1)-13x 3+12x 2-x (x >-1).h ′(x )=1x +1-x 2+x -1=-x 3x +1.所以h (x )在(-1,0)上为增函数,在(0,+∞)上为减函数.h (x )max =h (0)=0,h (x )≤h (0)=0,即f (x )≤g (x ).分析法已知a >0,求证:a 2+1a 2-2≥a +1a-2.[证明] 要证a 2+1a 2-2≥a +1a-2,只需要证a 2+1a 2+2≥a +1a+ 2. 因为a >0,故只需要证⎝ ⎛⎭⎪⎫a 2+1a 2+22≥⎝⎛⎭⎪⎫a +1a +22,即a 2+1a2+4a 2+1a 2+4≥a 2+2+1a 2+22⎝ ⎛⎭⎪⎫a +1a +2,从而只需要证2a 2+1a 2≥2⎝ ⎛⎭⎪⎫a +1a , 只需要证4⎝ ⎛⎭⎪⎫a 2+1a 2≥2⎝ ⎛⎭⎪⎫a 2+2+1a2,即a 2+1a2≥2,而上述不等式显然成立,故原不等式成立.[规律方法] 1.当已知条件与结论之间的联系不够明显、直接,或证明过程中所需用的知识不太明确、具体时,往往采用分析法,特别是含有根号、绝对值的等式或不等式,常考虑用分析法.2.分析法的特点和思路是“执果索因”,逐步寻找结论成立的充分条件,即从“未知”看“需知”,逐步靠拢“已知”或本身已经成立的定理、性质或已经证明成立的结论等,通常采用“欲证—只需证—已知”的格式,在表达中要注意叙述形式的规X 性.[变式训练2] 已知△ABC 的三个内角A ,B ,C 成等差数列,A ,B ,C 的对边分别为a ,b ,c .求证:1a +b +1b +c =3a +b +c. [证明] 要证1a +b +1b +c =3a +b +c, 即证a +b +c a +b +a +b +c b +c =3,也就是c a +b +ab +c=1, 只需证c (b +c )+a (a +b )=(a +b )(b +c ), 需证c 2+a 2=ac +b 2,又△ABC 三内角A ,B ,C 成等差数列,故B =60°, 由余弦定理,得b 2=c 2+a 2-2ac cos 60°,即b 2=c 2+a 2-ac ,故c 2+a 2=ac +b 2成立. 于是原等式成立.反证法设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列. [解] (1)设{a n }的前n 项和为S n , 当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1qn -1,①qS n =a 1q +a 1q 2+…+a 1q n ,②①-②得,(1-q )S n =a 1-a 1q n,∴S n =a 11-q n1-q ,∴S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n1-q,q ≠1.(2)证明:假设{a n +1}是等比数列,则对任意的k ∈N +, (a k +1+1)2=(a k +1)(a k +2+1),a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1. ∵a 1≠0,∴2q k =qk -1+qk +1.∵q ≠0,∴q 2-2q +1=0,∴q =1,这与已知矛盾.∴假设不成立,故{a n +1}不是等比数列. [规律方法] 用反证法证明问题的步骤:(1)反设:假定所要证的结论不成立,而设结论的反面成立;(否定结论)(2)归谬:将“反设”作为条件,由此出发经过正确的推理,导出矛盾,矛盾可以是与已知条件、定义、公理、定理及明显的事实矛盾或自相矛盾;(推导矛盾)(3)立论:因为推理正确,所以产生矛盾的原因在于“反设”的谬误.既然原命题结论的反面不成立,从而肯定了原命题成立.(命题成立)[变式训练3] 已知a ≥-1,求证三个方程:x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0中至少有一个方程有实根. 【导学号:62172206】[证明] 假设三个方程都没有实数根,则⎩⎪⎨⎪⎧4a 2-4-4a +3<0,a -12-4a 2<0,2a 2-4×-2a <0⇒⎩⎪⎨⎪⎧-32<a <12,a >13或a <-1,-2<a <0,∴-32<a <-1.这与已知a ≥-1矛盾,所以假设不成立,故原结论成立.[思想与方法]1.综合法与分析法的关系:分析法与综合法相辅相成,对较复杂的问题,常常先从结论进行分析,寻求结论与条件的关系,找到解题思路,再运用综合法证明;或两种方法交叉使用.2.反证法证题的实质是证明它的逆否命题成立.反证法证明的关键:①准确反设;②从否定的结论正确推理;③得出矛盾.[易错与防X]1.用分析法证明数学问题时,要注意书写格式的规X性,常常用“要证(欲证)…”“即要证…”“就要证…”等分析到一个明显成立的结论P,再说明所要证明的数学问题成立.2.利用反证法证明数学问题时,没有用假设命题推理而推出矛盾结果,其推理过程是错误的.课时分层训练(三十八)A组基础达标(建议用时:30分钟)一、填空题1.下列表述:①综合法是由因导果法;②综合法是顺推法;③分析法是执果索因法;④分析法是逆推法;⑤反证法是间接证法.其中正确的个数有____________.(填序号)①②③④⑤[由分析法、综合法、反证法的定义知①②③④⑤都正确.]2.用反证法证明命题:若整数系数的一元二次方程ax2+bx+c=0(a≠0)有有理实数根,则a,b,c中至少有一个是偶数.下列假设中正确的是____________.(填序号)①假设a,b,c至多有一个是偶数;②假设a,b,c至多有两个偶数;③假设a,b,c都是偶数;④假设a,b,c都不是偶数.④[“至少有一个”的否定为“一个都没有”,即假设a,b,c都不是偶数.]3.若a,b,c为实数,且a<b<0,则下列命题正确的是____________.【导学号:62172207】①ac2<bc2;②a2>ab>b2;③1a<1b;④ba>ab.②[a2-ab=a(a-b),∵a<b<0,∴a-b<0,∴a2-ab>0,∴a2>ab.又ab-b2=b(a-b)>0,∴ab>b2,即a2>ab>b2.]4.分析法又称执果索因法,若用分析法证明:“设a>b>c,且a+b+c=0,求证b2-ac <3a”索的因应是________.(填序号)①a-b>0; ②a-c>0;③(a-b)(a-c)>0; ④(a-b)(a-c)<0.③ [由题意知b 2-ac <3a ⇐b 2-ac <3a 2⇐(a +c )2-ac <3a 2⇐a 2+2ac +c 2-ac -3a 2<0 ⇐-2a 2+ac +c 2<0 ⇐2a 2-ac -c 2>0⇐(a -c )(2a +c )>0⇐(a -c )(a -b )>0.]5.用反证法证明“若x 2-1=0,则x =-1或x =1”时,应假设__________.x ≠-1且x ≠1 [“x =-1或x =1”的否定是“x ≠-1且x ≠1”.]6.设a >b >0,m =a -b ,n =a -b ,则m ,n 的大小关系是__________.m <n [法一(取特殊值法):取a =2,b =1,得m <n .法二(分析法):a -b <a -b ⇐b +a -b >a ⇐a <b +2b ·a -b +a -b ⇐2b ·a -b >0,显然成立.]7.下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +ab≥2成立的条件的个数是__________.3 [要使b a +a b ≥2,只要b a >0,且a b>0,即a ,b 不为0且同号即可,故有3个.] 8.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)____________0.(填“>”“<”或“=”) 【导学号:62172208】< [∵x 1+x 2>0,∴x 1>-x 2,又f (x )是奇函数,且在[0,+∞)上单调递减, 故f (x )在R 上单调递减, 故f (x 1)<f (-x 2)=-f (x 2), 所以f (x 1)+f (x 2)<0.]9.已知函数f (x )=⎝ ⎛⎭⎪⎫12x ,a ,b 是正实数,A =f ⎝ ⎛⎭⎪⎫a +b 2,B =f (ab ),C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A ,B ,C 的大小关系为____________.A ≤B ≤C [∵a +b 2≥ab ≥2ab a +b ,又f (x )=⎝ ⎛⎭⎪⎫12x在R 上是减函数.∴f ⎝⎛⎭⎪⎫a +b 2≤f (ab )≤f ⎝ ⎛⎭⎪⎫2ab a +b ,即A ≤B ≤C .] 10.凸函数的性质定理为:如果函数f (x )在区间D 上是凸函数,则对于区间D 内的任意x 1,x 2…,x n ,有f x 1+f x 2+…+f x n n ≤f ⎝ ⎛⎭⎪⎫x 1+x 2+…+x n n ,已知函数y =sinx 在区间(0,π)上是凸函数,则在△ABC 中,sin A +sin B +sin C 的最大值为____________.332[∵f (x )=sin x 在区间(0,π)上是凸函数, 且A 、B 、C 、∈(0,π), ∴f A +f B +f C3≤f ⎝⎛⎭⎪⎫A +B +C 3=f ⎝ ⎛⎭⎪⎫π3,即sin A +sin B +sin C ≤3sin π3=332,所以sin A +sin B +sin C 的最大值为332.]二、解答题11.已知a ≥b >0,求证:2a 3-b 3≥2ab 2-a 2b . [证明] 要证明2a 3-b 3≥2ab 2-a 2b 成立, 只需证:2a 3-b 3-2ab 2+a 2b ≥0, 即2a (a 2-b 2)+b (a 2-b 2)≥0, 即(a +b )(a -b )(2a +b )≥0.∵a ≥b >0,∴a -b ≥0,a +b >0,2a +b >0, 从而(a +b )(a -b )(2a +b )≥0成立, ∴2a 3-b 3≥2ab 2-a 2b .12.设数列{a n }是公比为q 的等比数列,S n 是它的前n 项和. (1)求证:数列{S n }不是等比数列;(2)数列{S n }是等差数列吗?为什么? 【导学号:62172209】 [解] (1)证明:假设数列{S n }是等比数列,则S 22=S 1S 3, 即a 21(1+q )2=a 1·a 1·(1+q +q 2), 因为a 1≠0,所以(1+q )2=1+q +q 2, 即q =0,这与公比q ≠0矛盾, 所以数列{S n }不是等比数列.(2)当q =1时,S n =na 1,故{S n }是等差数列; 当q ≠1时,{S n }不是等差数列,否则2S 2=S 1+S 3, 即2a 1(1+q )=a 1+a 1(1+q +q 2), 得q =0,这与公比q ≠0矛盾.综上,当q =1时,数列{S n }是等差数列; 当q ≠1时,数列{S n }不是等差数列.B 组 能力提升 (建议用时:15分钟)1.设x ,y ,z >0,则三个数y x +y z ,z x +z y ,x z +x y____________.(填序号) ①都大于2; ②至少有一个大于2;③至少有一个不小于2; ④至少有一个不大于2. ③ [因为x >0,y >0,z >0,所以⎝⎛⎭⎪⎫y x +y z +⎝⎛⎭⎪⎫z x +z y +⎝⎛⎭⎪⎫x z +x y =⎝⎛⎭⎪⎫y x +x y +⎝⎛⎭⎪⎫y z +z y +⎝⎛⎭⎪⎫x z +zx≥6, 当且仅当x =y =z 时等号成立,则三个数中至少有一个不小于2.]2.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则下列说法正确的是____________.(填序号)①△A 1B 1C 1和△A 2B 2C 2都是锐角三角形; ②△A 1B 1C 1和△A 2B 2C 2都是钝角三角形;③△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形; ④△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形;④ [由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形.由⎩⎪⎨⎪⎧sin A 2=cos A 1=sin ⎝ ⎛⎭⎪⎫π2-A 1,sin B 2=cos B 1=sin ⎝ ⎛⎭⎪⎫π2-B 1,sin C 2=cos C 1=sin ⎝ ⎛⎭⎪⎫π2-C 1得⎩⎪⎨⎪⎧A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1.那么,A 2+B 2+C 2=π2,这与三角形内角和为180°相矛盾.所以假设不成立,又显然△A 2B 2C 2不是直角三角形. 所以△A 2B 2C 2是钝角三角形.]3.已知数列{a n }满足a 1=12,且a n +1=a n3a n +1(n ∈N +).(1)证明数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,并求数列{a n }的通项公式;(2)设b n =a n a n +1(n ∈N +),数列{b n }的前n 项和记为T n ,证明:T n <16. [解] (1)由已知可得,当n ∈N +时,a n +1=a n 3a n +1. 两边取倒数得,1a n +1=3a n +1a n =1a n +3, 即1a n +1-1a n =3,所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为1a 1=2,公差为3的等差数列, 其通项公式为1a n =1a 1+(n -1)×3=2+(n -1)×3=3n -1. 所以数列{a n }的通项公式为a n =13n -1. (2)证明:由(1)知a n =13n -1, 故b n =a n a n +1=13n -1×13n +1-1=13n -13n +2 =13⎝ ⎛⎭⎪⎫13n -1-13n +2, 故T n =b 1+b 2+…+b n=13×⎝ ⎛⎭⎪⎫12-15+13×⎝ ⎛⎭⎪⎫15-18+…+13×⎝ ⎛⎭⎪⎫13n -1-13n +2 =13⎝ ⎛⎭⎪⎫12-13n +2=16-13×13n +2. 因为13n +2>0,所以T n <16. 4.若f (x )的定义域为[a ,b ],值域为[a ,b ](a <b ),则称函数f (x )是[a ,b ]上的“四维光军”函数.(1)设g (x )=12x 2-x +32是[1,b ]上的“四维光军”函数,求常数b 的值; (2)是否存在常数a ,b (a >-2),使函数h (x )=1x +2是区间[a ,b ]上的“四维光军”函数?若存在,求出a ,b 的值;若不存在,请说明理由.[解] (1)由题设得g (x )=12(x -1)2+1,其图象的对称轴为x =1,区间[1,b ]在对称轴的右边,所以函数在区间[1,b ]上单调递增.由“四维光军”函数的定义可知,g (1)=1,g (b )=b , 即12b 2-b +32=b ,解得b =1或b =3. 因为b >1,所以b =3.(2)假设函数h (x )=1x +2在区间[a ,b ](a >-2)上是“四维光军”函数, 因为h (x )=1x +2在区间(-2,+∞)上单调递减, 所以有⎩⎪⎨⎪⎧ h a =b ,h b =a ,即⎩⎪⎨⎪⎧ 1a +2=b ,1b +2=a ,解得a =b ,这与已知矛盾.故不存在.。

