最新版高一数学上学期期中试题(含解析)及答案(新人教A版 第95套)
2023-2024学年高一(上)期中数学试卷(带解析)

2023-2024学年高一(上)期中数学试卷一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3} 2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥04.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.37.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.368.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为.14.(5分)已知函数f(x)满足,则函数f(x)的解析式为.15.(5分)已知函数,则f(﹣26)+f(﹣25)+⋯+f(﹣1)+f (1)+⋯+f(26)+f(27)的值为.16.(5分)已知x,y>0且满足x+y=1,若不等式恒成立,记的最小值为n,则m+n的最小值为.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.21.(12分)已知a,b,c是实数,且满足a+b+c=0,证明下列命题:(1)“a=b=c=0”是“ab+bc+ac=0”的充要条件;(2)“abc=1,a≥b≥c”是“”的充分条件.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.2023-2024学年高一(上)期中数学试卷参考答案与试题解析一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3}【分析】结合交集的定义,即可求解.【解答】解:集合A={1,2,3},集合B={x||x﹣1|<1}={x|0<x<2},故A∩B={1}.故选:B.【点评】本题主要考查交集及其运算,属于基础题.2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据题意,解绝对值不等式得1<x<3,结合充要条件的定义加以判断,即可得到本题的答案.【解答】解:根据题意,|x﹣2|<1⇒﹣1<x﹣2<1⇒1<x<3,由|x﹣2|<1可以推出1<x<5,且由1<x<5不能推出|x﹣2|<1.因此,若p:|x﹣2|<1,q:1<x<5,则p是q的充分不必要条件.故选:A.【点评】本题主要考查不等式的性质、充要条件的判断等知识,考查了计算能力、逻辑推理能力,属于基础题.3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥0【分析】根据命题的否定的定义,即可求解.【解答】解:命题“∃x∈(1,+∞),x2+2<0”的否定是:∀x∈(1,+∞),x2+2≥0.故选:D.【点评】本题主要考查特称命题的否定,属于基础题.4.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,【分析】观察函数三要素,逐项判断是否同一函数.【解答】解:由题意得:选项A定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项B定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项C对应法则不同,g(x)=|x|;D项,三要素相同,为同一函数.故选:D.【点评】本题考查同一函数的判断,属于基础题.5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或【分析】由题意可知,a<0,方程ax2+bx+c=0的两个根分别为x1,x2,再结合韦达定理求解即可.【解答】解:根据题意:a<0,方程ax2+bx+c=0的两个根分别为x1,x2,所以,,,,解得,即不等式的解集为{x|}.故选:C.【点评】本题主要考查了韦达定理的应用,考查了一元二次不等式的解法,属于基础题.6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.3【分析】根据函数f(x)的定义可知,在一个坐标系中画出y=﹣x+1,y=x2﹣3x+2,y =x﹣1的图象,取最上面的部分作为函数f(x)的图象,由图象即可求出函数的最小值.【解答】解:根据题意,在同一个直角坐标系中,由﹣x+1=x2﹣3x+2,得x2﹣2x+1=0,解得x=1;由x2﹣3x+2=x﹣1,得x2﹣4x+3=0,解得x=3或x=1,所以f(x)=,同时画出函数y=﹣x+1,y=x2﹣3x+2,y=x﹣1,如图分析:所以函数f(x)的最小值为0.故选:A.【点评】本题考查利用函数的图象求函数的最值,属中档题.7.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.36【分析】由已知结合基本不等式先求出xy的范围,即可求a,然后利用乘1法,结合基本不等式可求b,进而可求a+b.【解答】解:∵xy=2x+y+6+6,当且仅当2x=y,即x=3,y=6时取等号,∴a=18.∵m+n=1,m>0,n>0.则=6,当且仅当n=3m且m+n=1,即m=,n=时取等号,∴,∴b=16;∴a+b=34.故选:C.【点评】本题主要考查了基本不等式在最值求解中的应用,属于基础题.8.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a【分析】由已知结合函数的对称性先求出函数的周期,然后结合对称性及周期性即可求解.【解答】解:根据题意:函数f(x)满足f(x)+f(4﹣x)=4,可得函数f(x)关于点(2,2)成中心对称,函数f(x)满足f(x+2)﹣f(﹣x)=0,所以函数f(x)关于x=1对称,所以函数f(x)既关于x=1成轴对称,同时关于点(2,2)成中心对称,所以f(2)=2,T=4,又因为f(1)=a,所以f(3)=4﹣a,f(4)=f(﹣2)=f(﹣2+4)=f(2)=2,所以f(1)+f(2)+f(3)+f(4)=a+2+4﹣a+2=8,所以f(1)+f(2)+f(3)+⋯+f(51)=12[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)+f(3)=12×8+a+2+4﹣a=102.故选:C.【点评】本题主要考查了函数的奇偶性,对称性及周期性在函数求值中的应用,属于中档题.二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0【分析】由已知举出反例检验选项A,D;结合不等式的性质检验B,C即可判断.【解答】解:当a=1,b=﹣1时,A显然错误;若,则=<0,所以ab>0,B正确;若,即b﹣a<0,则=>0,所以ab<0,所以b<0<a,C正确;当a=2,b=﹣1时,D显然错误.故选:BC.【点评】本题主要考查了不等式的性质在不等式大小比较中的应用,属于基础题.(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.【分析】根据二次函数的性质检验选项A,结合基本不等式检验选项BCD即可判断.【解答】解:根据题意:选项A,y=x2﹣4x+8,根据二次函数的性质可知,x=2时取最小值4,故选A;,当且仅当时取最小值,不在x∈(1,+∞)范围内,故选项B错误;选项C,=,当且仅当,即x=3时成立,故选项C正确;选项D,,令,原式为,当且仅当t=,即t=2时等式成立,不在范围内,故选项D错误.故选:AC.【点评】本题主要考查了基本不等式及二次函数性质在最值求解中的应用,属于中档题.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件【分析】根据充分必要条件的定义,对各个选项中的两个条件进行正反推理论证,即可得到本题的答案.【解答】解:对于选项A,a>1,b>1⇒a﹣1>0,b﹣1>0⇒(a﹣1)(b﹣1)>0,反之,若(a﹣1)(b﹣1)>0,则可能a=b=0,不能得出a>1,b>1.故“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件,A正确;对于选项B,ax2+ax+1>0在R上恒成立,当a=0时,可得1>0恒成立,而区间(0,4)上没有0,故“0<a<4”不是“ax2+ax+1>0在R上恒成立”的充要条件,B不正确;对于选项C,f(x)=x2﹣ax在(1,+∞)上单调递增,可以推出是a⩽2的子集,故“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的充分不必要条件,C不正确;对于选项D,a3+a2b﹣a2﹣ab+a+b=a2(a+b)﹣a(a+b)+(a+b)=(a+b)(a2﹣a+1),,ab>0⇎(a+b)>0,因此,“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件,D正确.故选:AD.【点评】本题主要考查了充分条件与必要条件的判断、不等式的性质、二次函数的单调性等知识,属于基础题.(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9【分析】将所给等式化简整理,得到(x+y)2=x2y2,结合x,y>0可得x+y=xy,.由此出发对各个选项逐一加以验证,即可得到本题的答案.【解答】解:根据题意,x2+y2+1=(xy﹣1)2,即x2+y2=x2y2﹣2xy,整理得x2+y2+2xy =x2y2,所以x2+y2+2xy=x2y2,即(x+y)2=x2y2,而x、y均为正数,故x+y=xy,可得.对于A,,两边平方得x2y2≥4xy,可得xy≥4,故A错误;对于B,由A的计算可知x+y=xy≥4,当且仅当x=y=2时取到等号,故B正确;对于C,x2+y2=x2y2﹣2xy=(xy﹣1)2+1≥32﹣1=8,当且仅当x=y=2时取到等号,故C正确;对于D,,当且仅当x=2y,即时取到等号,故D正确.故选:BCD.【点评】本题主要考查了不等式的性质、基本不等式及其应用等知识,考查了计算能力、逻辑推理能力,属于中档题.三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为[﹣2,1].【分析】根据函数的解析式,列出使函数解析式有意义的不等式组,求出解集即可.【解答】解:函数∴﹣x2﹣x+2⩾0,解得﹣2⩽x⩽1.∴函数的定义域为[﹣2,1].故答案为:[﹣2,1].【点评】本题主要考查函数定义域的求解,属于基础题.14.(5分)已知函数f (x )满足,则函数f (x )的解析式为.【分析】利用解方程组的方法求函数解析式即可.【解答】解:根据题意:①,令代替x ,可得②,①﹣②×2得:,∴函数f (x )的解析式为.故答案为:.【点评】本题考查求函数解析式,属于基础题.15.(5分)已知函数,则f (﹣26)+f (﹣25)+⋯+f (﹣1)+f(1)+⋯+f (26)+f (27)的值为.【分析】根据已知条件,结合偶函数的性质,即可求解.【解答】解:令函数,可得函数f (x )=g (x )+2,∵函数为奇函数,∴g (﹣x )=﹣g (x )⇒g (﹣x )+g (x )=0,f (﹣26)+f (﹣25)+⋯+f (﹣1)+f (1)+⋯+f (26)+f (27)=g (﹣26)+g (﹣25)+⋯+g (﹣1)+g (1)+⋯+g (26)+g (27)+2×53=g (27)+2×53=.故答案为:.【点评】本题主要考查函数值的求解,属于基础题.16.(5分)已知x ,y >0且满足x +y =1,若不等式恒成立,记的最小值为n ,则m +n 的最小值为.【分析】由恒成立,可知左边的最小值大于等于9,因此求的最小值,结合基本不等式求出m+n的最小值.【解答】解:∵实数x,y>0满足x+y=1,∴x+y+1=2,而=,当时,等号成立,所以,解得m⩾8.而=,令,则原式,当时,等号成立,∴实数n的值为,可得实数m+n的最小值为.故答案为:.【点评】本题主要考查基本不等式及其应用,考查了计算能力、逻辑推理能力,属于基础题.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.【分析】(1)把m=3代入求得B,再由并集运算求解;(2)“x∈A”是“x∈B”的必要不充分条件,得B⫋A,然后分B=∅和B≠∅分别求解m 的范围,取并集得答案.【解答】解:(1)∵集合A={x|x2﹣2x﹣3⩽0},由x2﹣2x﹣3⩽0,即(x+1)(x﹣3)⩽0,解得﹣1⩽x⩽3,∵集合B={x|m﹣1<x<2m+1},当m=3时,即B={x|2<x<7},∴A∪B={x|﹣1⩽x<7}.(2)“x∈A”足“x∈B”的必要不充分条件,可得集合B是集合A的真子集,当m﹣1⩾2m+1⇒m⩽﹣2时,集合B为空集,满足题意;当m﹣1<2m+1⇒m>﹣2时,集合B是集合A的真子集,可得,∴实数m的取值范围为{m|m⩽﹣2或0⩽m⩽1}.【点评】本题考查并集的运算,考查分类讨论思想,是中档题.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.【分析】(1)结合幂函数的性质,以及偶函数的性质,即可求解;(2)结合函数的性质,即可求解.【解答】解:(1)由题意可知,2m2﹣m=1,解得m=或1,又∵函数f(x)关于y轴对称,当,满足题意;当m=1⇒f(x)=x5,此时函数f(x)为奇函数,不满足题意,∴实数m的值为;(2)函数,分析可得该函数在(0,+∞)单调递减,∴由(a﹣1)m<(2a﹣3)m可得:.∴实数a的取值范围为.【点评】本题主要考查函数的性质,是基础题.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.【分析】(1)当x<0时,﹣x>0,代入已知函数解析式,对比函数解析式即可求解a,b;(2)结合奇函数的对称性及二次不等式的求法即可求解.【解答】解:(1)根据题意:当x<0时,﹣x>0,则f(x)=﹣f(﹣x)=﹣[(﹣x)2+2(﹣x)]=﹣x2+2x,故a=﹣1,b=2;(2)当x⩾0时,|f(x)|⩾3可得f(x)⩾3,即x2+2x⩾3⇒x2+2x﹣3⩾0,解得x⩾1,根据奇函数可得:|f(x)|⩾3的解集为{x|x⩾1或x⩽﹣1}.【点评】本题主要考查了奇函数的定义在函数解析式求解中的应用,还考查了奇函数的对称性在不等式求解中的应用,属于中档题.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.