北科控制工程考研自控课件7
演示文稿北科控制工程考研自控课件

m
G(s)H (s)
K
(
i 1
i
s
1)
nv
sv
(T
j 1
j
s
1)
其中,K ,开环增益
i和Tj ,时间常数
v ,开环系统在 s 平面坐标原点上的极点的重数
注意!分母中有sν项,表示开环传递函数在s平面原点处的ν 重极点。
3.6 线性系统稳态误差计算
根据开环传递函数在s平面原点处重极点的个数ν,将系统定义为ν 型系统。
2. 系统扰动作用下的稳态误差
系统经常处于各种扰动作用下。如:负载力矩的变化,电 源电压和频率的波动,环境温度的变化等。因此系统在扰动作 用下的稳态误差数值,反映了系统的抗干扰能力。
D(s)
R(s) +
+
E(s)
+
G(s)
B(s)
C(s)
H (s)
得到系统的输出拉氏变换表达式为
C(s) D(s) E(s)G(s) D(s) G(s)R(s) H (s)C(s)
R(s)
ess
lim
t
e(t )
lim
s0
sE ( s)
lim
s0
s 1
G(s)H (s)
由上式可知,控制系统的稳态误差与输入信号的形式和 开环传递函数的结构有关。当输入信号形式确定后,系统的 稳态误差就取决于以开环传递函数描述的系统结构。
3.6 线性系统稳态误差计算
例: 一系统的开环传递函数
G(s)H (s)
a. 从输出端定义:等于系统输出量的实际值与希望值之
差。这种方法在性能指标提法中经常使用,但在实际系统
中有时无法测量。因此,一般只具有数学意义。
北京科技大学自控考研电路课件

李 擎
北京科技大学自动化学院控制科学与工程系
2011年11月
1
2013年7月21日5时42分
北京科技大学信息工程学院自动化系
课程基本情况介绍
• 性质:专业基础课 • 类别:必修 • 学时:32(9~16周)
– 课堂教学:(16次×2小时/次)
2
2013年7月21日5时42分
北京科技大学信息工程学院自动化系
• 科代表推荐
– 上传课件 – 收发作业 – 反馈学生意见和建议 – 通知可能的调课信息
4
2013年7月21日5时42分
北京科技大学信息工程学院自动化系
综合成绩评定方法
• 平时成绩占30%:作业、出勤及课堂表现等
– 作业20%:必须独立完成,如发现抄袭现象 (哪怕只是一个题目的一问),抄袭者和被抄 袭者均按0分记; 3次无故不交作业取消期末考 试资格
– 出勤及课堂表现10%:抽查点名,如发现无故 旷课1次,扣3分;事假1次,扣2分;迟到、早 退1次,扣1分;3次无故旷课取消期末考试资格
• 期末成绩占70%:闭卷考试
化系
其它事宜
• 主讲教师联系方式
– 62334885(O) – liqing@
• 答疑环节
– 每周五晚上7:30~9:30 – 机电信息楼523房间 – 可以问与学业、职业规划相关的问题
北京科技大学《自动控制原理》复习

ci
s ir1 pi
ci
lim (s
s pi
pi )G(s)
i r 1,, n
c1i
1
d i1
(i
1)!
lim
s p1
dt
i1
(s
p1)r G(s)
i 1, , r.
p1
•
x
1
0
1 p1
0
p r 1
0
x
1
u
1
pn 1
y c11 c1r cr1 cn x
电位器
G(s) K
测速电机 G(s) Ks
电加热炉 单容水槽 双容水槽
G(s) K Ts 1
G(s) K Ts 1
G(s) K e s (有纯延迟)
Ts 1
(也可有延迟,略) K
G(s) T1T2s2 (T1 T2 )s 1
• 比例环节
• 一阶惯性环节 • 积分环节 • 微分环节、一阶微分环节 • 二阶振荡环节 • 二阶微分环节 • 延迟/时滞环节
5、高阶系统的时域分析
主导极点:在高阶系统中某一极点或一对共轭复数极点距虚轴的距 离是其它极点距虚轴距离的1/5或更小,并且附近没有闭环零点,称 该极点(对)为该高阶系统的主导极点。
①用主导极点来估计高阶系统的性能指标 ②导出高阶系统单位阶跃响应的近似表达式
偶极子: 指相距很近的一对零、极点。
6、线性系统状态方程的解 状态转移矩阵性质:
sa
(s a)2 2
控制系统的数学描述
定义: 单输入单输出线性定常动态对象的传递函数G(S)是零初值下
该对象的输出量的拉普拉斯变换Y(S)与输入量的拉普拉斯变换U(S)
自动控制原理课件(河北科技大学)3.

