函数信号发生器的设计与调试(电子电路综合设计实验报告)
电子技术课程设计实验报告--函数信号发生器

电子技术课程设计实验报告--函数信号发生器函数信号发生器一般用于产生基本的常用信号,如正弦波、三角波、方波等,用于生物、医学、通信、音频和模拟电路调试和测量等。
本文介绍了函数信号发生器的结构和特性,以及利用函数信号发生器实验的操作步骤,对这一实验作了详细介绍。
一、结构和特点函数信号发生器是一款多用途的信号发生器,它是由数字电子芯片和模拟元件组成的,具有输出波形数量多、偏差小、功耗低等特点,它的性能特性好,能产生不同波形信号,灵活多变,具有稳定可靠的输出。
二、实验步骤1、打开万用表,将探头连接输出接口,将万用表切换到 AC 档,设置 200mV 档,同时将频率表中频率调节到 10kHz;2、连接信号发生器,打开电源开关,调节波形类型选择按钮使之处于正弦波,将频率表中频率调节到 10kHz;3、调节占空比调节按钮,可将其调节到饱和状态,观察波形并绘图;4、将频率表中频率再次调节到 10kHz,占空比按钮设置为50%,在衰减平调中调节输出信号,观察波形并绘图;5、按此类推,可实现其他波形的输出,可视性观察波形变化,以此可以了解整体系统性质。
三、实验结果实验中,我用函数信号发生器分别调节了正弦波和相应占空比的三角波和方波,用万用表观察波形的变化,为验证系统的性能,我用万用表测量各调试波形的参数,如电压大小、频率和占空比,结果如下:1、测试的正弦波的频率为:10kHz;占空比为:50%;电压大小为:150mV;在本次实验中,我们通过调节函数信号发生器,成功地验证函数信号发生器能够输出基本的常用信号,如正弦波、三角波、方波等,并通过万用表对其调节参数进行测试,得出的结果与理论设计的基本一致,可以表明函数信号发生器的稳定性、可靠性良好,这证实了函数信号发生器的功能设计正确性及其使用的可行性。
信号发生器课程设计报告完整版

信号发生器课程设计报告HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】目录一、课题名称 (2)二、内容摘要 (2)三、设计目的 (2)四、设计内容及要求 (2)五、系统方案设计 (3)六、电路设计及原理分析 (4)七、电路仿真结果 (7)八、硬件设计及焊接测试 (8)九、故障的原因分析及解决方案 (11)十、课程设计总结及心得体会 (12)一、课题名称:函数信号发生器的设计二、内容摘要:函数信号发生器作为一种常用的信号源,是现代测试领域内应用最为广泛的通用仪器之一。
在研制、生产、测试和维修各种电子元件、部件以及整机设备时,都要有信号源,由它产生不同频率不同波形的电压、电流信号并加到被测器件或设备上,用其他仪器观察、测量被测仪器的输出响应,以分析确定它们的性能参数。
信号发生器是电子测量领域中最基本、应用最广泛的一类电子仪器。
它可以产生多种波形信号,如正弦波,三角波,方波等,因而此次课程设计旨在运用模拟电子技术知识来制作一个能同时输出正弦波、方波、三角波的信号发生器。
三、设计目的:1、进一步掌握模拟电子技术知识的理论知识,培养工程设计能力和综合分析能力、解决问题的能力。
2、基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力。
3、学会运用Multisim仿真软件对所做出来的理论设计进行仿真测试,并能进一步解决出现的基本问题,不断完善设计。
4、掌握常用元器件的识别和测试,熟悉万用表等常用仪表,了解电路调试的基本方法,提高实际电路的分析操作能力。
5、在仿真结果的基础上,实现实际电路。