第七章推理与证明第2课时直接证明与间接证明(推荐阅读)

第七章推理与证明第2课时直接证明与间接证明(推荐阅读)

第七章推理与证明第2课时直接证明与间接证明(推荐阅读)第一篇:第七章推理与证明第2课时直接证明与间接证明第七章推理与证明第(理)95~96页)2课时直接证明与间接证明(对应学生用书(文)、1.已知向量m=(1,1)与向量n=(x,2-2x)垂直,则x=________.答案:2解析:m·n=x+(2-2x)=2-x.∵ m⊥n,∴ m·n=0,即x=2.2.用反证法证明命题“如果a>b,那么a>b”时,假设的内容应为______________.答案:a=b或a3333解析:根据反证法的步骤,假设是对原命题结论的否定,即a=b或a5-7解析:由分析法可得,要证6-22>5-7,只需证6+7>5+22,即证13+242>13+41010.因为42>40,所以6-5-7成立.4.定义集合运算:A·B={Z|Z=xy,x∈A,y∈B},设集合A={-1,0,1},B={sinα,cosα},则集合A·B的所有元素之和为________.答案:0π解析:依题意知α≠kπ+,k∈Z.4⎧23π2⎫①α=kπ+(k∈Z)时,B=⎨,42⎭⎩2⎧22⎫A·B=⎨0,⎬; 22⎭⎩π②α=2kπ或α=2kπ+∈Z)时,B={0,1},A·B={0,1,-1};2π③α=2kπ+π或α=2kπ-(k∈Z)时,B={0,-1},A·B={0,1,-1}; 2kπ3π④α≠α≠kπ+∈Z)时,B={sinα,cosα},A·B={0,sinα,cosα,-sinα,24-cosα}.综上可知A·B中的所有元素之和为0.115.(选修12P44练习题4改编)设a、b为两个正数,且a+b=1≥μ恒成立ab的μ的取值范围是________.答案:(-∞,4]11⎫11ba=2+≥2+2解析:∵ a+b=1,且a、b为两个正数,∴ +=(a+b)⎛⎝ab⎭ababab1=4.要使得≥μ恒成立,只要μ≤4.ab1.直接证明(1)定义:直接从原命题的条件逐步推得命题成立的证明方法.(2)一般形式本题条件已知定义已知公理已知定理ÞAÞBÞC…本题结论.(3)综合法① 定义:从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止.这种证明方法称为综合法.② 推证过程已知条件Þ…Þ…Þ结论(4)分析法① 定义:从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止.这种证明方法称为分析法.② 推证过程结论Ü…Ü…Ü已知条件2.间接证明(1)常用的间接证明方法有(2)反证法的基本步骤① 反设——假设命题的结论不成立,即假定原结论的反面为真.② 归谬——从反设和已知出发,经过一系列正确的逻辑推理,得出矛盾结果.③ 存真——由矛盾结果,断定反设不真,从而肯定原结论成立. [备课札记]题型1 直接证明(综合法和分析法)例1 数列{an}的前n项和记为Sn,已知a1=1,an+1=⎧S⎫(1)数列⎨n⎬是等比数列;⎩⎭n+2(n=1,2,3,…),证明: nn(2)Sn+1=4an.n+2(n=1,2,3,…),∴(n+2)Sn=n(Sn+1-Sn),nnSn+1S整理得nSn+1=2(n+1)Sn,∴,nn+1Sn+1n+1⎧S⎫即2,∴ 数列⎨n是等比数列.S⎩⎭nSn+1Sn-1Sn-1(2)由(1)知:=(n≥2),于是Sn+1=4·(n+4an(n≥2).又a2=3S1n+1n-1n-1=3,∴ S2=a1+a2=1+3=4a1,∴ 对一切n∈N*,都有Sn+1=4an.例2 设a、b、c均为大于1的正数,且ab=10,求证:logac +logbc≥4lgc.lgclgc证明:(分析法)由于a>1,b>1,c>1,故要证明logac+logbc≥4lgc,只要证明lgalgblga+lgb14lgc,即≥4,因为ab=10,故lga+lgb=1.≥4,由于a>1,b>1,故lgalgblga·lgblga+lgb⎫2⎛1211lga>0,lgb>0,所以04lgalgb⎝2⎭变式训练设首项为a1的正项数列{an}的前n项和为Sn,q为非零常数,已知对任意正整数n、m,Sn+m=Sm+qmSn总成立.求证:数列{an}是等比数列.证明:因为对任意正整数n、m,Sn+m=Sm+qmSn总成立,令n=m=1,得S2=S1+qS1,则a2=qa1.令m=1,得Sn+1=S1+qSn ①,从而Sn+2=S1+qSn+1 ②,②-①得an+2=qan+1(n≥1),综上得an+1=qan(n≥1),所以数列{an}是等比数列.题型2 间接证明(反证法)证明:(1)∵ an+1=Sn+1-Sn,an+1=例3 证明:2,3,5不能为同一等差数列中的三项.证明:假设2,3,5为同一等差数列的三项,则存在整数m、n 满足⎧3=2+md ①,⎨⎩=2+nd②,①×n-②×m3n5m=2(n-m),两边平方得3n2+5m2-15mn=2(n-m)2,左边为无理数,右边为有理数,且有理数≠不能为同一等差数列的三项.备选变式(教师专享)已知下列三个方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0,其中至少有一个方程有实根,求实数a的取值范围.解:若方程没有一个实数根,则16a-4(3-4a)<0,⎧⎪3⎨(a-1)2-4a2<0,解之得-2-1.⎪⎩4a2+8a<0,3⎫⎧a≥-1或a≤⎬.故三个方程至少有一个方程有实数根的a的取值范围是⎨a⎪2⎪⎩⎭1.用反证法证明命题“a·b(a、b∈Z)是偶数,那么a、b中至少有一个是偶数.”那么反设的内容是__________________________________.答案:假设a、b都是奇数(a、b都不是偶数)解析:用反证法证明命题时反设的内容是否定结论.2.已知a、b、c∈(0,+∞)且a<c,b<c+1,若以a、b、c为三边构造三角形,ab则c的取值范围是________.答案:(10,16)解析:要以a、b、c为三边构造三角形,需要满足任意两边之和大于第三边,任意两边19b9a=10之差小于第三边,而ac恒成立.而a+b=(a+b)⎛⎝abab1111101916,∴c<16.又>,=1,∴c>10,∴101f0(x)-,fn(x)=⎪fn-1(x,(n≥1,n≥N),3.设函数f0(x)=1-x2,f1(x)=⎪22⎪⎪n11则方程f1(x)=________个实数根,方程fn(x)=⎛⎝3有________个实数根.3+答案:4 2n1111151-x2=⎪x2-= x2=x2=有4个解.解析:f1(x)=⎪2⎪23⎪66∵ 可推出n=1,2,3…,根个数分别为22,23,24,1⎫n+⎛∴ 通过类比得出fn(x)=⎝3⎭有2n1个实数根.4.若实数x、y、m满足|x-m|>|y-m|,则称x比y远离m.(1)若x2-1比1远离0,求x的取值范围;(2)对任意两个不相等的正数a、b,证明:a3+b3比a2b+ab2远离ab.(1)解:x∈(-∞2)∪(2,+∞).(2)证明:对任意两个不相等的正数a、b,有a3+b3ab,a2b+ab2ab.因为|a3+b3-ab|-|a2b+ab2-2ab=(a+b)(a-b)2>0,所以|a3+b3-2abab|>|a2b+ab2-2abab|,即a3+b3比a2b+ab2远离2abab.1.已知a>b>c,且a+b+c=0,求证:b-证明:要证b -ac<3a,只需证b2-ac<3a2.∵ a+b+c=0,∴ 只需证b2+a(a+b)<3a2,只需证2a2-ab-b2>0,只需证(a-b)(2a+b)>0,只需证(a-b)(a-c)>0.∵ a>b>c,∴ a-b>0,a-c>0,∴(a-b)(a-c)>0显然成立.故原不等式成立.2.已知等差数列{an}的首项a1>0,公差d>0,前n项和为Sn,且m+n=2p(m、n、p∈N*),求证:Sn+Sm≥2Sp.证明:∵m2+n2≥2mn,∴2(m2+n2)≥(m+n)2.又m+n=2p,∴m2+n2≥2p2.3.如图,ABCD为直角梯形,∠BCD=∠CDA=90°,AD=2BC=2CD,P为平面ABCD外一点,且PB⊥BD.(1)求证:PA⊥BD;(2)若PC与CD不垂直,求证:PA≠PD.证明:(1)因为ABCD为直角梯形,AD2AB2BD,所以AD2=AB2+BD2,因此AB⊥BD.又PB⊥BD,AB∩PB=B,AB,PBÌ平面PAB,所以BD⊥平面PAB,又PAÌ平面PAB,所以PA⊥BD.(2)假设PA=PD,取AD中点N,连结PN、BN,则PN⊥AD,B N⊥AD,且PN∩BN=N,所以AD⊥平面PNB,得PB⊥AD.又PB⊥BD,且AD∩BD=D,得PB⊥平面ABCD,所以PB⊥CD.又因为BC⊥CD,且PB∩BC=B,所以CD⊥平面PBC,所以CD⊥PC,与已知条件PC与CD不垂直矛盾,所以PA≠PD.x-24.已知f(x)=ax(a>1).x+1(1)证明f(x)在(-1,+∞)上为增函数;(2)用反证法证明方程f(x)=0没有负数根.证明:(1)设-1<x1<x2,则x2-x1>0,ax2-x1>1,ax1>0,x1+1>0,x2+1>0,x-2x-23(x-x)从而f(x2)-f(x1)=ax2-ax1+-ax1(ax2-x1-1)+>0,所以x2+1x1+1(x2+1)(x1+1)f(x)在(-1,+∞)上为增函数.x0-2(2)设存在x0<0(x0≠-1)使f(x0)=0,则ax0=-x0+1x0-21由0<ax0<10<-<1,即<x0<2,此与x0<0矛盾,故x0不存在.2x0+11.分析法的特点是从未知看已知,逐步靠拢已知,综合法的特点是从已知看未知,逐步推出未知.分析法和综合法各有优缺点.分析法思考起来比较自然,容易寻找到解题的思路和方法,缺点是思路逆行,叙述较烦;综合法从条件推出结论,较简捷地解决问题,但不便于思考,实际证明时常常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来.2.反证法是从否定结论出发,经过逻辑推理,导出矛盾,说明结论的否定是错误的,从而肯定原结论是正确的证明方法.适宜用反证法证明的数学命题:①结论本身是以否定形式出现的一类命题;②关于唯一性、存在性的命题;③结论以“至多”“至少”等形式出现的命题;④结论的反面比原结论更具体更容易研究的命题.请使用课时训练(B)第2课时(见活页).[备课札记]第二篇:第2讲直接证明与间接证明第2讲直接证明与间接证明【2013年高考会这样考】1.在历年的高考中,证明方法是常考内容,考查的主要方式是对它们原理的理解和用法.难度多为中档题,也有高档题.2.从考查形式上看,主要以不等式、立体几何、解析几何、函数与方程、数列等知识为载体,考查综合法、分析法、反证法等方法.【复习指导】在备考中,对本部分的内容,要抓住关键,即分析法、综合法、反证法,要搞清三种方法的特点,把握三种方法在解决问题中的一般步骤,熟悉三种方法适用于解决的问题的类型,同时也要加强训练,达到熟能生巧,有效运用它们的目的.基础梳理1.直接证明(1)综合法①定义:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.②框图表示:P⇒Q1→Q1⇒Q2→Q2⇒Q3→…→Qn⇒Q (其中P表示已知条件、已有的定义、公理、定理等,Q表示要证的结论).(2)分析法①定义:从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.这种证明方法叫做分析法.②框图表示:Q⇐P1→P1⇐P2→P2⇐P3→…→得到一个明显成立的条件.2.间接证明一般地,由证明p⇒q转向证明:綈q⇒r⇒…⇒t.t与假设矛盾,或与某个真命题矛盾.从而判定綈q为假,推出q 为真的方法,叫做反证法.一个关系综合法与分析法的关系分析法与综合法相辅相成,对较复杂的问题,常常先从结论进行分析,寻求结论与条件、基础知识之间的关系,找到解决问题的思路,再运用综合法证明,或者在证明时将两种方法交叉使用.两个防范题推理而推出矛盾结果,其推理过程是错误的.证…”“就要证…”等分析到一个明显成立的结论P,再说明所要证明的数学问题成立.双基自测1.(人教A版教材习题改编)p=+,q=ma+nc正数),则p、q 的大小为().A.p≥qB.p≤qC.p>qD.不确定解析q=ab++cd≥ab+2abcd+cd nm+m、n、a、b、c、d均为mnmadabc=ab+cd=p,当且仅当= nm答案 B2.设a=lg 2+lg 5,b=ex(x<0),则a与b大小关系为().A.a>bC.a=b解析 a=lg 2+lg 5=1,b=ex,当x<0时,0<b<1.∴a>b.答案 A3.否定“自然数a,b,c中恰有一个偶数”时,正确的反设为().A.a,b,c都是奇数B.a,b,c都是偶数C.a,b,c中至少有两个偶数D.a,b,c中至少有两个偶数或都是奇数解析∵a,b,c恰有一个偶数,即a,b,c中只有一个偶数,其反面是有两个或两个以上偶数或没有一个偶数即全都是奇数,故只有D正确.答案 D4.(2012·广州调研)设a、b∈R,若a-|b|>0,则下列不等式中正确的是().A.b-a>0B.a3+b3<0C.a2-b2<0D.b+a>0解析∵a-|b|>0,∴|b|<a,∴a>0,∴-a<b<a,∴b+a>0.答案 D B.a<b D.a≤b5.在用反证法证明数学命题时,如果原命题的否定事项不止一个时,必须将结论的否定情况逐一驳倒,才能肯定原命题的正确.例如:在△ABC中,若AB=AC,P是△ABC内一点,∠APB>∠APC,求证:∠BAP<∠CAP,用反证法证明时应分:假设________和________两类.答案∠BAP=∠CAP ∠BAP>∠CAP考向一综合法的应用a2b2c2【例1】►设a,b,c>0,证明:a+b+c.bca[审题视点] 用综合法证明,可考虑运用基本不等式.证明∵a,b,c>0,根据均值不等式,a2b2c2有+b≥2a,c≥2b+a≥2c.bcaa2b2c2三式相加:+a+b+c≥2(a+b+c). bca当且仅当a=b=c时取等号.a2b2c2即+a+b+c.bca综合法是一种由因导果的证明方法,即由已知条件出发,推导出所要证明的等式或不等式成立.因此,综合法又叫做顺推证法或由因导果法.其逻辑依据是三段论式的演绎推理方法,这就要保证前提正确,推理合乎规律,才能保证结论的正确性.11【训练1】设a,b为互不相等的正数,且a+b=1,证明:>4.ab1111⎫ba·证明⎛(a+b)=2+2+2=4.ab⎝ab⎭ab11又a与b不相等.故>4.ab考向二分析法的应用⎛a+mb⎫2≤a+mb.【例2】►已知m>0,a,b∈R,求证: ⎪1+m⎝1+m⎭[审题视点] 先去分母,合并同类项,化成积式.证明∵m>0,∴1+m>0.所以要证原不等式成立,只需证明(a+mb)2≤(1+m)(a2+mb2),即证m(a2-2ab+b2)≥0,即证(a-b)2≥0,而(a-b)2≥0显然成立,22故原不等式得证.逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件,正确把握转化方向是使问题顺利获解的关键.