R(s)=1/s2
r(t) t
t≥0
R(s)= 1/s3
r(t) t
单位脉冲函数 r(t)=δ (t),t=0 正弦函数 r(t)= Asinωt
R(s)=1
r(t) t t
R(s)=Aω /(s2+ω 2)
3-1-2 动态过程和稳态过程
1. 动态过程 (过渡过程或瞬态过程) ——
在典型输入信号作用下,系统输出量从初始状态到最终状态的响应过程。 当r(t)=1(t)时,系统响应可能为:
) t T Te
1 t T
误差: e(t ) r (t ) c(t ) T (1 e
)
ess
t
一阶系统跟踪单位斜坡信号的稳态误差为:
e ss lim e(t ) T
t
减少时间常数T ①可以加快瞬态响应的速度 结论: ②可减少系统跟踪斜坡信号的稳态误差。
3-2-5 一阶系统的单位加速度响应
3)c(t)的终值为1,即系统在阶跃输入作用下,稳态误差为零。
3-2-3
一阶系统的单位脉冲响应
c (t ) 1/T
0.368/T T
t
系统输入: R(s)=1
1 系统输出: C (s) (s) R(s) Ts 1 L反变换,得:
1 c(t ) e T T
t
0.368 = e-1
2 n C ( s) 2. 标准二阶系统传递函数 ( s) 2 2 R( s) s 2 n s n
n ——自然频率(无阻尼自然振荡频率)
——阻尼比(相对阻尼系数)
3.
标准二阶系统结构图(单位反馈)
R(s) _
2 n s( s 2 n )
北京科技大学《自动控制原理》课件-稳定性与稳态误差

3) 稳定性问题都是相对于某个平衡状态而言的。
4) 如果一个系统有多个平衡点。由于每个平衡
a
点处系统的稳定性可能是不同的。
4.2 线性系统稳定性的基本概念
行。从而完成劳斯表的排列。
①关于原点对称的根可以通过求解这个辅助方程式得到, 而且其根的数目总是偶数的。
②若劳斯表第一列中系数的符号有变化,其变化的次数就 论 结 等于该方程在S右半平面上根的数目,相应的系统为不稳定。
③如果第一列上的元素没有符号变化,则表示该方程中有 共轭纯虚根存在,相应的系统为临界稳定。
系统稳态 误差定义
第一 方法
第二 方法
线性 非线性
系统稳态 误差计算
4.1 引子
A.Lyapunov(1857-1918),俄国 数学家(Chebyshev 的学生, Markov的同学),在他的博 士论文中,Lyapunov系统地研 究了由微分方程描述的一般运 动的稳定性问题,建立了著名 的Laypunov方法,他的工作 为现代控制及非线性控制奠定 基础。
如果第一列上面的系数与下面的系数符号相同,则表
示该方程中有一对共轭虚根存在,相应的系统为临界稳 定。
4.3线性定常系统稳定性的代数判据
例4.3-2 已知系统的闭环特征方程式为
S 3 2S 2 S 2 0
试判别相应系统的稳定性。
解: 列劳斯表 S 3
1
1
S2
2
2
S1
0( )
S0
2
由于表中第一列 上面元素的符号与其下面元素的符号相同,
自动控制原理课件ppt

G3(s)
G2(s)
H3(s)
E(S)
R(s)
G1(s)
H1(s)
H2(s)
C(s)
P2= - G3G2H3
△2= 1
P2△2=
梅逊公式求E(s)
P1= –G2H3
△1= 1
N(s)
G1(s)
H1(s)
H2(s)
C(s)
G3(s)
G2(s)
H3(s)
R(s)
E(S)
四个单独回路,两个回路互不接触
e
A
100%
一阶系统时域分析
无零点的一阶系统 Φ(s)=
Ts+1
k
, T
时间常数
(画图时取k=1,T=0.5)
单 位 脉 冲 响 应
k(t)=
T
1
e-
T
t
k(0)=
T
1
K’(0)=
T
1
2
单位阶跃响应
h(t)=1-e-t/T
h’(0)=1/T
h(T)=0.632h(∞)
h(3T)=0.95h(∞)
h(2T)=0.865h(∞)
第一章 自动控制的一般概念
1-1 自动控制的基本原理与方式 1-2 自动控制系统示例 1-3 自动控制系统的分类 1-4 对自动控制系统的基本要求
飞机示意图
给定电位器
反馈电位器
给定装置
放大器
舵机
飞机
反馈电位器
垂直陀螺仪
θ0