四、设计内容及要求:1、要求完成原理设计并通过Multisim软件仿真部分(1)RC桥式正弦波产生电路,频率分别为300Hz、1KHz、10KHz、500KHz,输出幅值300mV~5V可调、负载1KΩ。
(2)占空比可调的矩形波电路,频率3KHz,占空比可调范围10%~90%,输出幅值3V、负载1KΩ。
电路实验报告 函数信号发生器

电子电路综合设计实验实验一函数信号发生器的设计与调测班级: 2009211108**: ***学号: ********小班序号: 26课题名称函数信号发生器的设计与实现一、摘要函数信号发生器是一种为电子测量提供符合一定要求的电信号的仪器, 可产生不同波形、频率和幅度的信号。
在测试、研究或调整电子电路及设备时, 为测定电路的一些电参量,用信号发生器来模拟在实际工作中使用的待测设备的激励信号。
信号发生器可按照产生信号产生的波形特征来划分:音频信号源、函数信号源、功率函数发生器、脉冲信号源、任意函数发生器、任意波形发生器。
信号发生器用途广泛, 有多种测试和校准功能。
本实验设计的函数信号发生器可产生方波、三角波和正弦波这三种波形, 其输出频率可在1KHz至10KHz范围内连续可调。
三种波形的幅值及方波的占空比均在一定范围内可调。
报告将详细介绍设计思路和与所选用元件的参数的设计依据和方法。
二、关键词函数信号发生器迟滞电压比较器积分器差分放大电路波形变换三、设计任务要求:1、(1)基本要求:2、设计一个可输出正弦波、三角波和方波信号的函数信号发生器。
3、输出频率能在1-10KHZ范围内连续可调, 无明显是真;4、方波输出电压Uopp≥12V, 上升, 下降沿小于10us, 占空比可调范围30%-70%;5、三角波输出电压Uopp≥8V;6、正弦波输出电压Uopp≥1V;设计该电源的电源电路(不要求实际搭建), 用PROTEL软件绘制完整的电路原理图(SCH)。
(2)提高要求:1.三种输出波形的峰峰值Uopp均在1V-10V范围内连续可调。
2.三种输出波形的输出阻抗小于100Ω。
3.用PROTEL软件绘制完整的印制电路板图(PCB)。
(3)探究环节:1.显示出当前输入信号的种类、大小和频率(实验演示或详细设计方案)。
2.提供其他函数信号发生器的设计方案(通过仿真或实验结果加以证明)。
四、设计思路和总体结构框图(1)原理电路的选择及总体思路:根据本实验的要求, 用两大模块实现发生器的设计。
北邮-函数信号发生器

北京邮电大学电子电路综合实验报告课题名称:函数信号发生器的设计学院:信息与通信工程学院班级:姓名:学号:班内序号:2015年4月26日课题名称:函数信号发生器的设计摘要:方波-三角波产生电路采用了运放组成的积分电路,可得到比较理想的方波和三角波。
根据所需振荡频率的高低和对方波前后沿陡度的要求以及对所需方波、三角波的幅度可以确定合适的运放以及稳压管的型号、所需电阻的大小和电容的值。
三角波-正弦波的转换是利用差分放大器来完成的,选取合适的滑动变阻器来调节三角波的幅度以及电路的对称性。
同时利用隔直电容、滤波电容来改善输出正弦波的波形。
最后利用反馈电阻Ro大小变化来控制方波和三角波的幅值,利用旁路电容C4来控制正弦波的幅值,将R2换成顶调电位器和二极管来控制方波占空比。
关键词:方波三角波正弦波频率可调幅值可调一、设计任务要求1. 基本要求:(1)输出频率能在1-10KHz范围内连续可调,无明显失真;(2)方波输出电压Uopp=12V(误差小于20%),上升、下降沿小于10us;(3)三角波Uopp=8V(误差小于20%);(4)正弦波Uopp错误!未找到引用源。
1V,无明显失真。