【分析】(1)根据单日销售额函数,列方程求出m的值,再利用利润=销售额﹣成本,即可得出日销售利润函数的解析式.(2)利用分段函数求出每个区间上的最大值,比较即可得出结论.【解答】解:(1)根据题意知,单日销售额为f(x)=,因为f(3)=+6+3=+9,解得m=,因为利润=销售额﹣成本,所以日销售利润为P(x)=,化简为P (x )=.(2)根据题意分析:①日销售利润P (x )=+x +3=+(x +1)+2,令t =x +1=2,3,4,所以函数为,分析可得当t =2时,取最大值,其最大值为;②日销售利润P (x )=+2x =+2x =﹣+2x ,该函数单调递增,所以当x =6时,P (x )取最大值,此最大值为15;③日销售利润P (x )=21﹣x ,该函数单调递减,所以当x =7时,P (x )取最大值,此最大值为14;综上知,当x =6时,日销售利润最大,最大值为15千元.【点评】本题考查了分段函数模型应用问题,也考查了运算求解能力,是中档题.21.(12分)已知a ,b ,c 是实数,且满足a +b +c =0,证明下列命题:(1)“a =b =c =0”是“ab +bc +ac =0”的充要条件;(2)“abc =1,a ≥b ≥c ”是“”的充分条件.【分析】(1)根据完全平方公式,等价变形,可证出结论;(2)利用基本不等式,结合不等式的性质加以证明,即可得到本题的答案.【解答】证明:(1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,充分性:若a =b =c =0,则ab +bc +ac =0,充分性成立;必要性:若ab +bc +ac =0,由a +b +c =0,得(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,所以a 2+b 2+c 2=0,可得a =b =c =0,必要性成立.综上所述,a =b =c =0是ab +bc +ac =0的充要条件;(2)由a ⩾b ⩾c ,且abc =1>0,可知a >0,b <0,c <0,由a +b +c =0,得,当且仅当b =c 时等号成立,由,得,a 3⩾4,可知≤a =﹣b ﹣c ≤﹣2c ,解得,因此,abc=1且a⩾b⩾c是的充分条件.【点评】本题主要考查等式的恒等变形、不等式的性质与基本不等式等知识,考查了计算能力、逻辑推理能力,属于基础题.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.【分析】(1)根据题意,由f(0)=1,f(1)=3分析可得f(x)=ax2+(2﹣a)x+1,由二次函数的最小值求出a的值,进而计算可得答案;(2)根据题意,由二次函数的性质分a>0与a<0两种情况讨论,分析g(a)的解析式,综合可得答案.【解答】解:(1)根据题意,函数f(x)=ax2+bx+c满足f(0)=1,f(1)=3,则有f(0)=c=1,f(1)=a+b+c=3,变形可得b=2﹣a,函数f(x)=ax2+(2﹣a)x+1,∵函数f(x)有最小值,∴a>0,函数f(x)的最小值为=,解可得:a=4或1,∴当a=4时,b=﹣2,函数f(x)的解析式为f(x)=4x2﹣2x+1;当a=1时,b=1,函数f(x)的解析式为f(x)=x2+x+1.(2)根据题意,由(1)的结论,f(x)=ax2+(2﹣a)x+1,是二次函数,分2种情况讨论:①当a>0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5,ii.当对称轴时,与a>0矛盾,故当a>0时,函数f(x)在区间[1,2]上的最大值g(a)=2a+5;②当a<0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(1)=3,ii.当对称轴时,函数f(x)在区间[1,2]上的最大值,iii.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5.综上所述,【点评】本题考查函数的最值,涉及二次函数的性质,属于中档题.。
新人教A版高一上学期数学期中试卷(含答案解析)

新人教A 版高一上学期摸底试卷数 学 试 卷 (十九)A 卷第Ⅰ卷(选择题 共60分)一、单项选择题(每小题5分,共40分)1. 设全集=U R ,{}0342<+-=x x x A ,{}032<-=x x B ,则 A (C U B )= 【 】 (A )⎪⎭⎫ ⎝⎛23,1 (B )⎪⎭⎫⎢⎣⎡3,23 (C )()+∞,1 (D )⎪⎭⎫ ⎝⎛∞-23,2. 命题“所有的正数都有算术平方根”的否定是 【 】 (A )所有的正数都没有算术平方根 (B )所有的非正数都有算术平方根 (C )至少存在一个正数有算术平方根 (D )至少存在一个正数没有算术平方根3. 已知函数()⎩⎨⎧<+≥=0,10,2x x x x x f ,若()()32=+-a f f ,则实数a 的值为 【 】(A )2- (B )2或3 (C )2 (D )2-或34. 已知实数n m x x ,,,21满足n m x x <<,21,且()()011<--x n x m ,()()022<--x n x m ,则下列说法正确的是 【 】 (A )n x x m <<<21 (B )21x n x m <<< (C )n x m x <<<21 (D )21x n m x <<<5. 不等式122322++++x x x x ≥m 对任意实数x 都成立,则实数m 的取值范围是 【 】(A )(]2,∞- (B )⎪⎭⎫⎢⎣⎡+∞,310 (C )⎥⎦⎤⎢⎣⎡310,2 (D )(]⎪⎭⎫⎢⎣⎡+∞∞-,3102,6. 已知()x f 是定义在R 上的增函数,若()x f y =的图象过点()1,2--A 和点()1,3B ,则满足()111<+<-x f 的x 的取值范围是 【 】(A )()3,2- (B )()2,3- (C )()4,1- (D )()1,1-7. 若b a ,为正数,111=+b a ,则1811-++-b b a 的最小值为 【 】 (A )2 (B )7 (C )10 (D )178. 函数()x x x x x f -++--=22212的最大值为 【 】(A )2 (B )23 (C )25(D )2二、多项选择题(每小题5分,共20分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9. 已知方程0542=+--m x x 的两个根一个大于1,一个小于1,则下列选项中满足要求的实数m 的值为 【 】 (A )2 (B )3 (C )4 (D )510. 下列函数中,是偶函数,且在区间()1,0上为增函数的是 【 】 (A )x y = (B )21x y -= (C )xy 1-= (D )422+=x y 11. 若下列求最值的运算中,错误的是 【 】 (A )当0<x 时,()⎥⎦⎤⎢⎣⎡-+--=+x x x x 11≤()212-=-⋅--x x ,当且仅当1-=x 时,x x 1+取得最大值,最大值为2-(B )当1>x 时,12-+x x ≥122-⋅x x ,当且仅当12-=x x 时取等号,解得1-=x 或2=x ,又1>x ,所以2=x ,故当1>x 时,12-+x x 的最小值为41222=-+ (C )由于4494492222-+++=++x x x x ≥()24494222=-+⋅+x x ,故4922++x x 的最小值是2(D )已知0,0>>y x ,且24=+y x .∵y x 42+=≥xy y x 442=⋅,∴xy ≤21,又因为y x 11+≥xyy x 2112=⋅≥4212=,∴当0,0>>y x ,且24=+y x 时,y x 11+的最小值为4 12. 函数()xax x f -=(∈a R )的大致图象可能是 【 】(A ) (B ) (C ) (D )第Ⅱ卷 非选择题(共90分)三、填空题(每小题5分,共20分)13. 已知全集{}1,2,12++-=a a U ,{}2,1+=a A ,C U A {}3=,则=a __________.14. 函数()⎩⎨⎧<<≥=tx x tx x x f 0,,2是区间()+∞,0上的增函数,则实数t 的取值范围是__________.15. 已知幂函数()()m x m m x f 12--=为奇函数,则=m __________,函数()m x x g n m +=+2(∈n R )的图象必过点__________.(第一个空2分,第二个空3分)16. 已知函数()2+=x f y 为偶函数,()142+-=x x x g ,且()x f 与()x g 图象的交点为A 、B 、C 、D 、E ,则交点的横坐标之和为__________.四、解答题(共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)已知集合{}73<≤=x x A ,{}102<<=x x B ,{}a x a x C <<-=5. (1)求B A ;(2)若()B A C ⊆,求实数a 的取值范围.18.(本题满分12分)设命题:p 实数x 满足03422<+-a ax x ,命题q :实数x 满足9125<+<x . (1)若1=a ,且q p ,同为真命题,求实数x 的取值范围;(2)若0>a ,且q 是p 的充分不必要条件,求实数a 的取值范围.19.(本题满分12分)已知幂函数()x f 的图象经过点()27,3--. (1)求()x f 的解析式;(2)判断()x f 的单调性并用定义法证明.20.(本题满分12分)某厂家拟举行促销活动,经调查测算,某产品的年销售量(即该厂的年产量)x 万件与年促销费用m (m ≥0)万元满足13+-=m kx (k 为常数),如果不搞促销活动,那么该产品的年销售量只能是1万件.已知年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定位每件产品平均成本的1. 5倍(产品成本包括固定投入和再投入两部分资金).(1)将该产品的年利润y 万元表示为年促销费用m 万元的函数; (2)该厂家年促销费用投入多少万元时,厂家的利润最大?21.(本题满分12分)已知函数()xax x f +=2,且()21=f .(1)判断并证明函数()x f 在其定义域上的奇偶性; (2)证明:函数()x f 在()+∞,1上是增函数; (3)求函数()x f 在区间[]5,2上的最值.22.(本题满分12分)若函数()x f 在[]b a x ,∈时,函数值y 的取值区间恰为⎥⎦⎤⎢⎣⎡a b 1,1,就称区间[]b a ,为()x f 的一个“倒域区间”.定义在[]2,2-上的奇函数()x g ,当[]2,0∈x 时,()x x x g 22+-=. (1)求()x g 的解析式;(2)求函数()x g 在[]2,1内的“倒域区间”;(3)如果将函数()x g 在定义域内所有所有“倒域区间”上的图象作为函数()x h y =的图象,那么是否存在实数m ,使集合()(){}(){}m x y y x x h y y x +==2,, 恰含有2个元素?新人教A 版高一上学期摸底试卷数 学 试 卷 (十九)A 卷 答 案 解 析第Ⅰ卷(选择题 共60分)一、单项选择题(每小题5分,共40分)1. 设全集=U R ,{}0342<+-=x x x A ,{}032<-=x x B ,则 A (C U B )= 【 】 (A )⎪⎭⎫ ⎝⎛23,1 (B )⎪⎭⎫⎢⎣⎡3,23 (C )()+∞,1 (D )⎪⎭⎫ ⎝⎛∞-23,答案 【 B 】解析 本题考查集合的基本运算.{}{}310342<<=<+-=x x x x x A ,{}⎭⎬⎫⎩⎨⎧<=<-=23032x x x x B . ∴C U B =⎪⎭⎫⎢⎣⎡+∞,23.∴ A (C U B )=⎪⎭⎫⎢⎣⎡3,23.∴选择答案【 B 】.2. 命题“所有的正数都有算术平方根”的否定是 【 】 (A )所有的正数都没有算术平方根 (B )所有的非正数都有算术平方根 (C )至少存在一个正数有算术平方根 (D )至少存在一个正数没有算术平方根 答案 【 D 】解析 本题考查全程量词命题的否定.对含有一个量词的命题进行否定的方法是:改变量词,否定结论.全称量词命题的否定一般来说,对含有一个量词的全称量词命题进行否定,我们只需把“所有的” “任意一个”等全称量词,变成“并非所有的”“并非任意一个”等短语即可.也就是说,假定全称量词命题为“()x p M x ,∈∀”,则它的否定为“并非()x p M x ,∈∀”,也就是“M x ∈∃,()x p 不成立”.用“⌝()x p ”表示“()x p 不成立”. 对于含有一个量词的全称量词命题的否定,有下面的结论:全称量词命题:()x p M x ,∈∀,它的否定:M x ∈∃,⌝()x p .也就是说,全称量词命题的否定是存在量词命题.∴选择答案【 D 】.3. 已知函数()⎩⎨⎧<+≥=0,10,2x x x x x f ,若()()32=+-a f f ,则实数a 的值为 【 】(A )2- (B )2或3 (C )2 (D )2-或3 答案 【 C 】解析 本题考查分段函数的知识.()1122-=+-=-f∵()()32=+-a f f ,∴()31=+-a f ,∴()4=a f .∴⎩⎨⎧=≥402a a 或⎩⎨⎧=+<410a a ,解之得:2=a 或无解. ∴实数a 的值为2. ∴选择答案【 C 】.4. 已知实数n m x x ,,,21满足n m x x <<,21,且()()011<--x n x m ,()()022<--x n x m ,则下列说法正确的是 【 】 (A )n x x m <<<21 (B )21x n x m <<< (C )n x m x <<<21 (D )21x n m x <<< 答案 【 A 】解析 本题考查三个“二次”之间的关系.由题意可知,21,x x 是一元二次不等式()()0<--x n x m ,即()()0<--n x m x 的两个解. ∵n m x x <<,21,∴n x m <<. ∴n x x m <<<21. ∴选择答案【 A 】.5. 不等式122322++++x x x x ≥m 对任意实数x 都成立,则实数m 的取值范围是 【 】(A )(]2,∞- (B )⎪⎭⎫⎢⎣⎡+∞,310 (C )⎥⎦⎤⎢⎣⎡310,2 (D )(]⎪⎭⎫⎢⎣⎡+∞∞-,3102,答案 【 A 】解析 本题考查与不等式有关的恒成立问题.∵∈∀x R ,有04321122>+⎪⎭⎫ ⎝⎛+=++x x x∴不等式122322++++x x x x ≥m 可化为2232++x x ≥()12++x x m .