【训练2】已知a,b,m都是正数,且a<b.a+ma求证:b+mba+ma证明要证明,由于a,b,m都是正数,b+mb只需证a(b+m)<b(a+m),只需证am<bm,由于m>0,所以,只需证a<b.已知a<b,所以原不等式成立.(说明:本题还可用作差比较法、综合法、反证法)考向三反证法的应用【例3】►已知函数f(x)=ax+x-2(a>1). x+1(1)证明:函数f(x)在(-1,+∞)上为增函数.(2)用反证法证明f(x)=0没有负根.[审题视点] 第(1)问用单调增函数的定义证明;第(2)问假设存在x0<0后,应推导出x0的范围与x0<0矛盾即可.证明(1)法一任取x1,x2∈(-1,+∞),不妨设x1<x2,则x2-x1>0,ax2-x1>1,且ax1>0.所以ax2-ax1=ax1(ax2-x1-1)>0.又因为x1+1>0,x2+1>0,所以(x2-2)(x1+1)-(x1-2)(x2+1)3(x2-x1)=0,(x2+1)(x1+1)(x2+1)(x1+1)于是f(x2)-f(x1)=ax2-ax1+x2-2x1-2>0,x2+1x1+1x2-2x1-2-=x2+1x1+1故函数f(x)在(-1,+∞)上为增函数.法二f′(x)=axln a+30,(x+1)∴f(x)在(-1,+∞)上为增函数.x0-2x0-2(2)假设存在x0<0(x0≠-1)满足f(x0)=0,则ax0=-又0<ax0<1,所以0<-x0+1x0+111,即<x0<2,与x0<0(x0≠-1)假设矛盾.故f(x0)=0没有负根.当一个命题的结论是以“至多”,“至少”、“唯一”或以否定形式出现时,宜用反证法来证,反证法的关键是在正确的推理下得出矛盾,矛盾可以是:①与已知条件矛盾;②与假设矛盾;③与定义、公理、定理矛盾;④与事实矛盾等方面,反证法常常是解决某些“疑难”问题的有力工具,是数学证明中的一件有力武器.【训练3】已知a,b为非零向量,且a,b不平行,求证:向量a+b与a-b不平行.证明假设向量a+b与a-b平行,即存在实数λ使a+b=λ(a-b)成立,则(1-λ)a+(1+λ)b=0,∵a,b不平行,⎧⎧⎪1-λ=0,⎪λ=1,∴⎨得⎨⎪⎪1+λ=0,λ=-1,⎩⎩所以方程组无解,故假设不成立,故原命题成立.规范解答24——怎样用反证法证明问题【问题研究】反证法是主要的间接证明方法,其基本特点是反设结论,导出矛盾,当问题从正面证明无法入手时,就可以考虑使用反证法进行证明.在高考中,对反证法的考查往往是在试题中某个重要的步骤进行.【解决方案】首先反设,且反设必须恰当,然后再推理、得出矛盾,最后肯定.【示例】►(本题满分12分)(2011·安徽)设直线l1:y=k1x+1,l2:y=k2x-1,其中实数k1,k2满足k1k2+2=0.(1)证明l1与l2相交;(2)证明l1与l2的交点在椭圆2x2+y2=1上.第(1)问采用反证法,第(2)问解l1与l2的交点坐标,代入椭圆方程验证.[解答示范] 证明(1)假设l1与l2不相交,则l1与l2平行或重合,有k1=k2,(2分)代入k1k2+2=0,得k21+2=0.(4分)这与k1为实数的事实相矛盾,从而k1≠k2,即l1与l2相交.(6分)⎧⎪y=k1x+1,(2)由方程组⎨⎪y=k2x-1,⎩⎧⎪解得交点P的坐标(x,y)为⎨k+ky=⎪⎩k-k.21212x=,k2-k1(9分)2⎫2⎛k2+k1⎫2⎛从而2x+y=2k-k+ ⎝21⎭⎝k2-k1⎪⎭222228+k22+k1+2k1k2k1+k2+4==1,k2+k1-2k1k2k1+k2+4此即表明交点P(x,y)在椭圆2x2+y2=1上.(12分)用反证法证明不等式要把握三点:(1)必须先否定结论,即肯定结论的反面;(2)必须从否定结论进行推理,即应把结论的反面作为条件,且必须依据这一条件进行推证;(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与已知事实矛盾等,但是推导出的矛盾必须是明显的.【试一试】已知数列{an}的前n项和为Sn,且满足an+Sn=2.(1)求数列{an}的通项公式;(2)求证数列{an}中不存在三项按原来顺序成等差数列.[尝试解答](1)当n=1时,a1+S1=2a1=2,则a1=1.1又an+Sn=2,所以an+1+Sn+1=2,两式相减得an+1=an,2 11所以{an}是首项为1,公比为an=-.22(2)反证法:假设存在三项按原来顺序成等差数列,记为ap+1,aq+1,ar+1(p<q<r,且p,q,r∈N*),111--则,所以2·2rq =2rp+1.① 222又因为p<q<r,所以r-q,r-p∈N*.所以①式左边是偶数,右边是奇数,等式不成立,所以假设不成立,原命题得证.第三篇:推理与证明-13.2 直接证明与间接证明(教案)响水二中高三数学(理)一轮复习教案第十三编推理与证明主备人张灵芝总第67期§13.2 直接证明与间接证明基础自测1.分析法是从要证的结论出发,寻求使它成立的条件.答案充分2.若a>b>0,则a+答案>3.要证明3+7<25,可选择的方法有以下几种,其中最合理的是(填序号).①反证法答案②4.用反证法证明命题:若整系数一元二次方程ax2+bx+c=0(a≠0)有有理数根,那么a、b、c中至少有一个是偶数时,下列假设中正确的是.①假设a、b、c都是偶数;②假设a、b、c都不是偶数③假设a、b、c至多有一个偶数;④假设a、b、c至多有两个偶数答案②5.设a、b、c∈(0,+∞),P=a+b-c,Q=b+c-a,R=c+a-b,则“PQR>0”是“P、Q、R同时大于零”的条件.;答案充要②分析法③综合法1bb+1a.(用“>”,“<”,“=”填空)例题精讲例1设a,b,c>0,证明:a2b+b2c+ca≥a+b+c.a证明∵a,b,c>0,根据基本不等式,有ab+b≥2a,abc+c≥2b,cca+a≥2c.三式相加:b+bc+ca+a+b+c≥2(a+b+c).即1ab+bc1a+a≥a+b+c.例2(14分)已知a>0,求证: a2+证明要证a2+ 1a-2≥a+1a-2.1a-2≥a+1a-2,只要证a2++2≥a++2.2分⎛∵a>0,故只要证⎝a+1a⎫1+2⎪≥(a++⎪a⎭2),26分427即a+1a+4a2+1a+4≥a+2+⎛⎝1a+22 a+⎝⎛1⎫⎪+2, a⎭8分从而只要证2a2+只要证4 a+1a≥2 a+1⎫⎪,a⎭10分⎛⎝1⎫112⎪≥2(a+2+),即a2+≥2,而该不等式显然成立,故原不等式成立.14分 2⎪22a⎭aa例3若x,y都是正实数,且x+y>2,求证:证明假设1+xy1+xy<2与1+xy1+yx<2中至少有一个成立.1+yx<2和1+yx<2都不成立,则有≥2和≥2同时成立,因为x>0且y>0,所以1+x≥2y,且1+y≥2x,两式相加,得2+x+y≥2x+2y,所以x+y≤2,这与已知条件x+y>2相矛盾,因此1+xy<2与1+yx<2中至少有一个成立.巩固练习1.已知a,b,c为互不相等的非负数.求证:a2+b2+c2>abc(a+b+c).证明∵a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac.又∵a,b,c为互不相等的非负数,∴上面三个式子中都不能取“=”,∴a+b+c>ab+bc+ac,∵ab+bc≥2ab2c,bc+ac≥2abc2,ab+ac≥2a2bc,又a,b,c 为互不相等的非负数,∴ab+bc+ac>abc(a+b+c),∴a2+b2+c2>abc(a++c).2.已知a>0,b>0,且a+b=1,试用分析法证明不等式 a+⎝251⎫⎛1⎫⎛证明要证 a+⎪b+⎪≥4a⎭⎝b⎭⎝⎛251⎫⎛1⎫⎪b+⎪≥4a⎭⎝b⎭.,只需证ab+a+bab+1≥54,只需证4(ab)+4(a+b)-25ab+4≥0,只需证4(ab)+8ab-25ab+4≥0, 只需证4(ab)2-17ab+4≥0,即证ab≥4或ab≤而由1=a+b≥2ab,∴ab≤14,只需证ab≤⎛⎝14,成立.显然成立,所以原不等式 a+251⎫⎛1⎫⎪b+⎪≥4a⎭⎝b⎭3.已知a、b、c∈(0,1),求证:(1-a)b,(1-b)c,(1-c)a不能同时大于.证明方法一假设三式同时大于,即(1-a)b>4,(1-b)c>14,(1-c)a>14,428∵a、b、c∈(0,1),∴三式同向相乘得(1-a)b(1-b)c(1-c)a>同理(1-b)b≤4⎛1-a+a⎫.又(1-a)a≤ ⎪642⎝⎭=14,(1-c)c≤14,∴(1-a)a(1-b)b(1-c)c≤164,这与假设矛盾,故原命题正确.142方法二假设三式同时大于,∵0<a<1,∴1-a>0,(1-a)+b≥(1-a)b>=,同理(1-b)+c>12,(1-c)+a>12,三式相加得>32,这是矛盾的,故假设错误,∴原命题正确.回顾总结知识方法思想课后作业一、填空题1.(2008·南通模拟)用反证法证明“如果a>b,那么a>b”假设内容应是.答案a=b或a<b2.已知a>b>0,且ab=1,若0<c<1,p=logc是.答案p<qa+b2⎛,q=logc⎝1a+⎫⎪,则p,q的大小关系⎪⎭3.设S是至少含有两个元素的集合.在S上定义了一个二元运算“*”(即对任意的a,b∈S,对于有序元素对(a,b),在S中有唯一确定的元素a*b与之对应).若对任意的a,b∈S,有a*(b*a)=b,则对任意的a,b∈S,下列恒成立的等式的序号是.①(a*b)*a=a ③b*(b*b)=b答案②③④②[a*(b*a)]*(a*b)=a ④(a*b)*[b*(a*b)]=b4.如果△A1B1C1的三个内角的余弦值分别等于△A2B2C2的三个内角的正弦值,则△A1B1C1是三角形,△A2B2C2是三角形.(用“锐角”、“钝角”或“直角”填空)429答案锐角钝角5.已知三棱锥S—ABC的三视图如图所示:在原三棱锥中给出下列命题:①BC⊥平面SAC;②平面SBC⊥平面SAB;③SB⊥AC.其中正确命题的序号是.答案①6.对于任意实数a,b定义运算a*b=(a+1)(b+1)-1,给出以下结论:①对于任意实数a,b,c,有a*(b+c)=(a*b)+(a*c);②对于任意实数a,b,c,有a*(b*c)=(a*b)*c;③对于任意实数a,有a*0=a,则以上结论正确的是.(写出你认为正确的结论的所有序号)答案②③二、解答题7.已知数列{an}中,Sn是它的前n项和,并且Sn+1=4an+2(n=1,2,…),a1=1.(1)设bn=an+1-2an(n=1,2,…),求证:数列{bn}是等比数列;(2)设cn=an2n(n=1,2,…),求证:数列{cn}是等差数列;(3)求数列{an}的通项公式及前n项和公式.(1)证明∵Sn+1=4an+2,∴Sn+2=4an+1+2,两式相减,得Sn+2-Sn+1=4an+1-4an(n=1,2,…), 即an+2=4an+1-4an,变形得an+2-2an+1=2(an+1-2an)∵bn=an+1-2an(n=1,2,…),∴bn+1=2bn.由此可知,数列{bn}是公比为2的等比数列.430(2)证明由S2=a1+a2=4a1+2,a1=1.得a2=5,b1=a2-2a1=3.故bn=3·2n.∵cn=an2n(n=1,2,…),∴cn+1-cn=an+12n+1an2n=an+1-2ann+1=bn2n+1.将bn=3·2n-1代入得cn+1-cn=(n=1,2,…),由此可知,数列{cn}是公差为a1234的等差数列,它的首项c1==12,故cn=n-(n=1,2,…).-2(3)解∵cn=n-=(3n-1).∴an=2n·cn=(3n-1)·2n(n=1,2,…)当n≥2时,Sn=4an-1+2=(3n-4)·2n-1+2.由于S1=a1=1也适合于此公式,所以{an}的前n项和公式为Sn=(3n-4)·2n-1+2.8.设a,b,c为任意三角形三边长,I=a+b+c,S=ab+bc+ca,试证:I2<4S.证明由I2=(a+b+c)2=a2+b2+c2+2(ab+bc+ca)=a2+b2+c2+2S,∵a,b,c为任意三角形三边长,∴a<b+c,b<c+a,c<a+b,∴a2<a(b+c),b2<b(c+a),c2<c(a+b)即(a2-ab-ac)+(b2-bc-ba)+(c2-ca-cb)<0∴a2+b2+c2-2(ab+bc+ca)<0∴a2+b2+c2<2S ∴a2+b2+c2+2S<4S.∴I2<4S.9.已知a,b,c为正实数,a+b+c=1.求证:(1)a2+b2+c2≥;(2)3a+2+ 3b+2+3c+2≤6.13证明(1)方法一a2+b2+c2-13=(3a2+3b2+3c2-1)=[3a2+3b2+3c2-(a+b+c)2]=(3a+3b+3c-a-b-c-2ab-2ac-2bc)=[(a-b)+(b-c)+(c-a)]≥0∴a+b+c≥.方法二∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc≤a2+b2+c2+a2+b2+a2+ c2+b2+c2 ∴3(a2+b2+c2)≥(a+b+c)2=1∴a2+b2+c2≥1313.方法三设a=∴a+b+c=(+α,b=+β,c=+γ.∵a+b+c=1,∴α+β+γ=0+α)+(+β)+(+γ)=+(α+β+γ)+α+β+γ222431=+α2+β2+γ2≥∴a2+b2+c2≥.=3a+32(2)∵3a+2=(3a+2)⨯1≤3a+2+1,同理3b+2≤3b+32,3c+2≤3c+32∴3a+2+3b+2+3c+2≤x-2x+13(a+b+c)+9=6∴原不等式成立.10.已知函数y=ax+(a>1).(1)证明:函数f(x)在(-1,+∞)上为增函数;(2)用反证法证明方程f(x)=0没有负数根.证明(1)任取x1,x2∈(-1,+∞),不妨设x1<x2,则x2-x1>0,由于a>1,∴ax2-x1>1且ax1>0, ∴a∴x2-ax1=ax1(ax2-x1-1)>0.又∵x1+1>0,x2+1>0,-x1-2x1+1x2-2x2+1=(x2-2)(x1+1)-(x1-2)(x2+1)(x1+1)(x2+1)x2-2x2+1=3(x2-x1)(x1+1)(x2+1)>0,于是f(x2)-f(x1)=ax2-ax1+x1-2x1+1>0,故函数f(x)在(-1,+∞)上为增函数.x0-2x0+1(2)方法一假设存在x0<0(x0≠-1)满足f(x0)=0,则ax0=-∵a>1,∴0<ax0<1,∴0<-x0-2x0+1.<1,即<x0<2,与假设x0<0相矛盾,故方程f(x)=0没有负数根.方法二假设存在x0<0(x0≠-1)满足f(x0)=0, ①若-1<x0<0,则②若x0<-1,则x0-2x0+1<-2,ax0<1,∴f(x0)<-1,与f(x0)=0矛盾.x0-2x0+1>0,ax0>0,∴f(x0)>0,与f(x0)=0矛盾,故方程f(x)=0没有负数根.432第四篇:6.6 直接证明与间接证明修改版高三导学案学科数学编号 6.6编写人陈佑清审核人使用时间班级:小组:姓名:小组评价:教师评价:课题:(直接证明与间接证明)【学习目标】1.了解直接证明的两种基本方法——分析法和综合法,了解分析法和综合法的思考过程、特点。