2. 提高要求:(1)将输出方波改为占空比可调的矩形波,占空比可调范围为30%—70%;(2)三种输出波形的峰峰值Uopp均可在1V-10V内连续可调。
二、设计思路实验设计函数发生器实现方波、三角波和正弦波的输出,其可采用电路图有多种。
此次实验采用迟滞比较器生成方波,RC积分器生成三角波,差分放大器生成正弦波。
除保证良好波形输出外,还须实现频率、幅度、占空比的调节,即须在基本电路基础上进行改良。
由比较器与积分器组成的方波三角波发生器,比较器输出的方波信号经积分器生成三角波,再经由差分放大器生成正弦波信号。
其中方波三角波生成电路为基本电路,添加电位器调节使其频率幅度改变;正弦波生成电路采用差分放大器,由于差分放大电路具有工作点稳定、输入阻抗高、抗干扰能力较强等优点,特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。
简易函数信号发生器设计报告

简易函数信号发生器设计报告一、引言信号发生器作为一种测试设备,在工程领域具有重要的应用价值。
它可以产生不同的信号波形,用于测试和调试电子设备。
本设计报告将介绍一个简易的函数信号发生器的设计方案。
二、设计目标本次设计的目标是:设计一个能够产生正弦波、方波和三角波的函数信号发生器,且具有可调节频率和幅度的功能。
同时,为了简化设计和降低成本,我们选择使用数字模拟转换(DAC)芯片来实现信号的输出。
三、设计原理1.信号产生原理正弦波、方波和三角波是常见的函数波形,它们可以通过一系列周期性的振荡信号来产生。
在本设计中,我们选择使用集成电路芯片NE555来产生可调节的方波和三角波,并通过滤波电路将其转换为正弦波。
2.幅度调节原理为了实现信号的幅度调节功能,我们需要使用一个可变电阻,将其与输出信号的放大电路相连。
通过调节可变电阻的阻值,可以改变放大电路的放大倍数,从而改变信号的幅度。
3.频率调节原理为了实现信号的频率调节功能,我们选择使用一个可变电容和一个可变电阻,将其与NE555芯片的外部电路相连。
通过调节可变电容和可变电阻的阻值,可以改变NE555芯片的工作频率,从而改变信号的频率。
四、设计方案1.正弦波产生方案通过NE555芯片产生可调节的方波信号,并通过一个电容和一个电阻的RC滤波电路,将方波转换为正弦波信号。
2.方波产生方案直接使用NE555芯片产生可调节的方波信号即可。
3.三角波产生方案通过两个NE555芯片,一个产生可调节的方波信号,另一个使用一个电容和一个电阻的RC滤波电路,将方波转换为三角波信号。
五、电路图设计设计的电路图如下所示:[在此插入电路图]六、实现效果与测试通过实际搭建电路,并连接相应的调节电位器,我们成功地实现了信号的幅度和频率调节功能。
在不同的调节范围内,我们可以得到稳定、满足要求的正弦波、方波和三角波信号。
七、总结通过本次设计,我们成功地实现了一个简易的函数信号发生器,具有可调节频率和幅度的功能。
函数信号发生器的设计与实现

实验1 函数信号发生器的设计与实现姓名:_ _____学号:班内序号:____课题名称:函数信号发生器的设计摘要:采用运算放大器组成的积分电路产生比较理想的方波-三角波,根据所需振荡频率和对方波前后沿陡度、方波和三角波幅度的要求,选择运放、稳压管、限流电阻和电容。
三角波-正弦波转换电路利用差分放大器传输特性曲线的非线性实现,选取合适的滑动变阻器来调节三角波的幅度和电路的对称性,同时利用隔直电容、滤波电容来改善输出正弦波的波形。
关键词:方波三角波正弦波一、设计任务要求1.基本要求:设计制作一个函数信号发生器电路,该电路能够输出频率可调的正弦波、三角波和方波信号。