整理得:()()m x m x m -+-+-2232≥0当03=-m ,即3=m 时,1--x ≥0,解之得:x ≤1-,不符合题意;当3≠m 时,则有()()()⎪⎩⎪⎨⎧≤----=∆>-02342032m m m m ,解之得:m ≤2. 综上所述,实数m 的取值范围是(]2,∞-. ∴选择答案【 A 】.6. 已知()x f 是定义在R 上的增函数,若()x f y =的图象过点()1,2--A 和点()1,3B ,则满足()111<+<-x f 的x 的取值范围是 【 】(A )()3,2- (B )()2,3- (C )()4,1- (D )()1,1- 答案 【 B 】解析 本题考查利用函数的单调性解抽象不等式. 由题意可知:()12-=-f ,()13=f .∵()x f 是定义在R 上的增函数,()111<+<-x f ∴()()()312f x f f <+<-.∴312<+<-x ,解之得:23<<-x . ∴x 的取值范围是()2,3-. ∴选择答案【 B 】. 7. 若b a ,为正数,111=+b a ,则1811-++-b b a 的最小值为 【 】 (A )2 (B )7 (C )10 (D )17 答案 【 B 】解析 本题考查利用基本不等式求最值. ∵111=+b a ,∴1-=b ba . ∵b a ,为正数,∴1>b .11911911111811+-+-=-+-+--=-++-b b b b b b b b a ≥()711912=+--b b . 当且仅当191-=-b b ,即34,4==a b 时,等号成立.∴1811-++-b b a 的最小值为7. ∴选择答案【 B 】.8. 函数()x x x x x f -++--=22212的最大值为 【 】(A )2 (B )23 (C )25(D )2答案 【 B 】解析 本题考查用换元法确定函数的最值.注意换元后标明新元的取值范围. 函数()x f 的定义域为[]2,0.设x x t -+=2,则22222x x t -+=,∴121222-=-t x x . ∵()1122222222+--+=-+=x x x t ,∈x []2,0∴[]4,22∈t ,∴[]2,2∈t (t ≥0).∵()()()23241214112121222+--=++-=+⎪⎭⎫ ⎝⎛--==t t t t t t g x f ,[]2,2∈t∴()()()232max max ===g t g x f . ∴选择答案【 B 】.二、多项选择题(每小题5分,共20分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9. 已知方程0542=+--m x x 的两个根一个大于1,一个小于1,则下列选项中满足要求的实数m 的值为 【 】 (A )2 (B )3 (C )4 (D )5 答案 【 BCD 】解析 本题考查一元二次方程的实数根的分布. 令()542+--=m x x x f由题意可知:()025411<+-=+--=m m f ,解之得:2>m . ∴选择答案【 BCD 】.10. 下列函数中,是偶函数,且在区间()1,0上为增函数的是 【 】 (A )x y = (B )21x y -= (C )xy 1-= (D )422+=x y 答案 【 AD 】解析 本题考查函数的奇偶性和单调性.对于(A ),函数x y =为绝对值函数,它是偶函数,且在[)+∞,0上为增函数; 对于(B ),函数21x y -=是偶函数,且在[)+∞,0上为减函数; 对于(C ),函数xy 1-=是奇函数,且在()+∞,0上为增函数; 对于(D ),函数422+=x y 是偶函数,且在[)+∞,0上为增函数. ∴选择答案【 AD 】.11. 若下列求最值的运算中,错误的是 【 】 (A )当0<x 时,()⎥⎦⎤⎢⎣⎡-+--=+x x x x 11≤()212-=-⋅--x x ,当且仅当1-=x 时,x x 1+取得最大值,最大值为2- (B )当1>x 时,12-+x x ≥122-⋅x x ,当且仅当12-=x x 时取等号,解得1-=x 或2=x ,又1>x ,所以2=x ,故当1>x 时,12-+x x 的最小值为41222=-+(C )由于4494492222-+++=++x x x x ≥()24494222=-+⋅+x x ,故4922++x x 的最小值是2(D )已知0,0>>y x ,且24=+y x .∵y x 42+=≥xy y x 442=⋅,∴xy ≤21,又因为y x 11+≥xyy x 2112=⋅≥4212=,∴当0,0>>y x ,且24=+y x 时,y x 11+的最小值为4 答案 【 BCD 】解析 本题考查基本不等式的应用. 对于(A ),显然正确;对于(B ),当1>x 时,01>-x ,∴112112+-+-=-+x x x x ≥()12211212+=+-⋅-x x . 当且仅当121-=-x x ,即12+=x 时,等号成立. ∴当1>x 时,12-+x x 的最小值为122+.故(B )错误;对于(C ),等号成立的条件是49422+=+x x ,得到12-=x ,无解,∴4922++x x 的最小值不是2.故(C )错误;实际上,设42+=x t ,则[)+∞∈,4t ,494922-+=++=tt x x y . ∵函数49-+=tt y 在[)+∞,3上为增函数 ∴当4=t ,即0=x 时,494494min =-+=y ,即4922++x x 的最小值是49.对于(D ),当连续两次使用基本不等式求最值时,要保证两个等号成立的条件一致.由此可以确定(D )错误.∴选择答案【 BCD 】.12. 函数()xax x f -=(∈a R )的大致图象可能是 【 】(A ) (B ) (C ) (D )答案 【 ABD 】解析 本题考查根据函数的图象确定函数的图象. 显然,函数()x f 的定义域为{}0≠x x . 当0=a 时,()x x f =(0≠x ).故(A )正确;当0>a 时,()⎪⎪⎩⎪⎪⎨⎧<-->-=0,0,x xa x x x a x x f ,显然,()x f 在()+∞,0上单调递增;当[)0,a x -∈时,()x f 单调递增;当(]a x -∞-∈,时,()x f 单调递减.故(D )正确; 当0<a 时,若0>x ,则()xax x f -+=,函数()x f 在(]a -,0上单调递减,在[)+∞-,a 上单调递增.若0<x ,则函数()x f 在()0,∞-上单调递减.故(B )正确. ∴选择答案【 ABD 】.第Ⅱ卷 非选择题(共90分)三、填空题(每小题5分,共20分)13. 已知全集{}1,2,12++-=a a U ,{}2,1+=a A ,C U A {}3=,则=a __________. 答案 2-解析 本题考查集合的基本运算. 由题意可知:312=++a a .∴022=-+a a ,解之得:2-=a 或1=a . 当2-=a 时,{}2,1-=A ,符合题意;当1=a 时,{}2,2=A ,不满足集合元素的互异性且不符合题意. 综上所述,2-=a .14. 函数()⎩⎨⎧<<≥=tx x tx x x f 0,,2是区间()+∞,0上的增函数,则实数t 的取值范围是__________.答案 [)+∞,1解析 本题考查分段函数的单调性. 令x x =2,解之得:0=x 或1=x .由题意并结合函数()x f 的图象可知:t ≥1. ∴实数t 的取值范围是[)+∞,1.15. 已知幂函数()()m x m m x f 12--=为奇函数,则=m __________,函数()m x x g n m +=+2(∈n R )的图象必过点__________.(第一个空2分,第二个空3分) 答案 ()1,1,1-解析 本题考查幂函数的定义. ∵函数()()m x m m x f 12--=是幂函数 ∴112=--m m ,解之得:1-=m 或2=m . ∵函数()x f 为奇函数,∴1-=m . ∴()121-=+-n x x g . 令1=x ,则()112=-=x g . ∴函数()x g 的图象必过点()1,1.16. 已知函数()2+=x f y 为偶函数,()142+-=x x x g ,且()x f 与()x g 图象的交点为A 、B 、C 、D 、E ,则交点的横坐标之和为__________. 答案 10解析 本题考查偶函数的性质、函数图象的对称性和中点坐标公式. ∵函数()2+=x f y 为偶函数∴()()x f x f -=+22,函数()x f 的图象关于直线2=x 对称. ∵()()321422--=+-=x x x x g ∴函数()x g 的图象关于直线2=x 对称.设()x f 与()x g 图象的交点从左到右依次为A 、B 、C 、D 、E ,根据中点坐标公式则有:422,422=⨯=+=⨯=+D B E A x x x x ,且2=C x .∴10244=++=++++E D C B A x x x x x .四、解答题(共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)已知集合{}73<≤=x x A ,{}102<<=x x B ,{}a x a x C <<-=5. (1)求B A ;(2)若()B A C ⊆,求实数a 的取值范围. 解:(1)∵{}73<≤=x x A ,{}102<<=x x B ∴{}102<<=x x B A ;(2)当∅=C 时,满足()B A C ⊆,此时a -5≥a ,解之得:a ≤25; 当∅≠C 时,则有⎪⎩⎪⎨⎧≤≥-<-10255a a aa ,解之得:a <25≤3.综上所述,实数a 的取值范围是(]3,∞-. 18.(本题满分12分)设命题:p 实数x 满足03422<+-a ax x ,命题q :实数x 满足9125<+<x . (1)若1=a ,且q p ,同为真命题,求实数x 的取值范围;(2)若0>a ,且q 是p 的充分不必要条件,求实数a 的取值范围. 解:(1)当1=a 时,0342<+-x x ,解之得:31<<x . 解不等式9125<+<x 得:42<<x . ∵q p ,同为真命题∴实数x 的取值范围是32<<x ;(2)∵03422<+-a ax x ,∴()()03<--a x a x . ∵0>a ,∴a x a 3<<. ∴a x a p 3:<<(0>a ).∵q 是p 的充分不必要条件,∴{}42<<x x {}a x a x 3<<≠⊂.∴⎩⎨⎧≥≤432a a ,解之得:34≤a ≤2.∴实数a 的取值范围是⎥⎦⎤⎢⎣⎡2,34.19.(本题满分12分)已知幂函数()x f 的图象经过点()27,3--. (1)求()x f 的解析式;(2)判断()x f 的单调性并用定义法证明.解:(1)设幂函数()αx x f =,把()27,3--代入()αx x f =得:()()33273-=-=-α.∴3=α. ∴()3x x f =;(2)函数()x f 的定义域为R . 任取∈21,x x R ,且21x x <,则有()()()()22212121323121x x x x x x x x x f x f ++-=-=- ()⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+-=2221214321x x x x x .∵21x x <,∴021<-x x ,043212221>⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+x x x .∴()()()()2121,0x f x f x f x f <<-. ∴()x f 在R 上为增函数. 20.(本题满分12分)某厂家拟举行促销活动,经调查测算,某产品的年销售量(即该厂的年产量)x 万件与年促销费用m (m ≥0)万元满足13+-=m kx (k 为常数),如果不搞促销活动,那么该产品的年销售量只能是1万件.已知年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定位每件产品平均成本的1. 5倍(产品成本包括固定投入和再投入两部分资金).(1)将该产品的年利润y 万元表示为年促销费用m 万元的函数; (2)该厂家年促销费用投入多少万元时,厂家的利润最大? 解:(1)由题意可知,当0=m 时,1=x .∴13=-k ,解之得:2=k ,∴123+-=m x . 每件产品的销售价格为()xx 8165.1+元.∴()281168168165.1+⎪⎭⎫ ⎝⎛++-=---+⋅=m m m x x x x y ;(2)由(1)可知:2911612811161+⎪⎭⎫ ⎝⎛+++-=+⎪⎭⎫ ⎝⎛-+++-=m m m m y ≤()212911612=++⋅+-m m . 当且仅当1161+=+m m ,即3=m 时,等号成立. ∴当3=m 时,y 取得最大值为21max =y .答: 该厂家年促销费用投入3万元时,厂家的利润最大. 21.(本题满分12分)已知函数()xax x f +=2,且()21=f .(1)判断并证明函数()x f 在其定义域上的奇偶性; (2)证明:函数()x f 在()+∞,1上是增函数; (3)求函数()x f 在区间[]5,2上的最值. 解:(1)∵()211=+=a f ,∴1=a .∴()xx x x x f 112+=+=.函数()x f 为奇函数,理由如下:易知函数()x f 的定义域为()()+∞∞-,00, ,关于原点对称. ∵()()x f x x x x x f -=⎪⎭⎫ ⎝⎛+-=--=-11 ∴函数()x f 为奇函数;(2)任取()+∞∈,1,21x x ,且21x x <,则有()()()()212121221121111x x x x x x x x x x x f x f --=--+=-. ∵()+∞∈,1,21x x ,21x x <∴01,1,0,021212121>->><-x x x x x x x x ∴()()01212121<--x x x x x x .∴()()021<-x f x f ,()()21x f x f <. ∴函数()x f 在()+∞,1上是增函数;(3)由(2)知,函数()x f 在区间[]5,2上单调递增 ∴()()5265max ==f x f ,()()252min ==f x f . 22.(本题满分12分)若函数()x f 在[]b a x ,∈时,函数值y 的取值区间恰为⎥⎦⎤⎢⎣⎡a b 1,1,就称区间[]b a ,为()x f 的一个“倒域区间”.定义在[]2,2-上的奇函数()x g ,当[]2,0∈x 时,()x x x g 22+-=. (1)求()x g 的解析式;(2)求函数()x g 在[]2,1内的“倒域区间”;(3)如果将函数()x g 在定义域内所有所有“倒域区间”上的图象作为函数()x h y =的图象,那么是否存在实数m ,使集合()(){}(){}m x y y x x h y y x +==2,, 恰含有2个元素? 解:(1)设[)0,2-∈x ,则(]2,0∈-x ,∴()()x x x x x g 2222--=---=-.∵函数()x g 是定义在[]2,2-上的奇函数 ∴()()x x x g x g 22--=-=- ∴()x x x g 22+=,[)0,2-∈x .∴()[)[]⎪⎩⎪⎨⎧∈+--∈+=2,0,20,2,222x x x x x x x g ;(2)当[]2,1∈x 时,()()11222+--=+-=x x x x g .∴函数()x g 在[]2,1上单调递减.∵在[]2,1内,当[]b a x ,∈时,函数()x g 的值域为⎥⎦⎤⎢⎣⎡a b 1,1∴()()⎪⎪⎩⎪⎪⎨⎧=+-==+-=bb b b g a a a a g 121222. ∴b a ,是方程xx x 122=+-的两个实数根,且[]2,1,∈b a . 方程xx x 122=+-,即()()011112222323=---=+--=+-x x x x x x x x . 解之得:251,251,1321-=+==x x x . ∵[]2,1,∈b a ,且b a < ∴251,1+==b a . ∴函数()x g 在[]2,1内的“倒域区间”为⎥⎦⎤⎢⎣⎡+251,1; (3)2-=m .(过程略)。