2018届高三高考数学复习课件:13-2直接证明与间接证明

2018届高三高考数学复习课件:13-2直接证明与间接证明

• (2)用反证法证明的一般步骤:①反设——
• 【思考辨析】
• 判断下列结论是否正确(请在括号中打
“√”或“×”) • (1)分析法是从要证明的结论出发,逐步寻 找使结论成立的充要条件.( )
• (2)用反证法证明结论“a>b”时,应假设
“ a < b ” .( )
(3)在解决问题时,常常用分析法寻找解题的思路与方法,再 用综合法展现解决问题的过程.( )
1 1 1 1 1 1 1 + „+ = 1-2 + 2-3 + „ + n-n+1 = 1 - = n(n+1) n+1
n . n+1
1 1 1 1 1 1 方法二 S +S +„+S =12+22+„+n2>1, 1 2 n n 又∵1> , n+1 1 1 1 n ∴S +S +„+S > . n + 1 1 2 n
1 1 即 -a =2,故数列a 是以 1 为首项,2 为公差的等差数 n an+1 n
列.
1 (2)由(1)知a =2n-1, n n(1+2n-1) 2 ∴Sn= = n . 2 1 1 1 1 1 1 1 1 证明 方法一 S +S +„+S =12+22+ „+n2> + 1×2 2×3 1 2 n
a+b b+c c+a >lg lg · · 2 2 2
abc,
a+b b+ c c+a ∴lg 2 +lg 2 +lg 2 >lg a+lg b+lg c.
题型二
分析法的应用
π π x, x∈0, , 若 x1, x2∈0, , 2 2
【例 2】已知函数 f(x)=tan
假设的内容应为( )
• A.a,b都能被5整除 • B.a,b不都能被5整除 • C.a,b至少有一个能被5整除