(1) 输出频率能在1-10KHz范围内连续可调,无明显失真。
(2) 方波输出电压Uopp=12V(误差小于20%),上升、下降沿小于10us。
(3) 三角波Uopp=8V(误差小于20%)。
(4) 正弦波Uopp1V,无明显失真。
2.提高要求:(1) 输出方波占空比可调范围30%-70%。
(2) 自拟(三种输出波形的峰峰值Uopp均可在1V-10V内连续可调)。
二、设计思路和总体结构框图总体结构框图:设计思路:由运放构成的比较器和反相积分器组成方波-三角波发生电路,三角波输入差分放大电路,利用其传输特性曲线的非线性实现三角波-正弦波的转换,从而电路可在三个输出端分别输出方波、三角波和正弦波,达到信号发生器实验的基本要求。
将输出端与地之间接入大阻值电位器,电位器的抽头处作为新的输出端,实现输出信号幅度的连续调节。
利用二极管的单向导通性,将方波-三角波中间的电阻改为两个反向二极管一端相连,另一端接入电位器,抽头处输出的结构,实现占空比连续可调,达到信号发生器实验的提高要求。
三、分块电路和总体电路的设计过程1.方波-三角波产生电路电路图:设计过程:①根据所需振荡频率的高低和对方波前后沿陡度的要求,选择电压转换速率S R合适的运算放大器。
方波要求上升、下降沿小于10us,峰峰值为12V。
【精品】函数信号发生器课程设计报告

【精品】函数信号发生器课程设计报告函数信号发生器课程设计报告摘要:本课程设计主要是设计一台函数信号发生器,它在从低频(如Sine)到较高频(如Square)常用波形之间能够进行切换,常用于电子仪器和测量检测中,用来给装置注入一定形态的信号,以辅助检测装置的有效性,稳定性,精度等特性。
该设备采用STM32F030F4P6单片机,使用1602液晶屏显示函数状态,用HD74HC4040电路分频输出指定期望频率,使用R-2R电路控制EPWM波形从正弦波到脉冲波,满足多种测试状况下的需求。
本系统实现调整频率的功能,使用户可以设置函数发生器的频率,因此满足用户的不同要求。
关键词: STM32F030F4P6; 1602液晶屏; HD74HC4040 电路; R-2R 电路; PWM 波形一、简介函数信号发生器是一种常用的信号发生器,可以产生多种类型的波形。
包括正弦波、三角波、方波、脉冲波和梯形波等等,其应用广泛,比如在检测仪表中,可以用来观察测量仪表的工作状态,以便于分析测量仪表的特性,进而排除故障。
此外,函数信号发生器通常也可以用在动态信号检测中,对电机、变压器和泵等,进行性能检测和控制应用,也可用来做为一种测试应用,来控制和验证电子设备性能,在现在的电子技术发展中,函数信号发生器扮演重要的作用。
二、设计实现设计本次函数信号发生器主要任务是实现指定期望频率信号的输出,并对多种波形满足需求。
主要设备相关技术如下:(一)STM32F030F4P6单片机STM32F030F4P6单片机,采用ARM 32位内核设计,使用Cortex-M0指令集,配备有SYSTICK时钟,PWM波形输出,I2C接口,满足调整函数信号发生器指定频率和波形的要求。
(二)1602液晶屏它的主要功能是显示函数发生器的状态,如频率,波形,用户可以通过屏幕上的提示,清楚的了解函数发生器当前的实时状态,使用比较简单。
(三) HD74HC4040 电路使用 HD74HC4040 电路进行分频输出,可以实时调整输出信号的频率。
函数信号发生器实验报告

北京邮电大学电子电路实验报告实验一:函数信号发生器的设计与调测院系:信息与通信工程学院班级:2012211112姓名:卢跃凯班内序号:13学号:2012210344指导教师:廖老师课题名称:函数信号发生器的设计与调试摘要实验电路主要由两部分组成,方波—三角波发生电路和三角波—正弦波变换电路。