2023-2024学年湖北省荆州市荆州中学高一(上)期中数学试卷【答案版】

2023-2024学年湖北省荆州市荆州中学高一(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={﹣2,﹣1,0,1},B ={x |﹣1<x <1},则A ∩(∁R B )=( ) A .{﹣2,﹣1}B .{﹣1,1}C .{﹣2,0,1}D .{﹣2,﹣1,1}2.已知命题p :∀x ∈R ,x 2﹣3x +a ≠0,则( ) A .¬p :∀x ∈R ,x 2﹣3x +a =0B .¬p :∃x ∈R ,x 2﹣3x +a =0C .¬p :∃x ∈R ,x 2﹣3x +a ≠0D .a =2时,p 为真命题3.3133)16√2+(0.001)−13+√√2=( )A .2√3−1.9B .12+√2−√3C .12D .2√3+84.函数y =|x|x 2−1的图象大致为( ) A . B .C .D .5.若a =5√3,b =50.3,c =0.82,则( ) A .b >c >aB .b >a >cC .c >a >bD .a >b >c6.已知函数F (x )=x 3+2x ﹣2﹣x +5,若F (a )=7,则F (﹣a )的值为( ) A .2B .﹣7C .3D .﹣37.“a ∈(12,23]”是“f(x)={(13−a)x +1,(x <1)a x,(x ≥1)满足对任意x 1≠x 2都有f(x 1)−f(x 2)x 1−x 2<0成立”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.已知f (x )是定义在实数集R 上的函数,在(0,+∞)内单调递增,f (2)=0,且函数f (x +1)关于点(﹣1,0)对称,则不等式x •f (1﹣x )<0的解集是( ) A .(﹣∞,﹣2)∪(﹣1,0)∪(2,+∞) B .(﹣∞,﹣2)∪(2,+∞) C .(﹣1,0)∪(1,3)D .(﹣∞,﹣1)∪(0,1)∪(3,+∞)二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列说法正确的是( ) A .若a >b ,c <0,则ac>bcB .若a >b >0,m >0,则b a<b+m a+mC .对任意实数a ,b ,都有a 2+b 2﹣2|ab |≥0D .若二次函数f (x )=x 2+ax +b ,实数x 1≠x 2,则f(x 1+x 22)<f(x 1)+f(x 2)210.已知函数f(x)=2x2−4x+3,则( )A .f (x )在[2,+∞)上单调递增B .f (x )的值域为(0,+∞)C .不等式f (x )<256的解集为(﹣1,5)D .若g (x )=2﹣ax•f (x )在(﹣∞,1]上单调递减,则实数a 的取值范围为[﹣2,+∞)11.设函数f (x )=min {|x ﹣3|,3|x |﹣1,|x +3|},则下列说法正确的是( ) A .f (f (3))=1 B .函数f (x )为偶函数 C .函数f (x )的最小值为0D .当x ∈[﹣3,3]时,f (x )﹣1≤a ,则a 的取值范围为[2,+∞) 12.已知不等式x 2y−1+y 2x−1≥3m 2−1对x >1,y >1恒成立,则m 的值可以是( )A .−√2B .﹣1C .√3D .2三、填空题:本题共4小题,每小题5分,共20分. 13.已知x 12−x −12=2,则x 2+x﹣2的值为 .14.已知幂函数f (x )=(m 2+4m +4)x m +2在(0,+∞)上单调递减,若(2a ﹣1)﹣m<(a +3)﹣m,则a的取值范围为 .15.已知函数f (x )=x 2﹣2kx +4在[1,3]上的最大值为﹣12,则实数k 的值为 .16.已知图象连续不断的函数f (x )是定义域为[﹣4,4]的偶函数,若对任意的x 1,x 2∈(0,4],当x 1<x 2时,总有f(x 1)x 2−f(x 2)x 1>0,则满足不等式(a +2)f (a +2)<(1﹣a )f (1﹣a )的a 的取值范围为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A ={x |(x ﹣a )(x ﹣3a )<0},集合B ={x |{2x ≥41−13x ≥0}. (1)当a =1时,求A ∪B ;(2)设a >0,A ∩B =B ,求实数a 的取值范围.18.(12分)若关于x 的不等式2x 2+ax ﹣(a +2)<0的解集是{x|−32<x <1}. (1)求实数a 的值; (2)当x >a 时,求y =x 2−2x+5x−a的最小值. 19.(12分)已知函数f (x )=(2k ﹣1)×3x +(k 2﹣8)是增函数,且f (1)=5. (1)若a >0,b >0,[f (a )+4]•[f (b )+4]=27,求9a+1b 的最小值;(2)是否存在实数m ,n (m <n ),使得当x ∈[m ,n ]时,函数y =f (x )的最小值恰为−13m ,而最大值恰 为−13n ?若存在,求出m ,n 的值;若不存在,请说明理由; 20.(12分)已知函数f(x)=a x −ba x (a >0,且a ≠1)的图象过点(0,0)和(1,32). (1)求证:f (x )是奇函数,并判断f (x )的单调性(不需要证明);(2)若∀t ∈[13,3],使得不等式f (t 2﹣kt +10)+f (a )>0都成立,求实数k 的取值范围. 21.(12分)先看下面的阅读材料:已知三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),称相应的二次函数f 1(x)=3ax 2+2bx +c 为f (x )的“导函数”,研究发现,若导函数f 1(x )>0在区间D 上恒成立,则f (x )在区间D 上单调递增;若导函数f 1(x )<0在区间D 上恒成立,则f (x )在区间D 上单调递减.例如:函数f (x )=﹣2x 3+3x 2+12x +5,其导函数f 1(x)=−6x 2+6x +12=−6(x 2﹣x ﹣2) =﹣6(x ﹣2)(x +1),由f 1(x )>0,得﹣1<x <2,由f 1(x )<0,得x <﹣1或x >2,所以三次函数f (x )在区间(﹣1,2)上单调递增,在区间(﹣∞,﹣1)和(2,+∞)上单调递减. 结合阅读材料解答下面的问题:(1)求三次函数f(x)=−x 3+12x 2+4x 的单调区间;(2)某市政府欲在文旅区内如图所示的矩形ABCD 地块中规划出一个儿童乐园(如图中阴影部分),形状为直角梯形OPRE (线段EO 和RP 为两条底边,OP ⊥OE ),已知AB =2km ,BC =6km ,AE =BF =4km ,其中曲线AF 是以A 为顶点、AD 为对称轴的抛物线的一部分. ①设OP =xkm (0<x <2),求出梯形OPRE 的面积S 与x 的解析式; ②求该公园的最大面积.22.(12分)已知函数f(x)={−x(x −2a)+a 2−4a(x ≤2a)x(x −2a)+a 2−4a(x >2a),(a ∈R ).(1)当a =2时,求f (x )=x |x ﹣2a |+a 2﹣4a (a ∈R )的单调区间; (2)如果关于x 的方程f (x )=0有三个不相等的非零实数解x 1,x 2,x 3,求1x 1+1x 2+1x 3的取值范围.2023-2024学年湖北省荆州市荆州中学高一(上)期中数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={﹣2,﹣1,0,1},B ={x |﹣1<x <1},则A ∩(∁R B )=( ) A .{﹣2,﹣1}B .{﹣1,1}C .{﹣2,0,1}D .{﹣2,﹣1,1}解:B ={x |﹣1<x <1},则∁R B ={x |x ≥1或x ≤﹣1},集合A ={﹣2,﹣1,0,1},则A ∩(∁R B )={﹣2,﹣1,1}. 故选:D .2.已知命题p :∀x ∈R ,x 2﹣3x +a ≠0,则( ) A .¬p :∀x ∈R ,x 2﹣3x +a =0B .¬p :∃x ∈R ,x 2﹣3x +a =0C .¬p :∃x ∈R ,x 2﹣3x +a ≠0D .a =2时,p 为真命题解:命题p :∀x ∈R ,x 2﹣3x +a ≠0,则¬p :∃x ∈R ,x 2﹣3x +a =0, 当a =2时,x =1或2时,x 2﹣3x +2=0,故p 为假命题. 故选:B .3.3133)16√2+(0.001)−13+√√2=( )A .2√3−1.9B .12+√2−√3C .12D .2√3+8解:原式=313×316×212212+(110)3×(−13)+2−√3=312+10+2−√3=12. 故选:C . 4.函数y =|x|x 2−1的图象大致为( ) A . B .C .D .解:由函数 y =|x|x 2−1,可得x ≠±1,故函数的定义域为(﹣∞,﹣1)∪(﹣1,1)∪(1,+∞), 又 f(−x)=|−x|(−x)2−1=x x 2−1=f(x),所以y =|x|x 2−1是偶函数,其图象关于y 轴对称,因此 A ,D 错误; 当 0<x <1时,x 2−1<0,y =|x|x 2−1<0,所以C 错误. 故选:B .5.若a =5√3,b =50.3,c =0.82,则( ) A .b >c >aB .b >a >cC .c >a >bD .a >b >c解:∵5√3>50.3>50=1,∴a >b >1, ∵0<0.82<0.80=1,∴0<c <1, ∴a >b >c . 故选:D .6.已知函数F (x )=x 3+2x ﹣2﹣x +5,若F (a )=7,则F (﹣a )的值为( )A .2B .﹣7C .3D .﹣3解:函数F (x )=x 3+2x ﹣2﹣x +5,F (a )=7,F (a )+F (﹣a )=a 3+2a ﹣2﹣a +5+(﹣a )3+2﹣a ﹣2a +5=10,所以F (﹣a )=10﹣F (a )=10﹣7=3. 故选:C .7.“a ∈(12,23]”是“f(x)={(13−a)x +1,(x <1)a x,(x ≥1)满足对任意x 1≠x 2都有f(x 1)−f(x 2)x 1−x 2<0成立”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解:由题意得f (x )在R 上单调递减,故{ 13−a <00<a <113−a +1≥a ,解得:13<a ≤23,故“a ∈(12,23]”是“f(x)={(13−a)x +1,(x <1)a x,(x ≥1)满足对任意x 1≠x 2都有f(x 1)−f(x 2)x 1−x 2<0成立”的充分不必要条件. 故选:A .8.已知f (x )是定义在实数集R 上的函数,在(0,+∞)内单调递增,f (2)=0,且函数f (x +1)关于点(﹣1,0)对称,则不等式x •f (1﹣x )<0的解集是( )A .(﹣∞,﹣2)∪(﹣1,0)∪(2,+∞)B .(﹣∞,﹣2)∪(2,+∞)C .(﹣1,0)∪(1,3)D .(﹣∞,﹣1)∪(0,1)∪(3,+∞) 解:因为函数f (x +1)关于点(﹣1,0)对称, 所以f (x )的图象关于原点对称,即f (x )为奇函数, 因为f (x )在(0,+∞)内单调递增,f (2)=0, 故f (x )在(﹣∞,0)上单调递增,f (﹣2)=0, 由x •f (1﹣x )<0可得xf (x ﹣1)>0, 即{x >0f(x −1)>0或{x <0f(x −1)<0,即{x >0x −1>2或−2<x −1<0或{x <00<x −1<2或x −1<−2,解得x >3或0<x <1或x <﹣1. 故选:D .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列说法正确的是( ) A .若a >b ,c <0,则ac>bcB .若a >b >0,m >0,则b a<b+m a+mC .对任意实数a ,b ,都有a 2+b 2﹣2|ab |≥0D .若二次函数f (x )=x 2+ax +b ,实数x 1≠x 2,则f(x 1+x 22)<f(x 1)+f(x 2)2解:对于A ,由1c<0,a >b ,可得a c<b c,故A 错误; 对于B ,若a >b >0,m >0,则ba −b+m a+m=m(b−a)a(a+m)<0,可得b a<b+m a+m,B 正确;对于C ,a 2+b 2﹣2|ab |=(|a |﹣|b |)2≥0,当且仅当|a |=|b |时,等号成立,故a 2+b 2﹣2|ab |≥0,C 正确; 对于D ,二次函数f (x )=x 2+ax +b ,实数x 1≠x 2, 则f(x 1+x 22)=14(x 1+x 2)2+a 2(x 1+x 2)+b ,f(x 1)+f(x 2)2=12[(x 12+ax 1+b)+(x 22+ax 2+b)], 可得f(x 1+x 22)−f(x 1)+f(x 2)2=14(x 12+x 22)−12(x 12+x 22)=−14(x 1−x 2)2≤0, 由x 1≠x 2可知等号不能成立,故f(x 1+x 22)<f(x 1)+f(x 2)2,D 正确. 