θc
扰动
俯仰角控制系统方块图
飞机方块图
液位控制系统
控制器
自动控制原理课件ppt
课件3 ~6为第一章的内容。制作目的是节省画图时间,便于教师讲解。 课件6要强调串联并联反馈的特征,在此之前要交待相邻综合点与相邻引出点的等效变换。 课件7中的省略号部分是反过来说,如‘合并的综合点可以分开’等。最后一条特别要讲清楚,这是最容易出错的地方! 课件10先要讲清H1和H3的双重作用,再讲分解就很自然了。 课件11 、12 、13是直接在结构图上应用梅逊公式,制作者认为没必要将结构图变为信号流图后再用梅逊公式求传递函数。
北京科技大学《自动控制原理》课件-状态反馈 (1)

1 1
11 et
3
e3t
3 2
et
1 2
e3t
1 2
et
1 2
e3t
e At
1(t)I
2
(t
)
A
1
(t
) 22 2 (t)
(t)
2 (t) 1(t) 22
(t)
1
,
1
1 7 1 1 1
阵[A-λiI,B]对A的所有特征根都行满秩。 定理8.4:在状态线性变换下,系统的能控性不变。
1 4 2 4 6
A2 B
0
6
1
1
7
1 7 1 1 12
T eAt B 0
T e At B 0
控制工程基础-第八章状态反馈与极点配置
8 of 58
例2
设系统的状态方程如下,试判断系统 的能控性。 1 4 2 2
x
0
6
1
x
0
u
1 7 1 1
2 4
U c
• 如果有这样的系统,如何描述?
(A,B) 不能控。
• 如果有这样的系统,如何判断? • 不能任意控制的系统是否部分能控?
一、线性定常系统能控性
定理8.1:系统(A,B)能控的充要条件是如下
定义的矩阵Wc(t)(Gram矩阵),存在tf>0使 得Wc(t f)是非奇异的。
自动控制原理(全套课件)

自动控制原理(全套课件)一、引言自动控制原理是自动化领域的一门重要学科,它主要研究如何利用各种控制方法,使系统在受到扰动时,能够自动地、准确地、快速地恢复到平衡状态。
本课件将详细介绍自动控制的基本概念、控制系统的类型、数学模型、稳定性分析、控制器设计等内容,帮助学员全面掌握自动控制原理的基本理论和方法。
二、控制系统的基本概念1. 自动控制自动控制是指在没有人直接参与的情况下,利用控制器使被控对象按照预定规律运行的过程。
自动控制的核心在于控制器的设计,它能够根据被控对象的运行状态,自动地调整控制量,使系统达到预期的性能指标。
2. 控制系统控制系统是由被控对象、控制器、传感器和执行器等组成的闭环系统。
被控对象是指需要控制的物理过程或设备,控制器负责产生控制信号,传感器用于测量被控对象的运行状态,执行器则根据控制信号对被控对象进行操作。
三、控制系统的类型1. 按控制方式分类(1)开环控制系统:控制器不依赖于被控对象的运行状态,直接产生控制信号。
开环控制系统简单,但抗干扰能力较差。
(2)闭环控制系统:控制器依赖于被控对象的运行状态,通过反馈环节产生控制信号。
闭环控制系统抗干扰能力强,但设计复杂。
2. 按控制信号分类(1)连续控制系统:控制信号是连续变化的,如模拟控制系统。
(2)离散控制系统:控制信号是离散变化的,如数字控制系统。
四、控制系统的数学模型1. 微分方程模型微分方程模型是描述控制系统动态性能的一种数学模型,它反映了系统输入、输出之间的微分关系。
通过求解微分方程,可以得到系统在不同时刻的输出值。
2. 传递函数模型传递函数模型是描述控制系统稳态性能的一种数学模型,它反映了系统输入、输出之间的频率响应关系。
传递函数可以通过拉普拉斯变换得到,它是控制系统分析、设计的重要工具。
五、控制系统的稳定性分析1. 李雅普诺夫稳定性分析:通过构造李雅普诺夫函数,分析系统的稳定性。
2. 根轨迹分析:通过分析系统特征根的轨迹,判断系统的稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n2 s ( s 2 n )
Y(s)
kt s
控制工程基础——系统校正与 PID 控制
2013年7月21日5时53分 第 10 页
控制工程基础——系统校正与 PID 控制
2013年7月21日5时53分 第 15 页