方波由运算放大器加稳压管产生,后经积分电路形成三角波,最后通过差分放大电路,利用其传输特性曲线的非线性实现三角波——正弦波的转换。
实验电路的频率,幅度可通过电位器调节,增加两个二极管,可以改变方波占空比,完成提高要求。
关键词方波三角波正弦波幅频可调设计任务要求1、基本要求:a)设计制作一个可输出正弦波、三角波和方波信号的函数信号发生器。
1)输出频率能在1-10KHz范围内连续可调,无明显失真;2)方波输出电压Uopp=12V,上升、下降沿小于10us;三角波Uopp=8V;3)正弦波Uopp>1V。
b)设计该电路的电源电路(不要求实际搭建),用PROTEL软件绘制完整的电路原理图(SCH)2、提高要求:a)三种输出波形的峰峰值Uopp均可在1V-10V范围内连续可调。
b)要求方波占空比在30%——70%连续可调。
设计思路,总体结构框图1、设计思路:用运算放大器加反馈构成电压比较器来产生方波;方波经积分电路形成三角波;三角波输入到差分放大电路,利用其传输特性曲线的非线性输出正弦波,完成要求。
2、原理框图:3、系统的组成框图:分块电路和总体电路的设计:(1)方波-三角波产生电路:方波输出幅度由稳压管的稳压值决定,限制在±(UZ+UD)之间。
考虑到基本要求中的,方波的峰峰值为12V,故选用稳压值为6V的稳压管2DW232。
方波经积分得到三角波,幅度为,幅值由R1和Rf的比值及稳压管的稳压值决定,因为基本要求中三角波的峰峰值为8V,因此,R1与Rf的比值为2:3。
在实际电路中,我采用的R1为20kΩ,Rf为30kΩ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京邮电大学电子电路综合设计实验报告课题名称:函数信号发生器的设计与调试学院:电子工程学院班级:xxxx姓名:xxxx学号:xxxx班内序号:xxxx2012年3月29日课题名称:函数信号发生器的设计与调试摘要:方波-三角波产生电路采用了运放组成的积分电路,可得到比较理想的方波和三角波。
根据所需振荡频率的高低和对方波前后沿陡度的要求以及对所需方波、三角波的幅度可以确定合适的运放以及稳压管的型号、所需电阻的大小和电容的值。
三角波-正弦波的转换是利用差分放大器来完成的,选取合适的滑动变阻器来调节三角波的幅度以及电路的对称性。
同时利用隔直电容、滤波电容来改善输出正弦波的波形。
关键词:方波三角波正弦波频率可调一、设计任务要求1.基本要求:a)设计一个可输出正弦波、三角波和方波信号的函数信号发生器。
(1)输出频率能在1-10KHz范围内连续可调,无明显失真;(2)方波输出电压Uopp=12V,上升、下降沿小于10us,占空比可调范围30%-70%;(3)三角波Uopp=8V;(4)正弦波Uopp1V.b)设计该电路的电源电路,用PROTEL软件绘制完整的电路原理图(SCH)2.提高要求:a)三种输出波形的峰峰值Uopp均可在1V-10V内连续可调。
b) 三种输出波形的输出阻抗小于100Ω。
c) 用PROTEL软件绘制完整的印制电路板图(PCB).3. 探究环节:a)显示当前输入信号的种类、大小和频率;b)提供其他函数信号发生器的设计方案。
二、设计思路1.结构框图2.方波-三角波电路的产生该电路振荡频率和幅度便于调节,输出方波幅度的大小由稳压管VDW1,VDW2的稳压值决定,即峰峰值在12V,所以选用稳压值为6V的稳压管。