直接证明与间接证明_知识讲解

直接证明与间接证明_知识讲解

直接证明与间接证明【要点梳理】要点一:直接证明直接证明最常见的两种方法是综合法和分析法,它们是思维方向相反的两种不同的推理方法. 综合法定义:一般地,从命题的已知条件出发,利用定义、公理、定理及运算法则,经过演绎推理,一步步地接近要证明的结论,直到完成命题的证明,我们把这种思维方法叫做综合法.... 基本思路:执因索果综合法又叫“顺推证法”或“由因导果法”.它是由已知走向求证,即从数学题的已知条件出发,经过逐步的逻辑推理,最后导出待证结论或需求的问题.综合法这种由因导果的证明方法,其逻辑依据是三段论式的演绎推理方法.综合法的思维框图:用P 表示已知条件,Q 表示要证明的结论,123...i Q i n =(,,,,)为已知的定义、定理、公理等,则综合法可用框图表示为: 11223...n P Q Q Q Q Q Q Q ⇒→⇒→⇒→→⇒(已知) (逐步推导结论成立的必要条件) (结论)要点诠释(1)从“已知”看“可知”,逐步推出“未知”,由因导果,其逐步推理实际上是寻找它的必要条件;(2)用综合法证明不等式,证明步骤严谨,逐层递进,步步为营,条理清晰,形式简洁,宜于表达推理的思维轨迹;(3)因用综合法证明命题“若A 则D ”的思考过程可表示为:故要从A 推理到D ,由A 推演出的中间结论未必唯一,如B 、B 1、B 2等,可由B 、B 1、B 2进一步推演出的中间结论则可能更多,如C 、C 1、C 2、C 3、C 4等等.所以如何找到“切入点”和有效的推理途径是有效利用综合法证明问题的“瓶颈”.综合法证明不等式时常用的不等式(1)a 2+b 2≥2ab (当且仅当a =b 时取“=”号);(2)2a b +≥a ,b ∈R*,当且仅当a =b 时取“=”号); (3)a 2≥0,|a |≥0,(a -b )2≥0;(4)2b a a b +≥(a ,b 同号);2b a a b+≤-(a ,b 异号); (5)a ,b ∈R ,2221()2a b a b +≥+, (6)不等式的性质定理1 对称性:a >b ⇔b <a .定理2 传递性:a b a c b c >⎫⇒>⎬>⎭. 定理3 加法性质:a b a c b c c R >⎫⇒+>+⎬∈⎭. 推论 a b a c b d c d >⎫⇒+>+⎬>⎭. 定理4 乘法性质:0a b ac bc c >⎫⇒>⎬>⎭. 推论1 00a b ac bc c d >>⎫⇒>⎬>>⎭. 推论2 0*n n a b a b n N >>⎫⇒>⎬∈⎭.定理5 开方性质:0*a b n N >>⎫⇒>⎬∈⎭ 分析法定义一般地,从需要证明的命题出发,分析使这个命题成立的充分条件,逐步寻找使命题成立的充分条件,直至所寻求的充分条件显然成立(已知条件、定理、定义、公理等),或由已知证明成立,从而确定所证的命题成立的一种证明方法,叫做分析法.基本思路:执果索因分析法又叫“逆推证法”或“执果索因法”.它是从要证明的结论出发,分析使之成立的条件,即寻求使每一步成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.分析法这种执果索因的证明方法,其逻辑依据是三段论式的演绎推理方法.分析法的思维框图:用123i P i =L (,,,)表示已知条件和已有的定义、公理、公式、定理等,Q 所要证明的结论,则用分析法证明可用框图表示为: 11223...Q P P P P P ⇐→⇐→⇐→→得到一个明显成立的条件(结论) (逐步寻找使结论成立的充分条件) (已知)格式:要证……,只需证……,只需证……,因为……成立,所以原不等式得证.要点诠释:(1)分析法是综合法的逆过程,即从“未知”看“需知”,执果索因,逐步靠拢“已知”,其逐步推理,实际上是寻找它的充分条件.(2)由于分析法是逆推证明,故在利用分析法证明时应注意逻辑性与规范性,即分析法有独特的表述.综合法与分析法的横向联系(1) 综合法是把整个不等式看做一个整体,通过对欲证不等式的分析、观察,选择恰当不等式作为证题的出发点,其难点在于到底从哪个不等式出发合适,这就要求我们不仅要熟悉、正确运用作为定理性质的不等式,还要注意这些不等式进行恰当变形后的利用.分析法的优点是利于思考,因为它方向明确,思路自然,易于掌握,而综合法的优点是宜于表述,条理清晰,形式简洁.我们在证明不等式时,常用分析法寻找解题思路,即从结论出发,逐步缩小范围,进而确定我们所需要的“因”,再用综合法有条理地表述证题过程.分析法一般用于综合法难以实施的时候.(2)有不等式的证明,需要把综合法和分析法联合起来使用:根据条件的结构特点去转化结论,得到中间结论Q ;根据结论的结构特点去转化条件,得到中间结论P .若由P 可以推出Q 成立,就可以证明结论成立,这种边分析边综合的证明方法,称之为分析综合法,或称“两头挤法”.分析综合法充分表明分析与综合之间互为前提、互相渗透、互相转化的辩证统一关系,分析的终点是综合的起点,综合的终点又成为进一步分析的起点.命题“若P 则Q ”的推演过程可表示为:要点二:间接证明 间接证明不是从正面确定命题的真实性,而是证明它的反面为假,或改证它的等价命题为真,间接地达到目的,反证法是间接证明的一种基本方法.反证法定义:一般地,首先假设要证明的命题结论不正确,即结论的反面成立,然后利用公理,已知的定义、定理,命题的条件逐步分析,得到和命题的条件或公理、定理、定义及明显成立的事实等矛盾的结论,以此说明假设的结论不成立,从而证明了原命题成立,这样的证明方法叫做反证法.反证法的基本思路:假设——矛盾——肯定①分清命题的条件和结论.②做出与命题结论相矛盾的假设.③由假设出发,结合已知条件,应用演绎推理方法,推出矛盾的结果.④断定产生矛盾结果的原因,在于开始所做的假定不真,于是原结论成立,从而间接地证明原命题为真.反证法的格式:用反证法证明命题“若p则q”时,它的全部过程和逻辑根据可以表示如下:要点诠释:(1)反证法是间接证明的一种基本方法.它是先假设要证的命题不成立,即结论的反面成立,在已知条件和“假设”这个新条件下,通过逻辑推理,得出与定义、公理、定理、已知条件、临时假设等相矛盾的结论,从而判定结论的反面不能成立,即证明了命题的结论一定是正确的.(2) 反证法的优点:对原结论否定的假定的提出,相当于增加了一个已知条件.反证法的一般步骤:(1)反设:假设所要证明的结论不成立,假设结论的反面成立;(2)归谬:由“反设”出发,通过正确的推理,导出矛盾——与已知条件、已知的公理、定义、定理、反设及明显的事实矛盾或自相矛盾;(3)结论:因为推理正确,产生矛盾的原因在于“反设”的谬误,既然结论的反面不成立,从而肯定了结论成立.要点诠释:(1)结论的反面即结论的否定,要特别注意:“都是”的反面为“不都是”,即“至少有一个不是”,不是“都不是”;“都有”的反面为“不都有”,即“至少有一个没有”,不是“都没有”;“都不是”的反面是“部分是或全部是”,即“至少有一个是”,不是“都是”;“都没有”的反面为“部分有或全部有”,即“至少有一个有”,不是“都有”(2)归谬的主要类型:①与已知条件矛盾;②与假设矛盾(自相矛盾);③与定义、定理、公理、事实矛盾.宜用反证法证明的题型:①要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;比如“存在性问题、唯一性问题”等;②如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形.比如带有“至少有一个”或“至多有一个”等字样的数学问题.要点诠释:反证法体现出正难则反的思维策略(补集的思想)和以退为进的思维策略,故在解决某些正面思考难度较大和探索型命题时,有独特的效果.【典型例题】【高清课堂:例题1】类型一:综合法证明例1.求证:a4+b4+c4≥abc(a+b+c).【证明】∵a4+b4≥2a2b2,b4+c4≥2b2c2,c4+a4≥2c2a2,∴(a4+b4)+(b4+c4)+(c4+a4)≥2(a2b2+b2c2+c2a2),又∵a2b2+b2c2≥2ab2c,b2c2+c2a2≥2abc2,a2b2+c2a2≥2a2bc,∴2(a2b2+b2c2+c2a2)≥2abc(a+b+c).∴2(a4+b4+c4)≥2abc(a+b+c),即a4+b4+c4≥abc(a+b+c).【总结升华】利用综合法时,从已知出发,进行运算和推理得到要证明的结论,并且在用均值定理证明不等式时,一要注意均值定理运用的条件,二要运用定理对式子作适当的变形,把式分成若干部分,对每部分运用均值定理后,再把它们相加或相减.举一反三:【变式1】已知a,b是正数,且a+b=1,求证:114a b+≥.【证明】证法一:∵a,b∈R,且a+b=1,∴2a b ab +≥,∴12ab ≤, ∴1114a b a b ab ab++==≥. 证法二:∵a ,b ∈R +,∴20a b ab +=>,11120a b ab +≥>, ∴11()4a b a b ⎛⎫++≥ ⎪⎝⎭. 又a +b =1,∴114a b+≥. 证法三:1111224a b a b b a a b a b a b a b b a+++=+=+++≥+⋅=. 当且仅当a =b 时,取“=”号.【变式2】求证:5321232log 19log 19log 19++<. 【证明】待证不等式的左端是3个数和的形式,右端是一常数的形式,而左端3个分母的真数相同,由此可联想到公式,1log log a b b a =转化成能直接利用对数的运算性质进行化简的形式. ∵ 1log log a b b a =, ∴左边∵, ∴5321232log 19log 19log 19++<. 例2.已知数列{a n }中,S n 是它的前n 项和,并且S n +1=4a n +2(n =1,2,…),a 1=1.(1)设b n =a n +1-2a n (n =1,2,…),求证:数列{b n }是等比数列.(2)设2n n na c =(n =1,2,…), 求证:数列{c n }是等差数列. 【证明】(1)∵S n +1=4a n +2,∴S n +2=4a n +1+2,两式相减,得S n +2―S n +1=4a n +1―4a n (n =1,2,3,…),即a n +2=4a n +1―4a n ,变形得a n +2―2a n +1=2(a n +1―2a n ).∵b n =a n +1-2a n (n =1,2,…),∴b n +1=2b n (n =1,2,…).由此可知,数列{b n }是公比为2的等比数列.由S 2=a 1+a 2=4a 1+2,a 1=1,得a 2=5,b 1=a 2―2a 1=3.故b n =3·2n ―1.(2)∵2n n n a c =(n =1,2,…) ∴11111122222n n n n n n n n n n n a a a a b c c ++++++--=-== 将b n =3·2n -1代入,得134n n c c +-=(n =1,2,…). 由此可知,数列{c n }是公差34d =的等差数列,它的首项11122a c ==,故3144n c n =-. 【总结升华】本题从已知条件入手,分析数列间的相互关系,合理实现了数列间的转化,从而使问题获解,综合法是直接证明中最常用的证明方法.举一反三:【变式1】已知数列{}n a 满足15a =, 25a =,116(2)n n n a a a n +-=+≥.求证:{}12n n a a ++是等比数列;【证明】 由a n +1=a n +6a n -1,a n +1+2a n =3(a n +2a n -1) (n ≥2),∵a 1=5,a 2=5∴a 2+2a 1=15,故数列{a n +1+2a n }是以15为首项,3为公比的等比数列.【变式2】在△ABC 中,若a 2=b (b +c ),求证:A =2B .【证明】∵a 2=b (b +c ),222222()cos 22b c a b c b bc A bc bc+-+-+==, 又222222222()22cos 2cos 12121222()2a c b b c b c b bc c b B B ac a b b c b ⎛⎫+-++---⎛⎫=-=-=-== ⎪ ⎪+⎝⎭⎝⎭,∴cos A =cos2B .又A 、B 是三角形的内角,故A =2B .例3.如图所示,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F .求证:(1)P A ∥平面EDB ;(2)PB ⊥平面EFD .【证明】(1)连结AC 交BD 于O ,连结E O .∵底面ABCD 是正方形,∴点O 是AC 的中点,在△P AC 中,E O 是中位线,∴P A ∥E O .而E O ⊂平面EDB 且P A ⊄平面EDB ,∴P A ∥平面EDB .(2)PD ⊥底面ABCD 且DC ⊂底面ABCD ,∴PD ⊥DC .由PD =DC ,可知△PDC 是等腰直角三角形,而DE 是斜边PC 上的中线,∴DE ⊥PC .①同样由PD ⊥底面ABCD ,得PD ⊥BC .∵底面ABCD是正方形,∴DC⊥BC,∴BC⊥平面PDC.而DE⊂平面PDC,∴BC⊥DE.②由①和②推得DE⊥平面PBC.而PB⊂平面PBC,∴DE⊥PB.又EF⊥PB且DE∩EF=E,∴PB⊥平面EFD.