故选:BCD .10.已知函数f(x)=2x2−4x+3,则( )A .f (x )在[2,+∞)上单调递增B .f (x )的值域为(0,+∞)C .不等式f (x )<256的解集为(﹣1,5)D .若g (x )=2﹣ax•f (x )在(﹣∞,1]上单调递减,则实数a 的取值范围为[﹣2,+∞)解:根据题意,设t =x 2﹣4x +3,则y =2t , 依次分析选项:对于A ,t =x 2﹣4x +3是对称轴为x =2的二次函数,开口向上,则t =x 2﹣4x +3在[2,+∞)上单调递增,y =2t 在R 上单调递增,故f (x )在[2,+∞)上单调递增,A 正确;对于B ,t =x 2﹣4x +3≥﹣1,则y =2t ≥12,则f (x )的值域为[12,+∞),B 错误;对于C ,不等式f (x )<256=28,即x 2﹣4x +3<8,解可得﹣1<x <5,即不等式的解集为(﹣1,5),C 正确;对于D ,g (x )=2﹣ax•f (x )=2x2−(4+a)x+3,设m =x 2﹣(4+a )x +3,则y =2m ,若g (x )=2﹣ax•f (x )在(﹣∞,1]上单调递减,则m =x 2﹣(4+a )x +3在(﹣∞,1]上单调递减,必有12(4+a )≥1,解可得a ≥﹣2,即实数a 的取值范围为[﹣2,+∞),D 正确. 故选:ACD .11.设函数f (x )=min {|x ﹣3|,3|x |﹣1,|x +3|},则下列说法正确的是( ) A .f (f (3))=1 B .函数f (x )为偶函数 C .函数f (x )的最小值为0D .当x ∈[﹣3,3]时,f (x )﹣1≤a ,则a 的取值范围为[2,+∞)解:在同一坐标系作出 y =3|x |﹣1,y =|x ﹣3|和 y =|x +3|的图象,如图所示,则A (﹣1,2),B (1,2),所以f (x )={|x +3|,x ≤−13|x|−1,−1≤x ≤1|x −3|,x ≥1,其图象是图中实线部分.则f (f (3))=f (0)=0,故A 错误;函数f (x )为偶函数,函数f (x )的最小值为0,无最大值,B ,C 正确; 当x ∈[﹣3,3]时,f (x )max =2,所以a ≥2﹣1=1,D 错误. 故选:BC . 12.已知不等式x 2y−1+y 2x−1≥3m 2−1对x >1,y >1恒成立,则m 的值可以是( )A .−√2B .﹣1C .√3D .2解:由题意x 2y−1+y 2x−1=[(x−1)+1]2y−1+[(y−1)+1]2x−1=(x−1)2y−1+1y−1+(y−1)2x−1+1x−1+2(x−1)y−1+2(y−1)x−1≥2√(x−1)2y−1⋅1y−1+2√(y−1)2x−1⋅1x−1+2√2(x−1)y−1⋅2(y−1)x−1=2(y−1x−1+x−1y−1)+4≥2×2√y−1x−1⋅x−1y−1+4=8,第一个等号成立当且仅当x =y =2>1,第二个等号成立当且仅当x =y >1, 综上,(x 2y−1+y 2x−1)min =8,当且仅当x =y =2>1时成立; 又不等式x 2y−1+y 2x−1≥3m 2−1对x >1,y >1恒成立,等价于3m 2﹣1≤8,解得−√3≤m ≤√3, 对比选项可知,m 的值可以是−√2或﹣1或√3. 故选:ABC .三、填空题:本题共4小题,每小题5分,共20分.13.已知x 12−x−12=2,则x 2+x﹣2的值为 34 .解:∵x 12−x −12=2,∴(x 12−x−12)2=x +x ﹣1﹣2=4,∴x +x ﹣1=6,∴(x +x ﹣1)2=x +x ﹣2+2=36,∴x +x ﹣1=34.故答案为:34.14.已知幂函数f (x )=(m 2+4m +4)x m +2在(0,+∞)上单调递减,若(2a ﹣1)﹣m<(a +3)﹣m,则a的取值范围为 (﹣∞,4) .解:由题意可知{m 2+4m +4=1m +2<0,解得m =﹣3,∴不等式(2a ﹣1)﹣m<(a +3)﹣m,可化为(2a ﹣1)3<(a +3)3,又∵函数y =x 3在R 上单调递增, ∴2a ﹣1<a +3,解得a <4. 故a 的取值范围为(﹣∞,4). 故答案为:(﹣∞,4).15.已知函数f (x )=x 2﹣2kx +4在[1,3]上的最大值为﹣12,则实数k 的值为 172.解:函数f (x )=x 2﹣2kx +4开口向上,对称轴x =k , 区间[1,3]的中点x =2,当k ≤2时,|3﹣k |≥|1﹣k |,所以x =3离对称轴较远,所以f (x )max =f (3)=9﹣6k +4=﹣12,解得k =256>2,不符合k ≤2; 当k >2时,|3﹣k |<|1﹣k |,所以x =1离对称轴较远, 所以f (x )max =f (1)=1﹣2k +4=﹣12,解得k =172>2,符合条件. 所以k 的值为172.故答案为:172.16.已知图象连续不断的函数f (x )是定义域为[﹣4,4]的偶函数,若对任意的x 1,x 2∈(0,4],当x 1<x 2时, 总有f(x 1)x 2−f(x 2)x 1>0,则满足不等式(a +2)f (a +2)<(1﹣a )f (1﹣a )的a 的取值范围为 (−12,2] .解:因为函数f (x )是定义域为[﹣4,4]的偶函数, 若对任意的x 1,x 2∈(0,4],当x 1<x 2时,总有f(x 1)x 2−f(x 2)x 1>0,即x 1f (x 1)>x 2f (x 2),令g (x )=xf (x ),则g (x )在(0,4]上单调递减, 因为f (x )为偶函数,即f (﹣x )=f (x ), 故g (﹣x )=﹣xf (﹣x )=﹣xf (x )=﹣g (x ), 根据奇函数的对称性可知,g (x )在R 上单调递减,由不等式(a +2)f (a +2)<(1﹣a )f (1﹣a )可得g (a +2)<g (1﹣a ), 所以{−4≤a +2≤4−4≤1−a ≤4a +2>1−a,解得−12<a ≤2.故答案为:(−12,2].四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A ={x |(x ﹣a )(x ﹣3a )<0},集合B ={x |{2x ≥41−13x ≥0}. (1)当a =1时,求A ∪B ;(2)设a >0,A ∩B =B ,求实数a 的取值范围.解:(1)B ={x|{2x ≥41−13x ≥0}={x|{x ≥2x ≤3}={x|2≤x ≤3}, 当a =1时,A ={x |(x ﹣1)(x ﹣3)<0}={x |1<x <3}, ∴A ∪B ={x |1<x ≤3};(2)∵a >0,∴A ={x |a <x <3a }, 又A ∩B =B ,∴B ⊆A , ∴{a <23a >3,∴1<a <2, ∴实数a 的取值范围为(1,2).18.(12分)若关于x 的不等式2x 2+ax ﹣(a +2)<0的解集是{x|−32<x <1}. (1)求实数a 的值;(2)当x >a 时,求y =x 2−2x+5x−a的最小值.解:(1)因为不等式2x 2+ax ﹣(a +2)<0的解集是{x|−32<x <1}, 所以−32和1是方程2x 2+ax ﹣(a +2)=0的两个根, 由根与系数的关系知,{−32+1=−a2−32×1=−a+22,解得a =1. (2)由(1)知,a =1,当x >a 时,x ﹣1>0时,所以y =x 2−2x+5x−a =x 2−2x+5x−1=(x−1)2+4x−1=(x −1)+4x−1≥2√(x −1)4x−1=4, 当且仅当x ﹣1=4x−1,即x =3时取等号,所以y min =4.19.(12分)已知函数f (x )=(2k ﹣1)×3x +(k 2﹣8)是增函数,且f (1)=5. (1)若a >0,b >0,[f (a )+4]•[f (b )+4]=27,求9a+1b 的最小值;(2)是否存在实数m ,n (m <n ),使得当x ∈[m ,n ]时,函数y =f (x )的最小值恰为−13m ,而最大值恰 为−13n ?若存在,求出m ,n 的值;若不存在,请说明理由; 解:∵f (x )=(2k ﹣1)×3x +(k 2﹣8),且f (1)=5,∴3(2k ﹣1)+k 2﹣8=5,即k 2+6k ﹣16=0,解得k =2或k =﹣8,又函数f (x )=(2k ﹣1)×3x +(k 2﹣8)是增函数,∴2k ﹣1>0,即k >12, ∴k =2,则f (x )=3×3x ﹣4.(1)由[f (a )+4]•[f (b )+4]=27,得3a +b =3,∴a +b =1, 又a >0,b >0,∴9a+1b=(9a+1b)(a +b)=10+9b a+a b≥10+2√9b a⋅a b=16,当且仅当a b=9b a,即a =34,b =14时取等号,故9a+1b的最小值为16;(2)∵f (x )=3×3x ﹣4为增函数,∴当x ∈[m ,n ]时,函数y =f (x )的最小值为f (m ),最大值为f (n ), 由{f(m)=−13m f(n)=−13n ,得{3×3m −4=−13m3×3n−4=−13n,即{3×(3m )2−4×3m +1=03×(3n )2−4×3n +1=0, 可得3m ,3n 是方程3x 2﹣4x +1=0的两个根, ∵m <n ,∴3m =13,3n =1,解得m =﹣1,n =0, ∴存在m =﹣1,n =0 满足要求.20.(12分)已知函数f(x)=a x −ba x (a >0,且a ≠1)的图象过点(0,0)和(1,32). (1)求证:f (x )是奇函数,并判断f (x )的单调性(不需要证明);(2)若∀t ∈[13,3],使得不等式f (t 2﹣kt +10)+f (a )>0都成立,求实数k 的取值范围. 解:(1)证明:函数f(x)=a x −ba x (a >0,a ≠1)的图象过点(0,0)和(1,32), 则{f(0)=1−b =0f(1)=a −b a =32,解得{b =1a =2,所以f(x)=2x −12x , 函数定义域为R ,f(−x)=2−x −12−x =12x −2x =−(2x−12x )=−f(x), 所以函数f (x )是奇函数. 由函数y =2x 和y =−12x 都是R 上的增函数,所以f(x)=2x−12x 在R 上单调递增. (2)f (x )是奇函数,且在R 上单调递增,不等式f (t 2﹣kt +10)+f (a )>0等价f (t 2﹣kt +10)>﹣f (2)=f (﹣2), 可得t 2﹣kt +10>﹣2,若∀t ∈[13,3],使得不等式f (t 2﹣kt +10)+f (a )>0都成立, 等价于∀t ∈[13,3],t 2−kt +12>0恒成立,即t 2+12>kt ,k <t 2+12t =t +12t 在[13,3]上恒成立,设g(t)=t +12t (t ∈[13,3]),∀t 1,t 2∈[13,3],且t 1<t 2, 有g(t 1)−g(t 2)=(t 1+12t 1)−(t 2+12t 2)=(t 1−t 2)(t 1t 2−12t 1t 2),由13≤t 1<t 2≤3,可得t 1−t 2<0,19<t 1t 2<9<12,t 1t 2−12<0,则g (t 1)﹣g (t 2)>0,所以g (t 1)>g (t 2), 所以g (t )在[13,3]上单调递减, 所以g (t )min =g (3)=7,所以k <7, 所以实数k 的取值范围为(﹣∞,7). 21.(12分)先看下面的阅读材料:已知三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),称相应的二次函数f 1(x)=3ax 2+2bx +c 为f (x )的“导函数”,研究发现,若导函数f 1(x )>0在区间D 上恒成立,则f (x )在区间D 上单调递增;若导函数f 1(x )<0在区间D 上恒成立,则f (x )在区间D 上单调递减.例如:函数f (x )=﹣2x 3+3x 2+12x +5,其导函数f 1(x)=−6x 2+6x +12=−6(x 2﹣x ﹣2) =﹣6(x ﹣2)(x +1),由f 1(x )>0,得﹣1<x <2,由f 1(x )<0,得x <﹣1或x >2,所以三次函数f (x )在区间(﹣1,2)上单调递增,在区间(﹣∞,﹣1)和(2,+∞)上单调递减. 结合阅读材料解答下面的问题:(1)求三次函数f(x)=−x 3+12x 2+4x 的单调区间;(2)某市政府欲在文旅区内如图所示的矩形ABCD 地块中规划出一个儿童乐园(如图中阴影部分), 形状为直角梯形OPRE (线段EO 和RP 为两条底边,OP ⊥OE ),已知AB =2km ,BC =6km ,AE =BF =4km ,其中曲线AF 是以A 为顶点、AD 为对称轴的抛物线的一部分. ①设OP =xkm (0<x <2),求出梯形OPRE 的面积S 与x 的解析式; ②求该公园的最大面积.解:(1)f(x)=−x 3+12x 2+4x 的导函数为f 1(x)=−3x 2+x +4, 由f 1(x )>0,得−1<x <43,由f 1(x )<0,得x <﹣1或x >43,所以三次函数f (x )在区间(−1,43)上单调递增,在区间(﹣∞,﹣1)和(43,+∞)上单调递减. (2)①以A 为原点,AB 所在的直线为x 轴建立平面直角坐标系, 设曲线AF 所在抛物线的方程为y =ax 2(a >0), ∵抛物线过F (2,4),∴4=a ×22,得a =1,∴AF 所在抛物线的方程为y =x 2,P (x ,x 2)(0<x <2), ∴又E (0,4),C (2,6),则EC 所在直线为y =x +4, 则OE =4﹣x 2,PR =4+x ﹣x 2,∴公园的面积S =12(4−x 2+4+x −x 2)⋅x =−x 3+12x 2+4x (0<x <2), ②由(1)知,S (x )在(0,43)上单调递增,在(43,2)上单调递减, 当x =43时,S 取得最大值10427.故该公园的最大面积为10427km 2.22.(12分)已知函数f(x)={−x(x −2a)+a 2−4a(x ≤2a)x(x −2a)+a 2−4a(x >2a),(a ∈R ).(1)当a =2时,求f (x )=x |x ﹣2a |+a 2﹣4a (a ∈R )的单调区间; (2)如果关于x 的方程f (x )=0有三个不相等的非零实数解x 1,x 2,x 3,求1x 1+1x 2+1x 3的取值范围.