方波经积分得到三角波,幅度为U02m=(Uz+Ud),由R1和Rf的比值及稳压管的稳压值决定,由于要求中要求峰峰值为8V,则R1和Rf的比值为2:3,试验中选取的R1为18K,Rf为30K。
R3为平衡电阻,阻值为R1和Rf并联的值,故R3取12K,根据输出方波的幅度可以选择限流电阻R0的阻值为2k。
方波和三角波的振荡频率相同,为f==,式中滑动头对地电阻与电位器总电阻之比)。
可见调节Rw可改变振荡频率,为使实验中选取的Rw为10K。
根据所需振荡频率的高低和对方波前后沿陡度的要求,选择合适的运放,实验中在产生三角波的时候选取的是LM318,在产生正弦波的时候选取的UA741.根据所要求的振荡频率确定R:C的值,实验中选取的R2为4.7K,C为0.01uF。
R4为平衡电阻,应与R2选取同样的阻值,即4.7K。
3.三角波-正弦波电路的产生4.差动放大器具有很高的共模抑制比,被广泛的应用于集成电路中,常作为输入级或中间级。
1)差动放大器设计:(1)确定静态工作点电流Ic1、Ic2和Ic3。
静态时,差动放大器不加入输入信号,对于电流镜Re3=Re4=ReIr=Ic4+Ib3+Ib4=Ic4+2Ib4= Ic4+2 Ic4/β≈Ic4= Ic3而Ir= Ic4= Ic3=(Ucc+Uee-Ube)/(R+Re4)上式表明恒定电流Ic3主要由电源电压Ucc、Uee和电阻R、Re4决定,与晶体管的参数无关。
由于差动放大器得静态工作点主要恒流源决定,故一般先设Ic3 。
Ic3 取值越小,恒流源越恒定,漂移越小,放大器的输入阻抗越高。
但Ic3取值也不能过小,一般为几个毫安。
在实验中,取Ic3 为1mA,则有Ic1 = Ic2=0.5mA。
由R+R e=(Ucc +U ee -Ube )/I r,其中Ucc为12V,Uee 也为12v,Ube 的典型值为0.7V,Ir为1mA,实验中取R=20KΩ,Re4 =2KΩ。
为使两管输入保持对称。
取Re3 =Re4 =2K。
Rp用来调整电路的对称性,不能取太大,实验中选取阻值为100Ω的电位器。
三角波-正弦波变换电路的种类很多,有二极管桥式电路、二极管可变分压器电路和查分放大器等。
以上是利用差分放大器传输特性曲线的非线性,实现三角波-正弦波变换的过程。
由上图可以看出,差分放大器传输特性曲线特性越对称,线性区越窄越好;三角波的幅度应正好使晶体管接近截止区。
下图为实现三角波-正弦波变换的电路。
图中RP1调节三角波的幅度,RP2调整电路的对称性,并联电阻RE用来减小差分放大器传输特性曲线的线性区。
电容C1,C2,C3为隔直流电容,C4为滤波电容,以滤除谐波分量,改善输出正弦波的波形。
在实验过程中,Re与电位器Rp2并联,取阻值为100Ω。
电解电容C1、C2、C3为隔直流电容,为达到良好的隔直流、通交流的目的,其容值应该取的相对较大,取C1=C2=33 uF 、C3=0.68uF。
Rp1调节三角波的幅度,为满足实验要求,其可调范围应该比较大,故取Rp1=100kΩ。
Rb1与Rb2为平衡电阻,取值为Rb1= Rb2=3.2KΩ。
流进T1,T2集电极电流为0.5mA,为满足其正弦波的幅度大于1V,取Rc1= Rc2=5.6kΩ,使得电流流经Rc2的电压降不至于很大。
C4为滤波电容,取C4=0.01uF。
至此,电路的设计基本完成。
5.总体电路图三、功能实现1.已完成的基本功能接入工作电压之后可以分别产生幅度和频率可调的方波、三角波、正弦波。
2. 扩展功能通过下图,利用二极管的单向导电性,且利用阻值不同,改变电容C 充电、放电的时间不同,可以调节占空比。
3.主要测试数据方波的峰峰值为13.36V,大于实验要求的峰峰值,存在误差,上升、下降时间小于10us。