【总结升华】利用综合法证明立体几何中线线、线面和面面关系的关键在于熟练地运用判定定理和性质定理.举一反三:【变式1】如图,设在四面体PABC中,90ABC∠=o,PA PB PC==,D是AC的中点.求证:PD垂直于ABC∆所在的平面.【证明】连PD、BD因为BD是Rt ABC∆斜边上的中线,所以DA DC DB==又因为PA PB PC==,而PD是PAD∆、PBD∆、PCD∆的公共边,所以PAD∆≅PBD PCD∆≅∆于是PDA PDB PDC∠=∠=∠,而90PDA PDC∠=∠=o,因此90PDB∠=o∴PD AC⊥,PD BD⊥由此可知PD垂直于ABC∆所在的平面.【变式2】如图所示,在四棱锥S—ABCD中,底面ABCD是正方形,SA平面ABCD,且SA=AB,点E为AB的中点,点F为SC的中点.求证:(1)EF⊥CD;(2)平面SCD⊥平面SCE.【证明】(1)∵SA⊥平面ABCD,F为SC的中点,∴AF为Rt△SAC斜边SC上的中线.∴12AF SC=.又∵四边形ABCD是正方形,∴CB⊥AB.而由SA ⊥平面ABCD ,得CB ⊥SA ,∴CB ⊥平面SAB .又∵SB ⊂平面SAB ,∴CB ⊥SB .∴BF 为Rt △SBC 的斜边SC 上的中线,∴12BF SC =. ∴AF =BF ,∴△AFB 为等腰三角形.又E 为AB 的中点,∴EF ⊥AB .又CD ∥AB ,∴EF ⊥CD .(2)由已知易得Rt △SAE ≌Rt △CBE ,SE =EC ,即△SEC 是等腰三角形,∴EF ⊥SC .又∵EF ⊥CD 且SC ∩CD =C ,∴EF ⊥平面SCD .又EF ⊂平面SCE ,∴平面SCD ⊥平面SCE .类型二:分析法证明例4. 设0a >、0b >,且a b ≠,用分析法证明:3322a b a b ab ++>.【证明】要证3322a b a b ab +>+成立,只需证33220a b a b ab +--> 成立,即证22()()0a a b b b a -+->成立,即证22()()0a b a b -->成立,也就是要证2()()0a b a b +->成立,因为0a >、0b >,且a b ≠,所以2()()0a b a b +->显然成立,由此原不等式得证.【总结升华】1.在证明过程中,若使用综合法出现困难时,应及时调整思路,分析一下要证明结论成立需要怎样的充分条件是明智之举.从结论出发,结合已知条件,逐步反推,寻找使当前命题成立的充分条件的方法.2. 用分析法证明问题时,一定要恰当地用好“要证”“只需证”“即证”“也即证”等词语.举一反三:【变式1】设a ,b ,c ,d ∈R ,求证:ac bc +≤【证明】当ac +bc ≤0时,不等式显然成立.当ac +b d >0时,要证明ac bd +只需证明(ac +b d)2≤(a 2+b 2)(c 2+d 2),即证明a 2c 2+2abc d+b 2d 2≤a 2c 2+a 2d 2+b 2c 2+b 2d 2,只需证明2abc d≤a 2d 2+b 2c 2,只需证明(a d -bc )2≥0. 而上式成立,∴2222ac bd a b c d +≤+⋅+成立. 【变式2】求证:123(3)a a a a a --<---≥【证明】分析法: 要证123(3)a a a a a --<---≥成立, 只需证明321(3)a a a a a +-<-+-≥, 两边平方得232(3)232(2)(1)a a a a a a -+-<-+--(3)a ≥, 所以只需证明(3)(2)(1)a a a a -<--(3)a ≥, 两边平方得22332a a a a -<-+,即02<,∵02<恒成立,∴原不等式得证.【变式3】用分析法证明:若a >0,则212122-+≥-+a a a a . 【证明】要证212122-+≥-+a a a a , 只需证212122++≥++aa a a . ∵a >0,∴两边均大于零,因此只需证2222)21()21(++≥++a a a a 只需证)1(222211441222222a a a a a a a a +++++≥++++, 只需证)1(22122a a a a +≥+,只需证)21(2112222++≥+a a a a , 即证2122≥+a a ,它显然成立.∴原不等式成立.例5. 若a ,b ,c 是不全相等的正数,求证:lg2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c . 【证明】要证lg 2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c , 只需证lg 2b a +·2c b +·2a c +>lg (a ·b ·c ), 只需证2b a +·2c b +·2a c +>abc . 但是,2b a +0>≥ab ,2c b +0>≥bc ,2a c +0>≥ac .且上述三式中的等号不全成立,所以,2b a +·2c b +·2a c +>abc . 因此lg 2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c . 【总结升华】这个证明中的前半部分用的是分析法,后半部分用的是综合法.在实际证题过程中,分析法与综合法是统一运用的,把分析法和综合法孤立起来运用是脱离实际的.没有分析就没有综合;没有综合也没有分析.问题仅在于,在构建命题的证明路径时,有时分析法居主导地位,综合法伴随着它;有时却刚刚相反,是综合法导主导地位,而分析法伴随着它.举一反三:【变式1】设a 、b 是两个正实数,且a ≠b ,求证:3a +3b >22ab b a +【证明】证明一:(分析法)要证3a +3b >22ab b a +成立,只需证(a +b )( 2a -ab +2b )>ab (a +b )成立,即需证2a -ab +2b >ab 成立.(∵a +b >0)只需证2a -2ab +2b >0成立,即需证()2b a ->0成立. 而由已知条件可知,a ≠b ,有a -b ≠0,所以()2b a ->0显然成立,由此命题得证. 证明二:(综合法)∵a ≠b ,∴a -b ≠0,∴()2b a ->0,即2a -2ab +2b >0,亦即2a -ab +2b >ab . 由题设条件知,a +b >0,∴(a +b )( 2a -ab +2b )>(a +b )ab即3a +3b >22ab b a +,由此命题得证.【变式2】ABC ∆的三个内角,,A B C 成等差数列,求证:113a b b c a b c +=++++ 【证明】要证原式成立,只要证3a b c a b c a b b c +++++=++, 即只要证1c a a b b c+=++ 即只要证2221bc c a ab ab b ac bc+++=+++; 而2A C B +=,所以060B =,由余弦定理得222b a c ac =+-所以222222222221bc c a ab bc c a ab bc c a ab ab b ac bc ab a c ac ac bc ab a c bc+++++++++===+++++-+++++. 类型三:反证法证明例6.【证明】=只需证22≠,即证10≠5≠,即证2125≠,而该式显然成立,≠不成等差数列.=2125≠∵,5≠,10≠∴,即3720+≠,即2≠,∴ ≠∴【总结升华】结论中含有“不是”“不可能”“不存在”等词语的命题,此类问题的反面比较具体,适宜应用反证法. 举一反三:【变式1】求证:函数()f x =不是周期函数.【证明】假设()f x =则存在常数T (T≠0)使得对任意x ∈R ,都有成立.上式中含x=0,则有cos01=,2m =π(m ∈z 且m≠0). ①再令x=T ,则有1=,2n =π(n ∈Z 且n ≠0). ②②÷①得:32n m =, 这里,m ,n 为非零整数,故n m为有理数,而32无理数,二者不可能相等. 因此3()cos f x x =不是周期函数.【变式2】设{a n }是公比为q 的等比数列,S n 为它的前n 项和.(1)求证:数列{S n }不是等比数列.(2)数列{S n }是等差数列吗?为什么?【解析】(1)证明:假设{S n }是等比数列,则2213S S S =, 即222111(1)(1)a q a a q q +=⋅++.∵a 1≠0,∴(1+q )2=1+q +q 2.即q =0,与等比数列中公比q ≠0矛盾.故{S n }不是等比数列.(2)解:①当q =1时,S n =na 1,n ∈N*,数列{S n }是等差数列.②当q ≠1时,{S n }不是等差数列,下面用反证法证明:假设数列{S n }是等差数列,则S 1,S 2,S 3成等差数列,即2S 2=S 1+S 3,∴2a 1(1+q )=a 1+a 1(1+q +q 2).∵a 1≠0,∴2+2q =1+1+q +q 2,得q =q 2.∵q ≠1,∴q =0,这与等比数列中公比q ≠0矛盾.从而当q ≠1时,{S n }不是等差数列.综上①②可知,当q =1时,数列{S n }是等差数列;当q ≠1时,数列{S n }不是等差数列.【变式3】已知数列{a n }的前n 项的和S n 满足S n =2a n -3n (n ∈N *).(1)求证{a n +3}为等比数列,并求{a n }的通项公式;(2)数列{a n }是否存在三项使它们按原顺序可以构成等差数列?若存在,求出一组适合条件的项;若不存在,请说明理由.【解析】 (1) 证明:∵S n =2a n -3n (n ∈N *),∴a 1=S 1=2a 1-3,∴a 1=3.又由112323(1)n n n n S a n S a n ++=-⎧⎨=-+⎩得a n +1=S n +1-S n =2a n +1-2a n -3, ∴a n +1+3=2(a n +3),∴{a n +3}是首项为a 1+3=6,公比为2的等比数列.∴a n+3=6×2n-1,即a n=3(2n-1).(2)解:假设数列{a n}中存在三项a r,a s,a t (r<s<t),它们可以构成等差数列.由(1)知a r<a s<a t,则2a s=a r+a t,∴6(2s-1)=3(2r-1)+3(2t-1),即2s+1=2r+2t,∴2s+1-r=1+2t-r(*)∵r、s、t均为正整数且r<s<t,∴(*)左边为偶数而右边为奇数,∴假设不成立,即数列{a n}不存在三项使它们按原顺序可以构成等差数列.例7. 已知a,b,c∈(0,1),求证:(1―a)b,(1―b)c,(1-c)a中至少有一个小于或等于14.【证明】证法一:假设三式同时大于14,即1(1)4a b->,1(1)4b c->,1(1)4c a->,三式相乘,得1 (1)(1)(1)64a ab bc c-⋅-⋅->,又211 (1)24a aa a-+⎛⎫-≤=⎪⎝⎭,同理1(1)4b b-≤,1(1)4c c-≤,以上三式相乘,得1 (1)(1)(1)64a ab bc c-⋅-⋅-≤,这与1(1)(1)(1)64a ab bc c-⋅-⋅->矛盾,故结论得证.证法二:假设三式同时大于14.∵0<a<1,∴1-a>0.∴(1)11(1)242a ba b-+≥->=.同理(1)122b c-+≥,(1)122c a-+≥.三式相加,得33 22 >,∴原命题成立.【总结升华】从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形的问题多用反证法.比如这类带有“至少有一个”等字样的数学问题.举一反三:【变式】已知,,,0,1a b c R a b c abc ∈++==,求证:,,a b c 中至少有一个大于32. 【证明】假设,,a b c 都小于或等于32, 因为 1abc =,所以,,a b c 三者同为正或一正两负,又因为0a b c ++=,所以,,a b c 三者中有两负一正,不妨设0,0,0a b c ><<,则1,b c a bc a +=-=由均值不等式得()2b c bc -+≥,即12a a ≥, 解得33273482a ≥≥=,与假设矛盾,所以 ,,abc 中至少有一个大于32. 例8.已知:直线a 以及A ∉a .求证:经过直线a 和点A 有且只有一个平面.【证明】(1)“存在性”,在直线a 上任取两点B 、C ,如图.∵A ∉a ,B ∈a ,C ∈a ,∴A 、B 、C 三点不在同一直线上.∴过A 、B 、C 三点有且只有一个平面α∵B ∈α,C ∈α,∴a ⊂α,即过直线a 和点A 有一个平面α.(2)“唯一性”,假设过直线a 和点A 还有一个平面β.∵A ∉a ,B ∈a ,C ∈a ,∴B ∈β,C ∈β.∴过不共线的三点A 、B 、C 有两个平面α、β,这与公理矛盾.∴假设不成立,即过直线a 和点A 不可能还有另一个平面β,而只能有一个平面α.【总结升华】 这里证明“唯一性”时用了反证法.对于“唯一性”问题往往使用反证法进行证明,要注意与“同一法”的区别与联系.举一反三:【变式】求证:两条相交直线有且只有一个交点.【证明】假设结论不成立,即有两种可能:(1)若直线a 、b 无交点,那么a ∥b ,与已知矛盾;(2)若直线a 、b 不止有一个交点,则至少有两个交点A 和B ,这样同时经过点A 、B 就有两条直线,这与“经过两点有且只有一条直线”相矛盾.综上所述,两条相交直线有且只有一个交点.。