解:(1)当a =2时,f (x )=x |x ﹣2a |+a 2﹣4a =x |x ﹣4|﹣4, 当x >4时,f (x )=x 2﹣4x ﹣4;当x ≤4时,f (x )=﹣x 2+4x ﹣4, 即有f(x)={−x 2+4x −4,x ≤4x 2−4x −4,x >4,据二次函数的性质可知,f (x )的单调递增区间为(﹣∞,2]和[4,+∞),单调递减区间为[2,4]. (2)f(x)={−x(x −2a)+a 2−4a(x ≤2a)x(x −2a)+a 2−4a(x >2a),当a =0时,f(x)={−x 2,x ≤0x 2,x >0,不符合题意;当a >0时,方程有3个不相等的实数根,且f (x )在(2a ,+∞)上递增,所以x ≥2a 时,x 2﹣2ax +a 2﹣4a =0有1个根,且x <2a 时,﹣x 2+2ax +a 2﹣4a =0有2个根, 所以只需满足{Δ=4a 2+4(a 2−4a)>0f(2a)=a 2−4a <0,解得2<a <4;当a <0时,当x >2a 时,方程x 2﹣2ax +a 2﹣4a =0的判别式Δ=4a 2﹣4(a 2﹣4a )=16a <0, 由二次方程的解的分布可得方程x 2﹣2ax +a 2﹣4a =0无解,所以此时不符合题意; 综上:a 的取值范围是(2,4).不妨设x 1<x 2<x 3,则x 1+x 2=2a ,x 1x 2=−a 2+4a ,x 3=2a+√4a 2−4(a 2−4a)2=a +2√a ,所以1x 1+1x 2+1x 3=x 1+x 2x 1x 2+1x 3=2a −a 2+4a +a+2√a =2a a(4−a)+√a (a+2√a)(a−2√a)=2a a(4−a)−a−2√a a(4−a)=a+2√a (a+2√a)(a−2√a)=1a−2√a =−1(√a)2−2√a =−1(√a−1)2−1, 因为2<a <4,则√2−1<√a −1<1,可得2−2√2<(√a −1)2−1<0, 所以1x 1+1x 2+1x 3=(√a−1)2−12√2−2=1+√22. 故1x 1+1x 2+1x 3的取值范围为(1+√22,+∞).。
【必考题】高一数学上期中试题(及答案)

【必考题】高一数学上期中试题(及答案)一、选择题1.已知函数()1ln 1xf x x -=+,则不等式()()130f x f x +-≥的解集为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .11,32⎛⎤ ⎥⎝⎦C .12,43⎡⎫⎪⎢⎣⎭D .12,23⎡⎫⎪⎢⎣⎭2.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-⋃+∞,, B .(1)(01)-∞-⋃,, C .(1)(1)-∞-⋃+∞,, D .(10)(01)-⋃,, 3.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④ D .①③4.1()xf x e x=-的零点所在的区间是( ) A .1(0,)2B .1(,1)2C .3(1,)2D .3(,2)25.设集合{1,2,3},{2,3,4}A B ==,则A B =A .{}123,4,,B .{}123,,C .{}234,,D .{}134,, 6.设x ∈R ,若函数f (x )为单调递增函数,且对任意实数x ,都有f (f (x )-e x )=e +1(e 是自然对数的底数),则f (ln1.5)的值等于( ) A .5.5B .4.5C .3.5D .2.57.已知函数2()log (23)(01)a f x x x a a =--+>≠,,若(0)0f <,则此函数的单调减区间是() A .(,1]-∞-B .[1)-+∞,C .[1,1)-D .(3,1]--8.定义在R 上的奇函数()f x 满足()1(2)f x f x +=-,且在()0,1上()3xf x =,则()3log 54f =( )A .32B .23-C .23D .32-9.函数()2log ,0,2,0,x x x f x x ⎧>=⎨≤⎩则函数()()()2384g x f x f x =-+的零点个数是( )A .5B .4C .3D .610.已知()()2,11,1x x f x f x x ⎧<⎪=⎨-≥⎪⎩,则()2log 7f =( )A .7B .72C .74D .7811.函数2y 34x x =--+的定义域为( )A .(41)--,B .(41)-,C .(11)-,D .(11]-, 12.已知函数()()()ln 1ln 1f x x x =+--,若实数a 满足()()120f a f a +->,则a 的取值范围是( ) A .()1,1-B .()0,1C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭二、填空题13.已知函数2()121()f x ax x ax a R =+++-∈的最小值为0,则实数a =_________.14.1232e 2(){log (1)2x x f x x x ,,-<=-≥,则f (f (2))的值为____________.15.已知1240x x a ++⋅>对一切(],1x ∞∈-上恒成立,则实数a 的取值范围是______. 16.已知()f x 是定义在[)(]2,00,2-⋃上的奇函数,当0x >,()f x 的图象如图所示,那么()f x 的值域是______.17.非空有限数集S 满足:若,a b S ∈,则必有ab S ∈.请写出一个..满足条件的二元数集S =________.18.已知函数42()(0)f x x ax bx c c =+++<,若函数是偶函数,且4((0))f f c c =+,则函数()f x 的零点共有________个.19.函数2()log 1f x x =-________.20.已知函数()266,34,x x f x x ⎧-+=⎨+⎩0x x ≥<,若互不相等的实数1x ,2x ,3x 满足()()()123f x f x f x ==,则123x x x ++的取值范围是__________. 三、解答题21.已知函数f (x )是定义域为R 的奇函数,当x <0时,()111f x x =+-. (1)求f (2)的值;(2)用定义法判断y =f (x )在区间(-∞,0)上的单调性. (3)求0()x f x >时,的解析式 22.已知2256x ≤且21log 2x ≥,求函数22()log log 22x xf x =⋅的最大值和最小值. 23.已知函数()f x 对任意的实数m ,n 都有()()()1f m n f m f n +=+-,且当0x >时,有()1f x >.(1)求()0f ;(2)求证:()f x 在R 上为增函数;(3)若()12f =,且关于x 的不等式()()223f ax f x x -+-<对任意的[)1,x ∈+∞恒成立,求实数a 的取值范围. 24.计算下列各式的值:(Ⅰ)322log 3lg25lg4log (log 16)++- (Ⅱ)2102329273()( 6.9)()()482-----+25.函数是奇函数.求的解析式;当时,恒成立,求m 的取值范围.26.有一种候鸟每年都按一定的路线迁陟,飞往繁殖地产卵.科学家经过测量发现候鸟的飞行速度可以表示为函数301log lg 2100xv x =-,单位是min km ,其中x 表示候鸟每分钟耗氧量的单位数,0x 表示测量过程中候鸟每分钟的耗氧偏差.(参考数据:lg 20.30=, 1.23 3.74=, 1.43 4.66=)(1)若02x =,候鸟每分钟的耗氧量为8100个单位时,它的飞行速度是多少min km ? (2)若05x =,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(3)若雄鸟的飞行速度为2.5min km ,雌鸟的飞行速度为1.5min km ,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的多少倍?【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【解析】 【分析】根据题意可得函数()f x 的奇偶性以及单调性,据此原不等式转化为()()31f x f x ≥-,求解可得x 的取值范围,即可得出结论. 【详解】根据题意,函数()1ln 1xf x x-=+, 则有101xx->+,解可得11x -<<, 即函数的定义域为()1,1-,关于原点对称, 又由()()11lnln 11x xf x f x x x+--==-=--+, 即函数()f x 为奇函数, 设11xt x -=+,则y lnt =, 12111x t x x -==-++,在()1,1-上为减函数, 而y lnt =在()0,∞+上为增函数, 故()1ln1xf x x-=+在区间()1,1-上为减函数, ()()()()13013f x f x f x f x +-≥⇒≥-- ()()3131111311x x f x f x x x ≤-⎧⎪⇒≥-⇒-<<⎨⎪-<-<⎩,解可得:1223x ≤<,即不等式的解集为12,23⎡⎫⎪⎢⎣⎭; 故选:D . 【点睛】本题考查函数的奇偶性与单调性的综合应用,解题时不要忽略函数的定义域,属于中档题.2.D解析:D 【解析】由f (x )为奇函数可知,()()f x f x x--=()2f x x<0.而f (1)=0,则f (-1)=-f (1)=0. 当x >0时,f (x )<0=f (1); 当x <0时,f (x )>0=f (-1). 又∵f (x )在(0,+∞)上为增函数, ∴奇函数f (x )在(-∞,0)上为增函数. 所以0<x <1,或-1<x <0. 选D点睛:解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内3.C解析:C 【解析】 【分析】化简函数()sin sin f x x x =+,研究它的性质从而得出正确答案. 【详解】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0x π≤≤时,()2sin f x x =,它有两个零点:0,π;当0x π-≤<时,()()sin sin 2sin f x x x x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④ 正确,故选C .【点睛】画出函数()sin sin f x x x =+的图象,由图象可得①④正确,故选C .4.B解析:B 【解析】函数f (x )=e x ﹣1x 是(0,+∞)上的增函数,再根据f (12)2<0,f (1)=e ﹣1>0,可得f (12)f (1)<0,∴函数f (x )=e x ﹣1x 的零点所在的区间是(12,1),故选B .点睛:判定函数的零点所在区间,只需计算区间端点处的函数值,并判断是否异号,只要异号,则区间内至少有一个零点存在.5.A解析:A 【解析】 由题意{1,2,3,4}AB ,故选A.点睛:集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图.6.D解析:D 【解析】 【分析】利用换元法 将函数转化为f (t )=e+1,根据函数的对应关系求出t 的值,即可求出函数f (x )的表达式,即可得到结论 【详解】 设t=f (x )-e x ,则f (x )=e x +t ,则条件等价为f (t )=e+1, 令x=t ,则f (t )=e t +t=e+1, ∵函数f (x )为单调递增函数, ∴t=1, ∴f (x )=e x +1,即f (ln5)=e ln1.5+1=1.5+1=2.5, 故选:D . 【点睛】本题主要考查函数值的计算,利用换元法求出函数的解析式是解决本题的关键.7.D解析:D 【解析】 【分析】求得函数()f x 的定义域为(3,1)-,根据二次函数的性质,求得()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减,再由(0)0f <,得到01a <<,利用复合函数的单调性,即可求解. 【详解】由题意,函数2()log (23)a f x x x =--+满足2230x x --+>,解得31x -<<,即函数()f x 的定义域为(3,1)-,又由函数()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减,因为(0)0f <,即(0)log 30a f =<,所以01a <<,根据复合函数的单调性可得,函数()f x 的单调递减区间为(3,1]--, 故选D. 【点睛】本题主要考查了对数函数的图象与性质,以及复合函数的单调性的判定,着重考查了推理与运算能力,属于基础题.8.D解析:D 【解析】 【分析】由题意结合函数的性质整理计算即可求得最终结果. 【详解】由题意可得:()354f log =()3log 23f +, 则()354f log =()31log 21f -+,且()()331log 21log 21f f +=--, 由于()3log 211,0-∈-,故()()31log 2333log 211log 232f f --=--=-=-,据此可得:()()3312log 21log 213f f +=-=-,()354f log =32-.本题选择D 选项. 【点睛】本题主要考查函数的奇偶性,函数的周期性及其应用等知识,意在考查学生的转化能力和计算求解能力.9.A解析:A 【解析】 【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数.【详解】 函数()()()2384g x f x f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0x x x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x f x f x =-+有5个零点,故选:A . 【点睛】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.10.C解析:C 【解析】 【分析】根据函数的周期性以及分段函数的表达式,结合对数的运算法则,代入即可得到结论. 【详解】2222log 4log 7log 83=<<=,20log 721∴<-<,()()2log 72227log 7log 7224f f -∴=-==. 