7.2 系统校正的几种常见古典方法
系统校正的基本概念
R(s) + - 校正装置 Gc (s) 原有部分 Go(s) C(s) R(s) + - + - 原有部分 Go(s) 校正装置 Gc (s) C(s)
4、串并联校正
5、校正类型比较
控制工程基础——系统校正与 PID 控制
2013年7月21日5时53分 第 13 页
7.2 系统校正的几种常见古典方法
系统校正的基本概念
在研究系统校正装置时, 为了方便, 将系统中除了校正装置以外的 部分, 包括被控对象及控制器的基本组成部分一起, 称为“原有部 分”(亦称固有部分或不可变部分)。 因此, 控制系统的校正, 就是 按给定的原有部分和性能指标, 设计校正装置。 校正中常用的性能指标包括稳态精度、 稳定裕量以及响应速度等。
G2 ( s )
Gn ( s )
C (s)
H ( s)
控制工程基础——系统校正与 PID 控制
2013年7月21日5时53分 第 20 页
7.2 系统校正的几种常见古典方法
(4)顺馈控制
以消除或减小系统误差为目的,从输入方向引入的补 偿通道。
Gc ( s )
R( s )
G1 ( s )
(1) 稳态精度指标: 位置误差系数Kp, 速度误差系数Kv和加速度误差系 数Ka。 (2) 稳定裕量指标: 相角裕量γ, 增益裕度Kg,谐振峰值Mr,最大超调 量σ, 阻尼比。 (3) 响应速度指标: 上升时间tr,调整时间ts,剪切频率ωc , 带宽 BW, 谐振频率ωr。
利用系统给定的原有部分和上述部分性能指标, 可以很容易地设计 出系统的校正装置使系统满足给定要求。
2013年7月21日5时53分 第 3 页
第七章 系统校正与PID控制
本章要点
• 系统校正的几种常见古典方法
• PID模型形式
• PID控制规律分析
• PID控制器参数的整定方法
控制工程基础——系统校正与 PID 控制
2013年7月21日5时53分 第 4 页
7.1 问题的提出
系统分析:在系统的结构、参数已知的情况下,计算出它 的性能。 系统校正:在系统分析的基础上,引入某些参数可以根据 需要而改变的辅助装臵,来改善系统的性能,这里所用的辅 助装臵又叫校正装臵。 一般说来,被控对象(G2(s))的模型结构和参数不能任意改 变,可以称之为控制系统的“不可变部分”。如果将这个被 控对象简单地组成一个反馈系统,常常不能满足控制要求。 为此,人们常常在系统中引入某种环节——校正装臵(G1(s)) ,以改善其性能指标。
G2 ( s )
C (s)
H ( s)
控制工程基础——系统校正与 PID 控制
2013年7月21日5时53分 第 21 页
7.2 系统校正的几种常见古典方法
(5)校正类型比较 串联校正: 分析简单,应用范围广,易于理解和接受. 反馈校正: 最常见的就是比例反馈和微分反馈,微分反馈又 叫速度反馈。 顺馈校正: 以消除或减小系统误差为目的。 前馈校正:
(a) 串联校正
(b) 反馈校正
R(s) + -
校正装置 Gc1 (s)
+ -
原有部分 Go(s) 校正装置 Gc2 (s)
C(s) R(s) +
校正装置 Gc (s) + - + 原有部分 Go(s) C(s)
(c) 串联反馈校正
(d) 前馈校正
控制工程基础——系统校正与 PID 控制
2013年7月21日5时53分 第 16 页
PID调节器
R( s)
E (s)
控制工程基础
The Basics of Control Engineering
KP
KI s
U (s)
C (s)
G0 ( s )
KDs
第七章 系统校正与 PID 控制
尹怡欣
Tel:62332262,E-mail:yyx_ustb@ Blog:/YinYixinUSTB
控制工程基础——系统校正与 PID 控制
2013年7月21日5时53分 第 18 页
7.2 系统校正的几种常见古典方法
(2)反馈校正
如果从系统的某个元件的输出取得反馈信号,构成反馈
回路,并在反馈回路内设臵传递函数为Gc(s)的校正元件,
则称这种校正形式为反馈校正,如下图所示。
R (s) +
-
G1(s)
控制工程基础——系统校正与 PID 控制
2013年7月21日5时53分 第 2 页