高考数学(江苏版)一轮配套课件:§11.2 直接证明与间接证明

高考数学(江苏版)一轮配套课件:§11.2 直接证明与间接证明

an
a n1 2
≤1,n∈N*.
(1)证明:|an|≥2n-1(|a1|-2),n∈N*;
(2)若|an|≤
3 2
n
,n∈N*,证明:|an|≤2,n∈N*.
证明
(1)由
an
a n1 2
≤1得|an|-
1 2
|an+1|≤1,故
|
an 2n
|
-
|
an 2n
1 1
|≤ 1
2n
,n∈N*,
所以 |
过程的每一步都是可以逆推的,它的常见书面表达是“② 要证……, 只需…… ”或“⇐”. 3.数学中的命题都有题设(条件)和结论两部分.当我们证明一个命题时, 不直接从题设出发去推证结论成立,而是从否定这个命题的结论出发, 通过正确、严密的逻辑推理,由此引出一个新的结论,而这个新结论与 题设矛盾(或与已知的定义、公理或定理相矛盾,或者自相矛盾),得出原 结论的反面不正确,从而肯定原结论是正确的,这种间接证明的方法叫 做③ 反证法 . 4.应用反证法证明数学命题,一般有下面几个步骤: 第一步:分清命题“p⇒q”的条件和结论; 第二步:做出与命题结论q相矛盾的假设¬q;
高考数学
§11.2 直接证明与间接证明
知识清单
1.综合法是“由因导果”,即从已知条件出发,推导出所要证明的结论. 因此,综合法又叫做顺推法或由因导果法. 综合法格式——从已知条件出发,顺着推证,由“已知”得“推知”,由 “推知”得“未知”,逐步推出求证的结论,这就是综合法的格式,它的 常见书面表达是“① ∵……,∴…… ”或“⇒”. 2.分析法是“执果索因”,一步步寻求上一步成立的充分条件,因此分析 法又叫做逆证法或执果索因法. 分析法格式——与综合法正好相反,它是从要求证的结论出发,倒着分 析,由未知想需知,由需知逐渐地靠近已知(已知条件,已经学过的定义、 定理、公理、公式、法则等等).这种证明方法的关键在于需保证分析

江苏专版2018高考数学大一轮复习第七章数列推理与证明38数列的概念课件文

江苏专版2018高考数学大一轮复习第七章数列推理与证明38数列的概念课件文

【解析】 由图可知前 4 个图中着色三角形的个数分别为 1,3,32,33,„,猜想第n个图中着色三角形的个数为3n-1,所以这 个数列的通项公式为an=3n-1.
5. (必修5P34练习9改编)若对于任意正整数n都有f(n)=n2- -11 . 8n+5,则f(n)的最小值为________
知识梳理
可得该数列的一个通项公式为
an=
2 n-1 . 2
1 4 9 16 (6) - , ,- , ,„. 2×4 5×7 8×10 11×13 1 4 9 【解答】 首先考查数列各项的绝对值 , , , 2×4 5×7 8×10
16 ,„,分子依次是 12,22,32,42,„,而分母中后一个因 11×13 数比前一个因数大 2,而前一个因数依次为 2,5,8,11,„,构 成一个等差数列,其第 n 项为 3n-1,故可得通项公式为 an
1 1 1 1 1 1 23 - ,所以前 5 项和为-2+ +-4+ +-6=- . 6 60 3 5

4. (必修5P34习题7改编)下列四个图形中,着色三角形的个
数依次构成一个数列的前 4 项,则这个数列的一个通项公式为 n-1 a = 3 ____________ . n
【 解答 】 分母 依次 为 1,2,3,4,5,6,7 , „, 分子 依次 为 1 0 1 0 1 0 1 1,0,1,0,1,0,1,„,把数列改写成 , , , , , , ,„, 1 2 3 4 5 6 7 1+-1n-1 因此数列的一个通项公式为 an= . 2n
1 9 25 (2) ,2, ,8, ,„; 2 2 2
【解析】 令 32 = n2 + 4n ,解得 n = 4 ,所以 32 是数列 {n2 + 4n}中的第4项.