故选:C . 【点睛】本题主要考查函数值的计算,根据分段函数的表达式以及函数的周期性进行转化是解决本题的关键.11.C解析:C 【解析】要使函数有意义,需使210{340x x x +>--+>,即1{41x x >--<<,所以1 1.x -<<故选C12.B解析:B 【解析】 【分析】求出函数()y f x =的定义域,分析函数()y f x =的单调性与奇偶性,将所求不等式变形为()()21f a f a >-,然后利用函数()y f x =的单调性与定义域可得出关于实数a 的不等式组,即可解得实数a 的取值范围. 【详解】对于函数()()()ln 1ln 1f x x x =+--,有1010x x +>⎧⎨->⎩,解得11x -<<, 则函数()y f x =的定义域为()1,1-,定义域关于原点对称,()()()()ln 1ln 1f x x x f x -=--+=-,所以,函数()y f x =为奇函数,由于函数()1ln 1y x =+在区间()1,1-上为增函数,函数()2ln 1y x =-在区间()1,1-上为减函数,所以,函数()()()ln 1ln 1f x x x =+--在()1,1-上为增函数, 由()()120f a f a +->得()()()1221f a f a f a >--=-,所以,11112121a a a a -<<⎧⎪-<-<⎨⎪>-⎩,解得01a <<.因此,实数a 的取值范围是()0,1. 故选:B. 【点睛】本题考查函数不等式的求解,解答的关键就是分析函数的单调性和奇偶性,考查计算能力,属于中等题.二、填空题13.【解析】【分析】设计算可得再结合图象即可求出答案【详解】解:设则则由于函数的最小值为0作出函数的大致图象结合图象得所以故答案为:【点睛】本题主要考查分段函数的图象与性质考查转化思想考查数形结合思想属解析:±1. 【解析】【分析】 设2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,计算可得2(),()()()2(),()()g x g x h x f x h x g x h x ≥⎧=⎨<⎩,再结合图象即可求出答案. 【详解】解:设2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,则22()()1g x x ax h x x ⎧=+⎨=-⎩, 则()()()()()f x g x h x g x h x =++-2(),()()2(),()()g x g x h x h x g x h x ≥⎧=⎨<⎩, 由于函数()f x 的最小值为0,作出函数()g x ,()h x 的大致图象,结合图象,210x -=,得1x =±, 所以1a =±, 故答案为:±1. 【点睛】本题主要考查分段函数的图象与性质,考查转化思想,考查数形结合思想,属于中档题.14.2【解析】【分析】先求f (2)再根据f (2)值所在区间求f (f (2))【详解】由题意f (2)=log3(22–1)=1故f (f (2))=f (1)=2×e1–1=2故答案为:2【点睛】本题考查分段函数解析:2 【解析】 【分析】先求f (2),再根据f (2)值所在区间求f (f (2)). 【详解】由题意,f (2)=log 3(22–1)=1,故f (f (2))=f (1)=2×e 1–1=2,故答案为:2. 【点睛】本题考查分段函数求值,考查对应性以及基本求解能力.15.【解析】【分析】根据题意分离出参数a 后转化为求函数的最值即可通过换元后利用二次函数的性质可求得最大值【详解】可化为令由得则在上递减当时取得最大值为所以故答案为【点睛】本题考查二次函数的性质函数恒成立解析:3,4∞⎛⎫-+ ⎪⎝⎭【解析】 【分析】根据题意分离出参数a 后转化为求函数的最值即可,通过换元后利用二次函数的性质可求得最大值. 【详解】1240xxa ++⋅>可化为212224xx x x a --+>-=--,令2x t -=,由(],1x ∈-∞,得1,2t ⎡⎫∈+∞⎪⎢⎣⎭, 则2a t t >--,2213()24t t t --=-++在1,2⎡⎫+∞⎪⎢⎣⎭上递减,当12t =时2t t --取得最大值为34-,所以34a >-. 故答案为3,4⎛⎫-+∞ ⎪⎝⎭.【点睛】本题考查二次函数的性质、函数恒成立问题,考查转化思想,考查学生解决问题的能力.属中档题.16.【解析】【分析】先根据函数的奇偶性作出函数在y 轴左侧的图象欲求的值域分两类讨论:;结合图象即可解决问题【详解】是定义在上的奇函数作出图象关于原点对称作出其在y 轴左侧的图象如图由图可知:的值域是故答案 解析:][()2,33,2⋃--【解析】 【分析】先根据函数的奇偶性作出函数在y 轴左侧的图象,欲求()f x 的值域,分两类讨论:0x >①;0.x <②结合图象即可解决问题.【详解】()f x 是定义在(][2,00,2-⋃上的奇函数,∴作出图象关于原点对称作出其在y 轴左侧的图象,如图.由图可知:()f x 的值域是][()2,33,2⋃--. 故答案为][()2,33,2⋃--. 【点睛】本题考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合的思维能力.17.{01}或{-11}【解析】【分析】因中有两个元素故可利用中的元素对乘法封闭求出这两个元素【详解】设根据题意有所以必有两个相等元素若则故又或所以(舎)或或此时若则此时故此时若则此时故此时综上或填或【解析:{0,1}或{-1,1}, 【解析】 【分析】因S 中有两个元素,故可利用S 中的元素对乘法封闭求出这两个元素. 【详解】设{}(),S a b a b =<,根据题意有22,,a ab b S ∈,所以22,,a b ab 必有两个相等元素.若22a b =,则=-a b ,故2ab a =-,又2a a =或2a b a ==-,所以0a =(舎)或1a =或1a =-,此时{}1,1S =-.若 2a ab =,则0a =,此时2b b =,故1b = ,此时{}0,1S =. 若2b ab =,则0b =,此时2a a =,故1a =,此时{}0,1S =. 综上,{}0,1S =或{}1,1S =-,填{}0,1或{}1,1-. 【点睛】集合中元素除了确定性、互异性、无序性外,还有若干运算的封闭性,比如整数集,对加法、减法和乘法运算封闭,但对除法运算不封闭(两个整数的商不一定是整数),又如有理数集,对加法、减法、乘法和除法运算封闭,但对开方运算不封闭.一般地,若知道集合对某种运算封闭,我们可利用该运算探究集合中的若干元素.18.2【解析】因为是偶函数则解得又所以故令所以故有2个零点点睛:本题涉及函数零点方程图像等概念和知识综合性较强属于中档题一般讨论函数零点个数问题都要转化为方程根的个数问题或两个函数图像交点的个数问题本题解析:2 【解析】因为()42(0)f x x ax bx c c =+++<是偶函数,则()()f x f x -=,解得0b =,又()()4240()f f f c c ac c c c ==++=+,所以0a =,故4()f x x c =+,令4()0f x x c =+=,40x c =->,所以x =2个零点.点睛:本题涉及函数零点,方程,图像等概念和知识,综合性较强,属于中档题.一般讨论函数零点个数问题,都要转化为方程根的个数问题或两个函数图像交点的个数问题,本题由于涉及函数为初等函数,可以考虑方程来解决,转化为方程根的个数,同时注意偶函数性质在本题中的应用.19.2+∞)【解析】分析:根据偶次根式下被开方数非负列不等式解对数不等式得函数定义域详解:要使函数有意义则解得即函数的定义域为点睛:求给定函数的定义域往往需转化为解不等式(组)的问题解析:[2,+∞) 【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数()f x 有意义,则2log 10x -≥,解得2x ≥,即函数()f x 的定义域为[2,)+∞.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.20.【解析】【分析】画出分段函数的图像由图像结合对称性即可得出【详解】函数的图像如下图所示不妨设则关于直线对称所以且满足则故的取值范围是【点睛】解决本题的关键是要会画分段函数的图像由图像结合对称性经过计解析:11(,6)3【解析】 【分析】画出分段函数的图像,由图像结合对称性即可得出。
人教版高一数学上学期期中考试试题及详细答案解析全文

人教版高一数学上学期期中考试数学试题(满分150分时间120分钟)一、单选题(12小题,每题5分)。
1.已知集合(){}{}0222>==-==x ,y x B ,x x lg y x A x,是实数集,则()A.B.C.D.以上都不对2.下列函数中,是偶函数且在上为减函数的是()A.2xy = B.xy -=2C.2-=x y D.3xy -=3.下列各组函数中,表示同一函数的是()A.2xy =和()2x y =B.()12-=x lg y 和()()11-++=x lg x lg y C.2x log y a =和xlog y a 2= D.x y =和xa alog y =4.已知3110220230...c ,b ,.log a ===,则c ,b ,a 的大小关系是()A.cb a << B.b ac << C.bc a << D.ac b <<5.在同一直角坐标系中,函数()()()x log x g ,x x x f a a=≥=0的图像可能是()A. B. C. D.6.若132=log x ,则x x 93+的值为()A.3B.C.6D.7.函数()x x x f 31+-=的单调递增区间是()A.B.C.D.8.某同学求函数()62-+=x x ln x f 零点时,用计算器算得部分函数值如下表所示:则方程062=-+x x ln 的近似解(精确度0.1)可取为()A.2.52B.2.625C.2.66D.2.759.函数()xx lg x f 1-=的零点所在的区间是()A.(0,1)B.(1,10)C.(10,100)D.(100,+∞)10.已知函数()2211xxx f -+=,则有()A.()x f 是奇函数,且()x f x f -=⎪⎭⎫⎝⎛1 B.()x f 是奇函数,且()x f x f =⎪⎭⎫⎝⎛1C.()x f 是偶函数,且()x f x f -=⎪⎭⎫⎝⎛1 D.()x f 是偶函数,且()x f x f =⎪⎭⎫⎝⎛111.如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,水槽中水面上升高度h 与注水时间t 之间的函数关系,大致是()A. B. C. D.12.已知函数()⎪⎩⎪⎨⎧>+-≤<=0621100x ,x x x ,x lg x f ,若a ,b ,c 均不相等,且()()()c f b f a f ==,则abc的取值范围是A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题(4小题,每题5分)13.若对数函数()x f 与幂函数()x g 的图象相交于一点(2,4),则()()=+44g f ________.14.对于函数f (x )的定义域中任意的x 1,x 2(x 1≠x 2),有如下结论:①f (x 1+x 2)=f (x 1)f (x 2);②f (x 1x 2)=f (x 1)+f (x 2);③()()02121>--x x x f x f .当f (x )=e x 时,上述结论中正确结论的序号是______.15.已知3102==b,lg a ,用a,b 表示=306log _____________.16.设全集{}654321,,,,,U =,用U 的子集可表示由10,组成的6位字符串,如:{}42表示的是第2个字符为1,第4个字符为1,其余均为0的6位字符串010100,并规定空集表示的字符串为000000.(1)若,则M C U 表示6位字符串为_____________.(2)若,集合表示的字符串为101001,则满足条件的集合的个数为____个.三、解答题。
学高一数学上学期期中试题(普通班)及答案(新人教A版套)

高一上学期期中考试数学试卷(普通班)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 已知集合{}0A x x =>,且A B B =,则集合B 可以是( )A.{}1,2,3,4,5 B.{y y = C.(){}2,,x y y x x R =∈D.{}0x x y +≥ 2. 已知函数⎩⎨⎧≤+>=0,10,2)(x x x x x f ,若0)1()(=+f a f ,则实数a 的值等于( )A. -1B. -3 C .1 D .33. 给定函数①12y x =,②12log (1)y x =+,③|1|y x =-,④12x y +=,其中在区间(01),上单调递减的函数序号是( )A .①②B.②③C.③④ D.①④5. 若函数32()22f x x x x =+--的一个正数零点附近的函数值用二分法逐次计算,参考数据那么方程220x x x +--=的一个近似根(精确到0.1)为()A .1.2B .1.3C .1.4D .1.5 6. 若函数()11x mf x e =+-是奇函数,则m 的值是() A .0 B .21C .1D .2 7. 已知0.1 1.32log 0.3,2,0.2ab c ===,则,,a b c 的大小关系是( )A .a b c <<B .c a b <<C .a c b <<D .b c a <<8. 已知方程2lg (lg 2lg 3)lg lg 2lg 30x x +++⋅=的两根为12,x x ,则12x x ⋅=()A.lg 6-B.lg 2lg 3⋅C.6D.169. 函数3,(1)()11,(1)ax x f x x x+≤⎧⎪=⎨+>⎪⎩,满足对任意定义域中的21,x x )(21x x ≠,))](()([2121x x x f x f --0<总成立,则实数a 的取值范围是( )A.()0,∞-B.)0,1[-C.)0,1(-D.),1[+∞-安庆一中2013—2014学年度上学期期中考试高一数学答题卷第Ⅱ卷(非选择题,共70分)5小题,每小题4分,共20分。
最新版高一数学上学期期中试题(含解析)及答案(新人教A版 第9套)