第七章 系统校正与PID控制
7.1 问题的提出
7.2 系统校正的几种常见古典方法
7.3 PID模型及其控制规律分析 7.4 PID控制器参数的整定方法 7.5 几种改良的PID控制器
控制工程基础——系统校正与 PID 控制
7.1 问题的提出
G ( s) k s s( 1) 2 2n n kt
式中kt为速度反馈系数
n 其中:k 为系统的开环增益 2 n kt
(不引入速度反馈开环增益 k n ) 2 闭环传递函数:
2 n G (s) ( s) 2 2 2 1 G ( s ) s 2n s n kt s n 2 n 2 2 1 s 2 tn s n 2 2 s 2( n kt )n s n 2 n
扰N (s)的影响。
控制工程基础——系统校正与 PID 控制
2013年7月21日5时53分 第 6 页
7.1 问题的提出
(2)对给定输入进行补偿
1 Gr ( s) G( s)
时: E ( s) 0
控制工程基础——系统校正与 PID 控制
2013年7月21日5时53分 第 7 页
7.1 问题的提出
(3)比例微分控制
下图表示引入了一个比例微分控制的二阶系统,系统 输出量同时受偏差信号e(t ) 和偏差信号微分 e(t )的双重 控制。试分析比例微分校正对系统性能的影响。
u(t )
e(t )
-
1
Td s
e(t )
e(t )
+
2 n s ( s 2n )
y (t )
控制工程基础——系统校正与 PID 控制
以消除或减小干扰对系统影响。 本章介绍最为常见的串联校正中的PID校正。
控制工程基础——系统校正与 PID 控制
2013年7月21日5时53分 第 22 页
7.3 PID模型及其控制规律分析
1、 PID控制器模型
P1D控制具有以下优点: 1. 原理简单,使用方便。PID控制是由P、I、D三个环 节的不同组合而成。其基本组成原理比较简单,学 过控制理论的读者很容易理解它。参数的物理意义 也比较明确。 2. 适应性强,可以广泛应用于化工、轻工、冶金、炼 油以及造纸、建材等各种生产部门。按PID控制进 行工作的自动凋节器早巳商品化。在具体实现上它 们经历了机械式、液动式、气动式、电子式等发展 阶段。但始终没有脱离PID控制的范筹,即使目前 最新式的过程控制计算机.其基本控制功能上仍然 是PID 控制。 3. 鲁棒性强,即其控制品质对被控对象特性的变化不 大敏感。 由于具有这些优点,在过程控制中,人们首先想到的 总是PID控制。一个大型的现代化生产装置的控制 回路可能多达一二百甚至更多,其中绝大部分都采 用PID控制。例外的情况有两种:一种是被控对象 易于控制而控制要求又不高的,可以采用更简单的 开关控制方式;另一种是被控对象特别难以控制而 控制要求又特别高的情况,这时如果PID控制难以 达到生产要求就要考虑采用更先进的控制方法。
等效阻尼比
tP d n 1 2
1 d Td n 2
tr d
1 2
P e
100%
ts
3
4
n
控制工程基础——系统校正与 PID 控制
2013年7月21日5时53分 第 9 页
7.1 问题的提出
(4)速度反馈控制 右图是采用了速度反 U(s) E (s) 馈控制的二阶系统。 试分析速度反馈校正 对系统性能的影响。 分析 系统的开环传递函数为
+ -
G2(s) Gc(s)
C (s)
H (s)
控制工程基础——系统校正与 PID 控制
2013年7月21日5时53分 第 19 页
7.2 系统校正的几种常见古典方法
(3)前馈控制
如果干扰可测,从干扰向输入方向引入的以消除或减 小干扰对系统影响的补偿通道。
N ( s)
Gc ( s )
E (s)
G1 ( s)
2
控制工程基础——系统校正与 PID 控制
2013年7月21日5时53分 第 11 页
7.1 问题的提出 等效阻尼比:
显然 t ,所以速度反馈可以增大系统的阻尼 比,而不改变无阻尼振荡频率ωn,因此,速度反馈可 以改善系统的动态性能。 在应用速度反馈校正时,应适当增大原系统的 开环增益,以补偿速度反馈引起的开环增益减小,同 时适当选择速度反馈系数Kt,使阻尼比ζt增至适当 数值,以减小系统的超调量,提高系统的响应速度。