2018年高考数学(理)(江苏专用)总复习教师用书第六章数列、推理与证明第6讲直接证明与间接证明Word版含

2018年高考数学(理)(江苏专用)总复习教师用书第六章数列、推理与证明第6讲直接证明与间接证明Word版含

第6讲直接证明与间接证明考试要求 1.分析法和综合法的思考过程和特点,A级要求;2.反证法的思考过程和特点,A级要求.知识梳理1.直接证明间接证明是不同于直接证明的又一类证明方法,反证法是一种常用的间接证明方法.(1)反证法的定义:假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立的证明方法.(2)用反证法证明的一般步骤:①反设——假设命题的结论不成立;②归谬——根据假设进行推理,直到推出矛盾为止;③结论——断言假设不成立,从而肯定原命题的结论成立.诊断自测1.判断正误(在括号内打“√”或“×”)(1)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( )(2)用反证法证明结论“a>b”时,应假设“a<b”.( )(3)反证法是指将结论和条件同时否定,推出矛盾.( )(4)在解决问题时,常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( )解析(1)分析法是从要证明的结论出发,逐步寻找使结论成立的充分条件.(2)应假设“a≤b”.(3)反证法只否定结论.答案 (1)× (2)× (3)× (4)√2.要证a 2+b 2-1-a 2b 2≤0,只要证明________. 解析 a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0. 答案 (a 2-1)(b 2-1)≥03.若a ,b ,c 为实数,且a <b <0,给出下列不等关系: ①ac 2<bc 2;②a 2>ab >b 2;③1a <1b ;④b a >a b.其中正确的是________(填序号).解析 a 2-ab =a (a -b ),∵a <b <0,∴a -b <0,∴a 2-ab >0,∴a 2>ab . 又ab -b 2=b (a -b )>0,∴ab >b 2, 综上可得a 2>ab >b 2. 答案 ②4.用反证法证明命题:“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是________.解析 因为“方程x 3+ax +b =0至少有一个实根”等价于“方程x 3+ax +b =0的实根的个数大于或等于1”,所以要做的假设是“方程x 3+ax +b =0没有实根”. 答案 方程x 3+ax +b =0没有实根5.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,则△ABC 的形状为________.解析 由题意2B =A +C ,又A +B +C =π,∴B =π3,又b 2=ac ,由余弦定理得b 2=a 2+c2-2ac cos B =a 2+c 2-ac ,∴a 2+c 2-2ac =0,即(a -c )2=0,∴a =c , ∴A =C ,∴A =B =C =π3,∴△ABC 为等边三角形.答案 等边三角形考点一 综合法的应用 【例1】 (2017·东北三省三校模拟)已知a ,b ,c >0,a +b +c =1.求证: (1)a +b +c ≤3; (2)13a +1+13b +1+13c +1≥32. 证明 (1)∵(a +b +c )2=(a +b +c )+2ab +2bc +2ca ≤(a +b +c )+(a +b )+(b +c )+(c +a )=3, ∴a +b +c ≤ 3.(2)∵a >0,∴3a +1>0, ∴43a +1+(3a +1)≥243a +13a +1=4,∴43a +1≥3-3a ,同理得43b +1≥3-3b ,43c +1≥3-3c , 以上三式相加得 4⎝⎛⎭⎪⎫13a +1+13b +1+13c +1≥9-3(a +b +c )=6,∴13a +1+13b +1+13c +1≥32. 规律方法 用综合法证题是从已知条件出发,逐步推向结论,综合法的适用范围: (1)定义明确的问题,如证明函数的单调性、奇偶性、求证无条件的等式或不等式; (2)已知条件明确,并且容易通过分析和应用条件逐步逼近结论的题型.在使用综合法证明时,易出现的错误是因果关系不明确,逻辑表达混乱.【训练1】 (2017·南京模拟)如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是菱形,点E 是A 1C 1的中点.求证: (1)BE ⊥AC ; (2)BE ∥平面ACD 1.证明 (1)如图,连接BD 交AC 于点F ,连接B 1D 1交A 1C 1于点E . 因为四边形ABCD 是菱形,所以BD ⊥AC .因为ABCD -A 1B 1C 1D 1为直四棱柱,所以BB 1⊥平面ABCD , 又AC ⊂平面ABCD ,所以BB 1⊥AC .又BD ∩BB 1=B ,且BD ⊂平面B 1BDD 1,BB 1⊂平面B 1BDD 1,所以AC ⊥平面B 1BDD 1. 而BE ⊂平面B 1BDD 1,所以BE ⊥AC .(2)如图,连接D 1F ,因为四棱柱ABCD -A 1B 1C 1D 1为直四棱柱, 所以四边形B 1BDD 1为矩形. 又E ,F 分别是B 1D 1,BD 的中点, 所以BF =D 1E ,且BF ∥D 1E . 所以四边形BED 1F 是平行四边形. 所以BE ∥D 1F .又D 1F ⊂平面ACD 1,BE ⊄平面ACD 1, 所以BE ∥平面ACD 1. 考点二 分析法的应用【例2】 已知a >0,证明:a 2+1a 2-2≥a +1a-2.证明 要证a 2+1a 2-2≥a +1a-2,只需证a 2+1a 2≥⎝ ⎛⎭⎪⎫a +1a -(2-2). 因为a >0,所以⎝⎛⎭⎪⎫a +1a -(2-2)>0,所以只需证⎝⎛⎭⎪⎫a 2+1a 22≥⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1a --22,即2(2-2)⎝⎛⎭⎪⎫a +1a ≥8-42,只需证a +1a≥2.因为a >0,a +1a≥2显然成立⎝⎛⎭⎪⎫a =1a=1时等号成立,所以要证的不等式成立.规律方法 (1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.【训练2】 △ABC 的三个内角A ,B ,C 成等差数列,A ,B ,C 的对边分别为a ,b ,c . 求证:1a +b +1b +c =3a +b +c. 证明 要证1a +b +1b +c =3a +b +c, 即证a +b +c a +b +a +b +c b +c =3也就是c a +b +ab +c=1, 只需证c (b +c )+a (a +b )=(a +b )(b +c ), 需证c 2+a 2=ac +b 2,又△ABC 三内角A ,B ,C 成等差数列,故B =60°,由余弦定理,得b 2=c 2+a 2-2a cos 60°,即b 2=c 2+a 2-ac , 故c 2+a 2=ac +b 2成立. 于是原等式成立. 考点三 反证法的应用【例3】 等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.(1)解 由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,解得d =2,故a n =2n -1+2,S n =n (n +2).(2)证明 由(1)得b n =S nn=n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r ∈N *,且互不相等)成等比数列,则b 2q =b p b r .即(q +2)2=(p +2)(r +2). ∴(q 2-pr )+2(2q -p -r )=0.∵p ,q ,r ∈N *,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0.∴⎝⎛⎭⎪⎫p +r 22=pr ,(p -r )2=0.∴p =r ,与p ≠r 矛盾.∴数列{b n }中任意不同的三项都不可能成为等比数列.规律方法 (1)当一个命题的结论是以“至多”、“至少”、“唯一”或以否定形式出现时,可用反证法来证,反证法关键是在正确的推理下得出矛盾,矛盾可以是与已知条件矛盾,与假设矛盾,与定义、公理、定理矛盾,与事实矛盾等.(2)用反证法证明不等式要把握三点:①必须否定结论;②必须从否定结论进行推理;③推导出的矛盾必须是明显的.【训练3】 (2017·郑州一中月考)已知a 1+a 2+a 3+a 4>100,求证:a 1,a 2,a 3,a 4中至少有一个数大于25.证明 假设a 1,a 2,a 3,a 4均不大于25,即a 1≤25,a 2≤25,a 3≤25,a 4≤25,则a 1+a 2+a 3+a 4≤25+25+25+25=100,这与已知a 1+a 2+a 3+a 4>100矛盾,故假设错误. 所以a 1,a 2,a 3,a 4中至少有一个数大于25.[思想方法]分析法和综合法各有优缺点.分析法思考起来比较自然,容易寻找到解题的思路和方法,缺点是思路逆行,叙述较繁;综合法从条件推出结论,较简捷地解决问题,但不便于思考.实际证题时常常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来. [易错防范]1.用分析法证明时,要注意书写格式的规范性,常常用“要证(欲证)……”“即证……”“只需证……”等,逐步分析,直到一个明显成立的结论.2.在使用反证法证明数学命题时,反设必须恰当,如“都是”的否定是“不都是”“至少一个”的否定是“不存在”等.基础巩固题组(建议用时:40分钟)一、填空题1.6+7与22+5的大小关系为________. 解析 要比较6+7与22+5的大小, 只需比较(6+7)2与(22+5)2的大小, 只需比较6+7+242与8+5+410的大小,只需比较42与210的大小,只需比较42与40的大小,∵42>40,∴6+7>22+ 5. 答案6+7>22+ 52.用反证法证明命题“a ,b ∈R ,ab 可以被5整除,那么a ,b 中至少有一个能被5整除”,那么假设的内容是__________________. 答案 a ,b 都不能被5整除3.若a ,b ∈R ,则下面四个式子中恒成立的是________(填序号). ①lg(1+a 2)>0;②a 2+b 2≥2(a -b -1); ③a 2+3ab >2b 2;④a b <a +1b +1. 解析 在②中,∵a 2+b 2-2(a -b -1)=(a 2-2a +1)+(b 2+2b +1)=(a -1)2+(b +1)2≥0, ∴a 2+b 2≥2(a -b -1)恒成立. 答案 ②4.下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +ab≥2成立的条件的序号是________.解析 要使b a +a b ≥2,只需b a >0成立,即a ,b 不为0且同号即可,故①③④能使b a +a b≥2成立. 答案 ①③④5.已知m >1,a =m +1-m ,b =m -m -1,则a ,b 的大小关系是________. 解析 ∵a =m +1-m =1m +1+m,b =m -m -1=1m +m -1.而m +1+m >m +m -1>0(m >1), ∴1m +1+m<1m +m -1,即a <b .答案 a <b6.(2017·南通模拟)“a >2,且b >2”是“a +b >4,且ab >4”的________条件(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”).解析 由于a >2,b >2,所以a +b >4,ab >4,反之取a =1,b =5,满足a +b >4,ab >4,但是不满足a >2,b >2;故应为充分不必要条件. 答案 充分不必要7.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证b 2-ac <3a ”索的因应是________(填序号).①a -b >0;②a -c >0;③(a -b )(a -c )>0;④(a -b )(a -c )<0. 解析 由题意知b 2-ac <3a ⇐b 2-ac <3a 2⇐(a +c )2-ac <3a 2⇐a 2+2ac +c 2-ac -3a 2<0 ⇐-2a 2+ac +c 2<0 ⇐2a 2-ac -c 2>0⇐(a -c )(2a +c )>0⇐(a -c )(a -b )>0. 答案 ③8.①已知p 3+q 3=2,求证p +q ≤2,用反证法证明时,可假设p +q ≥2;②已知a ,b ∈R ,|a |+|b |<1,求证方程x 2+ax +b =0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x 1的绝对值大于或等于1,即假设|x 1|≥1.则①与②的假设中正确的是________(填序号).解析 反证法的实质是否定结论,对于①,其结论的反面是p +q >2,所以①不正确;对于②,其假设正确. 答案 ② 二、解答题9.若a ,b ,c 是不全相等的正数,求证: lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .证明 ∵a ,b ,c ∈(0,+∞), ∴a +b2≥ab >0,b +c2≥bc >0,a +c2≥ac >0.又上述三个不等式中等号不能同时成立. ∴a +b 2·b +c 2·c +a2>abc 成立.上式两边同时取常用对数,得lg ⎝ ⎛⎭⎪⎫a +b 2·b +c 2·c +a 2>lg abc ,∴lga +b 2+lgb +c2+lgc +a2>lg a +lg b +lg c .10.设数列{a n }是公比为q 的等比数列,S n 是它的前n 项和. (1)求证:数列{S n }不是等比数列; (2)数列{S n }是等差数列吗?为什么?(1)证明 假设数列{S n }是等比数列,则S 22=S 1S 3, 即a 21(1+q )2=a 1·a 1·(1+q +q 2), 因为a 1≠0,所以(1+q )2=1+q +q 2, 即q =0,这与公比q ≠0矛盾, 所以数列{S n }不是等比数列.(2)解 当q =1时,S n =na 1,故{S n }是等差数列; 当q ≠1时,{S n }不是等差数列,否则2S 2=S 1+S 3,即2a 1(1+q )=a 1+a 1(1+q +q 2), 得q =0,这与公比q ≠0矛盾.综上,当q =1时,数列{S n }是等差数列;当q ≠1时,数列{S n }不是等差数列.能力提升题组 (建议用时:20分钟)11.已知函数f (x )=⎝ ⎛⎭⎪⎫12x ,a ,b 是正实数,A =f ⎝ ⎛⎭⎪⎫a +b 2,B =f (ab ),C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A ,B ,C 的大小关系为________.解析 ∵a +b2≥ab ≥2ab a +b ,又f (x )=⎝ ⎛⎭⎪⎫12x 在R 上是减函数,∴f ⎝ ⎛⎭⎪⎫a +b 2≤f (ab )≤f ⎝ ⎛⎭⎪⎫2ab a +b .答案 A ≤B ≤C12.设a ,b ,c 均为正实数,则三个数a +1b ,b +1c ,c +1a,给出下列结论:①都大于2;②都小于2;③至少有一个不大于2;④至少有一个不小于2. 其中正确的是________(填序号). 解析 ∵a >0,b >0,c >0,∴⎝⎛⎭⎪⎫a +1b +⎝⎛⎭⎪⎫b +1c +⎝⎛⎭⎪⎫c +1a =⎝⎛⎭⎪⎫a +1a +⎝⎛⎭⎪⎫b +1b + ⎝ ⎛⎭⎪⎫c +1c ≥6,当且仅当a =b =c =1时,“=”成立,故三者不能都小于2,即至少有一个不小于2. 答案 ④13.(2017·盐城模拟)已知正数x ,y 满足xy =x -yx +3y,则y 的最大值为________. 解析 因为x ,y 为正数,所以xy =x -y x +3y ⇔3xy 2+(x 2+1)y -x =0⇔3y 2+⎝ ⎛⎭⎪⎫x +1x y -1=0⇔⎝ ⎛⎭⎪⎫x +1x y =1-3y 2,所以1-3y 2y =x +1x ≥2,整理得3y 2+2y -1≤0,解得0<y ≤13,故y 的最大值为13.答案 1314.已知二次函数f (x )=ax 2+bx +c (a >0)的图象与x 轴有两个不同的交点,若f (c )=0,且0<x <c 时,f (x )>0.(1)证明:1a是函数f (x )的一个零点;(2)试用反证法证明1a>c .证明 (1)∵f (x )图象与x 轴有两个不同的交点, ∴f (x )=0有两个不等实根x 1,x 2, ∵f (c )=0,∴x 1=c 是f (x )=0的根,又x 1x 2=c a,∴x 2=1a (1a≠c ),∴1a 是f (x )=0的一个根.即1a是函数f (x )的一个零点.(2)假设1a <c ,又1a>0,由0<x <c 时,f (x )>0,知f ⎝ ⎛⎭⎪⎫1a >0与f ⎝ ⎛⎭⎪⎫1a=0矛盾,∴1a≥c ,又∵1a≠c ,∴1a>c .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章数列、推理与证明第38课直接证明与间接证明课时分层训练A组基础达标(建议用时:30分钟)一、填空题1.下列表述:①综合法是由因导果法;②综合法是顺推法;③分析法是执果索因法;④分析法是逆推法;⑤反证法是间接证法.其中正确的个数有____________.(填序号)①②③④⑤[由分析法、综合法、反证法的定义知①②③④⑤都正确.]2.用反证法证明命题:若整数系数的一元二次方程ax2+bx+c=0(a≠0)有有理实数根,则a,b,c中至少有一个是偶数.下列假设中正确的是____________.(填序号)①假设a,b,c至多有一个是偶数;②假设a,b,c至多有两个偶数;③假设a,b,c都是偶数;④假设a,b,c都不是偶数.④[“至少有一个”的否定为“一个都没有”,即假设a,b,c都不是偶数.]3.若a,b,c为实数,且a<b<0,则下列命题正确的是____________.【导学号:62172207】①ac2<bc2;②a2>ab>b2;③1a<1b;④ba>ab.②[a2-ab=a(a-b),∵a<b<0,∴a-b<0,∴a2-ab>0,∴a2>ab.又ab-b2=b(a-b)>0,∴ab>b2,即a2>ab>b2.]4.分析法又称执果索因法,若用分析法证明:“设a>b>c,且a+b+c=0,求证b2-ac <3a”索的因应是________.(填序号)①a-b>0; ②a-c>0;③(a-b)(a-c)>0; ④(a-b)(a-c)<0.③[由题意知b2-ac<3a⇐b2-ac<3a2⇐(a+c)2-ac<3a2⇐a2+2ac+c2-ac-3a2<0⇐-2a 2+ac +c 2<0 ⇐2a 2-ac -c 2>0⇐(a -c )(2a +c )>0⇐(a -c )(a -b )>0.]5.用反证法证明“若x 2-1=0,则x =-1或x =1”时,应假设__________.x ≠-1且x ≠1 [“x =-1或x =1”的否定是“x ≠-1且x ≠1”.]6.设a >b >0,m =a -b ,n =a -b ,则m ,n 的大小关系是__________.m <n [法一(取特殊值法):取a =2,b =1,得m <n .法二(分析法):a -b <a -b ⇐b +a -b >a ⇐a <b +2b ·a -b +a -b ⇐2b ·a -b >0,显然成立.]7.下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +ab≥2成立的条件的个数是__________.3 [要使b a +a b ≥2,只要b a >0,且a b>0,即a ,b 不为0且同号即可,故有3个.] 8.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)____________0.(填“>”“<”或“=”) 【导学号:62172208】< [∵x 1+x 2>0,∴x 1>-x 2,又f (x )是奇函数,且在[0,+∞)上单调递减, 故f (x )在R 上单调递减, 故f (x 1)<f (-x 2)=-f (x 2), 所以f (x 1)+f (x 2)<0.]9.已知函数f (x )=⎝ ⎛⎭⎪⎫12x ,a ,b 是正实数,A =f ⎝ ⎛⎭⎪⎫a +b 2,B =f (ab ),C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A ,B ,C 的大小关系为____________.A ≤B ≤C [∵a +b 2≥ab ≥2ab a +b ,又f (x )=⎝ ⎛⎭⎪⎫12x在R 上是减函数.∴f ⎝⎛⎭⎪⎫a +b 2≤f (ab )≤f ⎝ ⎛⎭⎪⎫2ab a +b ,即A ≤B ≤C .] 10.凸函数的性质定理为:如果函数f (x )在区间D 上是凸函数,则对于区间D 内的任意x 1,x 2…,x n ,有f x 1 +f x 2 +…+f x n n ≤f ⎝ ⎛⎭⎪⎫x 1+x 2+…+x n n ,已知函数y =sin x 在区间(0,π)上是凸函数,则在△ABC 中,sin A +sin B +sin C 的最大值为____________.332[∵f (x )=sin x 在区间(0,π)上是凸函数, 且A 、B 、C 、∈(0,π),∴f A +f B +f C3≤f ⎝⎛⎭⎪⎫A +B +C 3=f ⎝ ⎛⎭⎪⎫π3,即sin A +sin B +sin C ≤3sin π3=332,所以sin A +sin B +sin C 的最大值为332.]二、解答题11.已知a ≥b >0,求证:2a 3-b 3≥2ab 2-a 2b . [证明] 要证明2a 3-b 3≥2ab 2-a 2b 成立, 只需证:2a 3-b 3-2ab 2+a 2b ≥0, 即2a (a 2-b 2)+b (a 2-b 2)≥0, 即(a +b )(a -b )(2a +b )≥0.∵a ≥b >0,∴a -b ≥0,a +b >0,2a +b >0, 从而(a +b )(a -b )(2a +b )≥0成立, ∴2a 3-b 3≥2ab 2-a 2b .12.设数列{a n }是公比为q 的等比数列,S n 是它的前n 项和. (1)求证:数列{S n }不是等比数列;(2)数列{S n }是等差数列吗?为什么? 【导学号:62172209】 [解] (1)证明:假设数列{S n }是等比数列,则S 22=S 1S 3, 即a 21(1+q )2=a 1·a 1·(1+q +q 2), 因为a 1≠0,所以(1+q )2=1+q +q 2, 即q =0,这与公比q ≠0矛盾, 所以数列{S n }不是等比数列.(2)当q =1时,S n =na 1,故{S n }是等差数列; 当q ≠1时,{S n }不是等差数列,否则2S 2=S 1+S 3, 即2a 1(1+q )=a 1+a 1(1+q +q 2), 得q =0,这与公比q ≠0矛盾.综上,当q =1时,数列{S n }是等差数列; 当q ≠1时,数列{S n }不是等差数列.B 组 能力提升 (建议用时:15分钟)1.设x ,y ,z >0,则三个数y x +y z ,z x +z y ,x z +x y____________.(填序号) ①都大于2; ②至少有一个大于2;③至少有一个不小于2; ④至少有一个不大于2.③ [因为x >0,y >0,z >0,所以⎝ ⎛⎭⎪⎫y x +y z +⎝ ⎛⎭⎪⎫z x +z y +⎝ ⎛⎭⎪⎫x z +x y =⎝ ⎛⎭⎪⎫y x +x y +⎝ ⎛⎭⎪⎫y z +z y +⎝ ⎛⎭⎪⎫x z +z x ≥6,当且仅当x =y =z 时等号成立,则三个数中至少有一个不小于2.]2.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则下列说法正确的是____________.(填序号)①△A 1B 1C 1和△A 2B 2C 2都是锐角三角形; ②△A 1B 1C 1和△A 2B 2C 2都是钝角三角形;③△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形; ④△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形;④ [由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形.由⎩⎪⎨⎪⎧sin A 2=cos A 1=sin ⎝ ⎛⎭⎪⎫π2-A 1,sin B 2=cos B 1=sin ⎝ ⎛⎭⎪⎫π2-B 1,sin C 2=cos C 1=sin ⎝ ⎛⎭⎪⎫π2-C 1得⎩⎪⎨⎪⎧A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1.那么,A 2+B 2+C 2=π2,这与三角形内角和为180°相矛盾.所以假设不成立,又显然△A 2B 2C 2不是直角三角形. 所以△A 2B 2C 2是钝角三角形.]3.已知数列{a n }满足a 1=12,且a n +1=a n3a n +1(n ∈N +).(1)证明数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,并求数列{a n }的通项公式;(2)设b n =a n a n +1(n ∈N +),数列{b n }的前n 项和记为T n ,证明:T n <16.[解] (1)由已知可得,当n ∈N +时,a n +1=a n3a n +1.两边取倒数得,1a n +1=3a n +1a n =1a n+3,即1a n +1-1a n=3,所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为1a 1=2,公差为3的等差数列,其通项公式为1a n =1a 1+(n -1)×3=2+(n -1)×3=3n -1.所以数列{a n }的通项公式为a n =13n -1.(2)证明:由(1)知a n =13n -1,故b n =a n a n +1=13n -1×13 n +1 -1=13n -1 3n +2=13⎝ ⎛⎭⎪⎫13n -1-13n +2,故T n =b 1+b 2+…+b n=13×⎝ ⎛⎭⎪⎫12-15+13×⎝ ⎛⎭⎪⎫15-18+…+13×⎝ ⎛⎭⎪⎫13n -1-13n +2=13⎝ ⎛⎭⎪⎫12-13n +2=16-13×13n +2. 因为13n +2>0,所以T n <16.4.若f (x )的定义域为[a ,b ],值域为[a ,b ](a <b ),则称函数f (x )是[a ,b ]上的“四维光军”函数.(1)设g (x )=12x 2-x +32是[1,b ]上的“四维光军”函数,求常数b 的值;(2)是否存在常数a ,b (a >-2),使函数h (x )=1x +2是区间[a ,b ]上的“四维光军”函数?若存在,求出a ,b 的值;若不存在,请说明理由.[解] (1)由题设得g (x )=12(x -1)2+1,其图象的对称轴为x =1,区间[1,b ]在对称轴的右边,所以函数在区间[1,b ]上单调递增.由“四维光军”函数的定义可知,g (1)=1,g (b )=b , 即12b 2-b +32=b ,解得b =1或b =3.因为b >1,所以b =3. (2)假设函数h (x )=1x +2在区间[a ,b ](a >-2)上是“四维光军”函数, 因为h (x )=1x +2在区间(-2,+∞)上单调递减, 所以有⎩⎪⎨⎪⎧h a =b ,h b =a ,即⎩⎪⎨⎪⎧1a +2=b ,1b +2=a ,解得a =b ,这与已知矛盾.故不存在.。

相关文档
最新文档