内蒙古包头市一中高一数学上学期期中试题(含解析)新人教A 版第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【题文】下列说法中,正确的是 ( )A.任何一个集合必有两个子集B.若φφ中至少有一个则B A B A ,,=⋂C.任何集合必有一个真子集D. 若S 为全集,S B A S B A ===⋂则且,【结束】2.【题文】A={}{}2(,)||1|(2)0,1,,1,2x y x y B o ++-==-,则( ) A.A ⊇B B.A ⊆B C.A ∈B D.A ⋂B=∅【结束】3.【题文】 {2,},{21,},{41,},A x x k k z B x x k k z C x x k k z ==∈==+∈==+∈ 又,a A b B ∈∈则( )A. a+b ∈AB. a+b ∈BC. a+b ∈CD. a+b ∈A,B,C 中的任一个【结束】4.【题文】⎩⎨⎧≥-<+-=)1( , )1( ,4)13()(x ax x a x a x f 在),(+∞-∞上是减函数,则a 的取值范围是( ) A.[11,)83 B.[ 10,3] C.( 10,)3 D.( 1,3-∞]【结束】5.【题文】下列四组函数,表示同一函数的是( ) A.,)(2x x f =,x x g =)( x x g x x f ln 2)(,ln )(.B 2== xx x g x x f 2)(,)(.C ==, 33)(),1,0(,log )(.D x x g a a a x f x a =≠>=且【解析】【结束】6.【题文】设a,b,c,均为正数,且c b a c b a22121log )21(,log )21(,log 2=== 则( )b ac << .A a b c << .B c b a << .C c a b << .D【结束】7.【题文】三个数0.377,0.3,ln0.3a b c ===大小的顺序是 ( )A .a b c >> B. a c b >>C .b a c >> D. c a b >>【解析】【结束】8.【题文】函数()log (1)2a f x x =-+的图象恒过定点 ( )A .(2,2)B .(2,1)C .(3,2)D .(2,0)【结束】9.【题文】在平面直角坐标系中,正三角形ABC 的边BC 所在直线斜率是0,则AC 、AB 所在的直线斜率之和为( ) A.32- B.0 C.3 D. 32【结束】10.【题文】经过A ( 2,0), B( 5,3) 两点的直线的倾斜角( )A .45°B .135°C .90 °D .60 °【结束】11.【题文】函数f(x)=ln(x +1)-2x的零点所在的大致区间是( ) A .(0,1) B .(1,2)C .(2,e)D .(3,4)【结束】12.【题文】设⎭⎬⎫⎩⎨⎧-∈3,21,1,1α,则使函数αx y =的定义域为R 且为奇函数的所有α的值为( ) A.-1,3 B.-1,1 C.1,3 D.-1,1,3【结束】第Ⅱ卷(共90分)二、填空题(每题4分,满分16分,将答案填在答题纸上)13.【题文】{}{}|25,|121,A x x B x m x m =-≤≤=+≤≤-若B ⊆A ,则m 的取值范围是 .【结束】14.【题文】已知定义在R 上的奇函数()f x ,当0x >时,1||)(2-+=x x x f ,那么0x <时,()f x = 。
2023-2024学年安徽省高一(上)期中数学试卷【答案版】

2023-2024学年安徽省高一(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合M ={﹣1,0,1},集合N ={x ∈R |x 2=2x },则M ∩N =( ) A .{0,1}B .{﹣1,0}C .{0}D .∅2.已知命题p :∃x ∈R ,4x >x 4,则¬p 是( ) A .∃x ∈R ,4x ≤x 4 B .∀x ∈R ,4x <x 4C .∀x ∈R ,4x >x 4D .∀x ∈R ,4x ≤x 43.若α是β的必要不充分条件,γ是β的充要条件,则γ是α的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件4.已知幂函数f (x )=x α(α∈Z ),具有如下性质:f 2(1)+f 2(﹣1)=2[f (1)+f (﹣1)﹣1],则f (x )是( ) A .奇函数B .偶函数C .既是奇函数又是偶函数D .是非奇非偶函数5.函数f(x)={x +3,x ≤0√x ,x >0,且f (a ﹣3)=f (a +2)(a ∈R ),则f (a )=( )A .2B .1C .√2D .06.已知实数a ,b ,c 满足3×2a ﹣2b +1=0,且a =c +x 2﹣x +1(x ∈R ),则a ,b ,c 的大小关系是( ) A .a >b >cB .b >a >cC .a >c >bD .c >b >a7.水池有两个相同的进水口和一个出水口,每个口进出的速度如图甲乙所示.某天零点到六点该水池的蓄水量如图丙所示(至少打开一个水口).给出以下三个论断:①零点到三点只进水不出水;②三点到四点不进水只出水;③四点到六点不进水也不出水.其中正确论断的序号是( )A .①②B .②③C .①③D .①8.设函数f(x)=√ax 2+bx +c (a ,b ,c ∈R ,且a <0)的定义域为D ,若所有点(s ,f (t ))(s ,t ∈D )构成一个正方形区域,则a =( ) A .﹣4B .﹣5C .﹣6D .﹣8二、选择题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京三中2013—2014学年度第一学期期中考试高一数学第Ⅰ卷(共70分)一、填空题(共14小题,每小题5分计70分,将答案填在答题纸上) 1.设集合A ={1, 2, 3}, B ={2, 4, 5}, 则=⋃B A ______________3. 函数[]1,1,1)21()(-∈+=x x f x的值域是 .4. 已知幂函数αx x f =)(的图像过点(2,)2,则=)4(f5. 已知)(x f 是奇函数,当0x >时,1()f x x x=+,则(1)f -=_____________6. 方程151243=-x 的解为=x 【答案】16 【解析】试题分析:由342115x -=得4433433488(2)216x x =⇒====或解43348816x x =⇒===考点:分数指数幂运算,分数指数幂可转化为根式.7. 设220()log 0xx f x xx -⎧≤=⎨>⎩,则1(())4f f =【答案】4 【解析】试题分析:由分段函数有2(2)2211(())(log )(log 2)(2)2444f f f f f ---===-==. 考点:分段函数的定义域不同解析式不同.8. 已知33442232(),(),log 323a b c ===,则,,a b c 从小到大用“﹤”号排列为9. 若322=--xx,则=+-x x 4410. 若函数()f x 对一切x R ∈,都有1(2)()f x f x +=,且()11,f =-则=)5(f . 【答案】1- 【解析】试题分析:因为1(2)()f x f x +=,所以1(4)(2)f x f x +=+,因此()(4)f x f x =+.函数()f x 的周期为4,故(5)(14)(1)1f f f =+==-.考点:函数的周期及赋值运算.11. 若关于x 的方程21x a -=有三个不等的实数解,则实数a 的值是【答案】1 【解析】试题分析:如图所示函数21y x =-要与直线y a =有三个不同的交点,则1y =,即1a =.考点:分段函数、二次函数的图像;函数有实根可转化为两函数图像有交点.12. 已知函数52)(2+-=ax x x f (1>a ),若)(x f 的定义域和值域均是[]a ,1,则实数a =13.设已知函数2()log f x x =,正实数m ,n 满足m n <,且()()fmfn =,若()f x 在区间2[,]m n 上的最大值为2,则n m += . 【答案】52【解析】试题分析:由题意可知01m n <<<,2()log f m m =-、2()log f n n =.又222()()log log 0log 01f m f n m n mn mn =⇒+=⇒=⇒=.由已知201m m <<<,所以函数()f x 在2,m n ⎡⎤⎣⎦的最大值为22222221()log log 2log 2log 12f m m m m m m ==-=-=⇒=-⇒=,2n =,所以52m n +=.考点:对数函数的图像性质,及对数的运算性质.14. 已知函数111[0,)2(),212,[,2)2x x x f x x -∈⎧+⎪=⎨⎪∈⎩,若存在,,21x x 当2021<<≤x x 时,),()(21x f x f =则)(21x f x ⋅的取值范围是【答案】⎪⎭⎫⎢⎣⎡-21,422 【解析】二、解答题 (本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.) 15.【题文】(本题满分14分))31()3)()(1(656131212132b a b a b a ÷- 4lg 2lg 5lg )2(22+-【答案】(1) 9a -;(2)1. 【解析】试题分析:( 1)由指数的运算法则,原式=211115326236(3)3ab+-+--⨯=9a -;(2)由对数的运算法则,原式=(lg5lg 2)(lg5lg 2)2lg 2+-+=lg5lg 2+=1.16.【题文】(本题满分14分)设集合{})1(l o g |2-==x y x A ,{}R x x x y y B ∈++==,32|2.(1) 求集合B A ,,)(B C A R ⋂(2) 若集合C =}0|{>-a x x ,且满足C C A = ,求实数a 的取值范围.考点:1集合的基本运算;2、集合间的基本关系.17.【题文】(本题满分15分)已知函数)(x f 是定义在R 上的偶函数,当0≥x 时,12)(2--=x x x f 。
(1)求)(x f 的函数解析式,并用分段函数的形式给出; (2)作出函数)(x f 的简图;(3)写出函数)(x f 的单调区间及最值.【答案】(1)2221,0()21,0x x x f x x x x ⎧--≥⎪=⎨+-<⎪⎩;(3)单调增区间为[]0,1-和)[∞+,1,单调减区间为](1,-∞-和][1,0,当1=x 或 1-时,)(x f 有最小值-2.【解析】试题分析:(1)当0<x 时,0>-x ,则121)(2)()(22-+=----=-x x x x x f ,由偶函数的性质,2()()21f x f x x x =-=+-,因此2221,0()21,0x x x f x x x x ⎧--≥⎪=⎨+-<⎪⎩.(3)由()f x 的图像可直接看出单调增区间为[]0,1-和)[∞+,1,单调减区间为](1,-∞-和][1,0,当1x =或1x =-时,min ()2f x =-.试题解析:(1)当0<x 时,0>-x , ………………1分则121)(2)()(22-+=----=-x x x x x f (3)分)(x f 是偶函数12)()(2-+=-=∴x x x f x f ………………5分∴2221,0()21,0x x x f x x x x ⎧--≥⎪=⎨+-<⎪⎩. (6)分(如果通过图象直接给对解析式得2分) (2)函数)(x f 的简图:…………………9分(3)单调增区间为[]0,1-和)[∞+,1 …………………11分单调减区间为](1,-∞-和][1,0 …………………13分当1=x 或1-时,)(x f 有最小值-2 . …………………15分考点:1、偶函数的性质;2、函数的图像.18.【题文】(本题满分15分)某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x (百台),其总成本为()x G (万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本)。
销售收入()x R (万元)满足)5()50(112.44.0)(2≥<≤⎩⎨⎧+-=x x x x x R ,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1) 分别写出)(x G 和利润函数()x f y =的解析式(利润=销售收入—总成本);(2)工厂生产多少台产品时,可使盈利最多?并求出此时每台产品的售价。
19.【题文】(本题满分16分)已知函数152)(+-=x m x f (1)用定义证明)(x f 在R 上单调递增;(2)若)(x f 是R 上的奇函数,求m 的值;(3)若)(x f 的值域为D ,且]1,3[-⊆D ,求m 的取值范围.【解析】试题分析:(1)在定义域内任取21x x <,证明12()()0f x f x -<,即)()(21x f x f <,所以)(x f 在R 上单调递增;(2)因为,)(x f 是R 上的奇函数,所以()()f x f x =--,即()()0f x f x +-=,代入表达式即可得1m =;(3)可求得)(x f 的值域),2(m m D -=,由]1,3[-⊆D 可得不等式231m m -≥-⎧⎨≤⎩,所以[1,1]m ∈-.试题解析:(1) 设 21x x <且R x x ∈21, ………………1分m ∴的取值范围是][1,1- ………………16分考点:1、函数单调性的证明;2、奇函数的定义;(3)函数的值域.20.【题文】(本题满分16分) 已知函数a x ax x f 21)(2++-=(a 是常数且R a ∈)(1) 若函数)(x f 的一个零点是1,求a 的值;(2) 求)(x f 在][2,1上的最小值)(a g ;(3) 记{}0)(<∈=x f R x A 若φ=A ,求实数a 的取值范围。
【答案】(1)23a =;(2)163,4111()21,442132,2a a g a a a a a a ⎧-<⎪⎪⎪=--≤≤⎨⎪⎪->⎪⎩;(3)413+≥a. ⅱ 当 0<a 时,对称轴为021<=ax 36)2()(-==a f a g ……………… 4分ⅲ 当0a >时,抛物线开口向下,对称轴12x a =若112a <即12a >时,()(1)32g a f a ==- 若1122a ≤≤即1142a ≤≤时,11()()2124g a f a a a==--若122a>即14a<<时,()(2)63g a f a==-………………7分综上所述,163,4111()21,442132,2a ag a a aaa a⎧-<⎪⎪⎪=--≤≤⎨⎪⎪->⎪⎩………………8分考点:1、函数的零点;2、二次函数在给定区间上的最值;3、分离参数处理恒成立问题;4、分类讨论思想.。