由于所给器件的原因,未能实现占空比可调这个要求。
三角波的峰峰值为8 V,与要求值相同。
正弦波的峰峰值大于1V,符合要求。
三种输出波形的输出频率在1-12KHz范围内连续可调,无明显失真。
4.必要的测试方法利用直流电压源产生工作电压,用示波器测试输出电压波形、幅值、频率等,用电压表测量Re,Rc两端电压,并计算得到二者的工作电流,用毫伏表测定所需电阻的阻值。
四、故障及问题分析刚开始接触这个实验时,并没有整体的概念。
对于电路的连接也是一片模糊,在第一次实验课的时候,通过请教老师和同学,知道了面包板是如何连接的,中间部分竖着5个为导通的,上下两侧横着25个为导通的。
然后才逐渐开始连接电路。
通过预习实验,计算得知了各个电阻和电容的值,并且了解了LM741和LM318的引脚及其功能。
第一节课连接了方波—三角波的电路图,但却无法运行。
经过请教他人之后,得知面包板的最上面一行最好是接正电压,最下面两行最好接负电压和接地,并且导线与元器件应该横平竖直,不应有穿插。
于是,在课余时间里,我开始针对面包板画电路图,这样在实际操作中能够更清楚明了。
再次连接电路时,电路美观清楚了很多,并且方波和三角波的波形也能正常的显示出来了。
但是正弦波始终没有显示,只是一条直线。
于是开始了对电路的检查,首先是用万能表测量电阻,果真有电阻的阻值与实际标注的阻值是不符的,更换正确的电阻后仍不能解决问题,再次检查三极管和电位器,依旧正常工作。
无奈之下开始测量电路中,每一点的波形,逐级寻找问题。
最终,一个电容的光荣牺牲引发我注意到了,电路连接上的问题,该接地的电容接到了负电压上,并且,负电压左边25与右边25个孔没有连接上,修改过这些问题后,电路终于能正常工作了!由此可见,连线的过程中一定要小心再小心,认真的检查电路,及时的发现问题。
虽然出现了波形,但却不符合实验要求,于是要更改部分的电阻和电容。
将电容C3改为6800pF后,正弦波的峰峰值明显变大,并达到了实验要求。
在实验验收时,三角波的峰峰值大于8V,原以为是稳压管的问题,后经过老师知道,并仔细阅读教材后,发现通过调节电阻可以调节三角波的峰峰值,于是将R1从20k改为18K,三角波的峰峰值变为8V。
并且更改电容后,频率可调的范围从0—8KHz,变为0—12KHz,如此,所有的实验基本要求就都能达到了。
五、总结和结论本次试验共经过四周的时间,从第一周的原理设计,到第二、三周的功能实现,再到第四周的实验验收和答辩,我遇到了很多问题,也解决了很多问题,弥补了自己的不足。
本次实验使我们进一步掌握了集成运放的使用方法,也进一步提高工程设计和实践动手能力,加强系统概念。
第一周我们主要是了解了一下实验原理以及实验目的,然后对实验做了一个大致的规划。
然后第二周我们开始连接电路,刚开始的时候,错误百出,电路总是会出现这样那样的问题,然后,开始画电路图,照着电路图连接元件,在宿舍里连接好电路,然后检查很多遍才拿到实验室去调试。
虽然调试过程中仍然会有些小问题的存在,比如:输出波形的幅度不符合要求,正弦波失真,但在深入了解实验原理之后也慢慢解决了这些问题。
在第三周快结束的时候,实验终于获得成功。
总的来说,这次实验虽然比较坎坷,但确实学到了很多,不仅对理论知识掌握的更加牢固,更锻炼了我们自己的动手操作能力,在操作过程中,也使得我们对于所学知识有了更加深刻的理解和认识。
PROTEL绘制的原理图原理图PCB板所用元器件及测试仪表清单元器件8050 4个2DW232 1个LM318 1个LM741 1个仪器:函数信号发生器示波器晶体管毫伏表万用表直流稳压电源参考文献《电子电路基础》《电子电路综合设计实验教程》附:。