实数(第一课时)说课稿(优.选)
第二章 《实数》第1-2节说课稿

第二章《实数》第1-2节说课稿费红刚1.数怎么不够用了一、说教材《数怎么不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节. 本节内容安排了2个课时完成,第1课时让学生感受数的发展,建立无理数的概念,第2课时借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.这是第1课时,学生将在具体的背景中,通过操作、估算、分析等活动,感受无理数的产生的实际背景和引入的必要性,并能判断一个数是无理数,并能说出理由.(一)教学目标知识与技能目标1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为无理数,并能说出理由.过程与方法目标1.学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养学生的动手能力和合作精神.2.通过回顾有理数的有关知识,能正确地进行推理和判断识别某些数是否为有理数、无理数,训练他们的思维判断力.3.借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并在活动中进一步发展学生独立思考、合作交流的意识和能力.情感与态度目标1.激励学生积极参与教学活动,提高大家学习数学的热情.2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作精神与钻研精神,借助计算器进行估算.3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋半的献身精神.(二)教学重点1.让学生经历无理数发现的过程,感知生活中确实存在着不同于有理数的数.2.会判断一个数是否为有理数,是否不是有理数.3.用计算器进行无理数的估算.(三)教学难点1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.2.无理数概念的建立及估算.3.判断一个数是否为有理数.二、说学法1.教学方法:引导、探究、发现与合作交流相结合.2.课前准备:多媒体,两个边长为1的正方形,剪刀,短绳.三、说教法本节课设计六个教学环节;第一环节:章节引入;第二环节:本节引入;第三环节:活动探究;第四环节:献身科学,执着追求;第五环节:课时小结;第六环节:作业布置. 第一环节:章节引入内容:a .小红是刚升入八年级的新生,一个周末的上午,当工程师的爸爸给小红出了两个数学题:(1)两个数3.252525……与3.252252225……一样吗?它们有什么不同?(2)一个边长为6cm 的正方形木板,按如图的痕迹锯掉四个一样的直角三角形.请计算剩下的正方形木板的面积是多少?剩下的正方形木板的边长又是多少厘米呢?你能帮小红解决这个问题吗?b .你能求出面积为2的正方形的边长吗?你知道圆周率π的精确值吗?它们能用整数或分数(即有理数)来表示吗?第二环节:复习引入内容:a .阅读下面的资料,在数学中,有理数的定义为:形如p q 的数(p 、q 为互质的整数,且p ≠0)叫做有理数,当p =1,q 为任意整数时,有理数p q 就是指所有的整数,如:12- =-2等,当p ≠1时,由p 、q 互质可知,有理数p q 就是指所有的分数,第三环节:活动探究(一)发现新数内容:将课前已准备好的两个边长为1的小正方形剪一剪,拼一拼,设法得到一个大正方形.在学生活动的基础上,教师利用多媒体展示其中一种剪拼过程,(二)感受新数的广泛性内容: 面积为5的正方形,它的边长b 可能是有理数吗?说说你的理由。
实数说课稿

《实数》说课稿一、教材分析1、教材的地位和作用本节教材是初中数学七年级第1、6章的内容,是初中数学的重要内容之一。
本节课不仅有着广泛的实际应用,而且起着承前启后的作用。
2、学情分析从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。
但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
从认知状况来说,学生在此之前已经学习了,对已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。
二、教学目标分析新课标指出,教学目标应包括只是与技能目标,过程与方法目标,情感与态度目标这三个方面,而这三维目标又应是紧密联系的一个右击整体,学生学会知识与技能的过程同时成为学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把前面两者充分体现在过程与方法中。
借此,我将三维目标进行整合,确定本节课的教学目标为:三、教学方法分析现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。
根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的知道下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
中考数学复习第1课时《实数及其运算》说课稿

中考数学复习第1课时《实数及其运算》说课稿一. 教材分析《实数及其运算》是中考数学复习的第1课时,主要内容包括实数的定义、分类、性质以及实数的运算规则。
这部分内容是初中数学的基础,对于学生后续的学习具有重要意义。
在教材中,实数分为有理数和无理数两大类,有理数包括整数和分数,无理数主要包括π和开方开不尽的数。
实数的运算包括加减乘除和乘方等,运算规则遵循数学的基本规律。
二. 学情分析学生在学习《实数及其运算》时,已经掌握了有理数的运算规则,对无理数的概念和性质有一定的了解。
但部分学生对无理数的理解不够深入,容易与有理数混淆。
此外,学生在实数的运算方面容易出错,如不熟悉运算顺序、忽视运算律等。
因此,在教学过程中,需要帮助学生巩固实数的定义和性质,提高运算能力,培养学生严谨的数学思维。
三. 说教学目标1.知识与技能:使学生掌握实数的定义、分类和性质,了解实数的运算规则,提高实数运算能力。
2.过程与方法:通过自主学习、合作探讨和教师引导,培养学生独立解决问题的能力,提高学生的数学思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心和克服困难的勇气,使学生认识到数学在生活中的重要性。
四. 说教学重难点1.教学重点:实数的定义、分类、性质和运算规则。
2.教学难点:无理数的概念和性质,实数的运算顺序和运算律的应用。
五. 说教学方法与手段1.教学方法:采用自主学习、合作探讨和教师引导相结合的方法,充分发挥学生的主体作用,提高学生的学习兴趣和参与度。
2.教学手段:利用多媒体课件、黑板和教学道具等,直观展示实数及其运算的过程,帮助学生形象地理解实数的概念和性质。
六. 说教学过程1.导入新课:通过复习有理数的运算规则,引出实数的概念,激发学生的学习兴趣。
2.自主学习:让学生自主探究实数的定义、分类和性质,培养学生独立解决问题的能力。
3.合作探讨:分组讨论实数的运算规则,让学生在合作中思考,提高学生的团队协作能力。
人教版七年级数学下册《实数》说课稿

人教版七年级数学下册《实数》说课稿
一、说教材
《实数》是人教版数学七年级下册第六章的一节概念课。
本节课在学生学习了平方根以后,接触了如“π”等具体的无理数的基础上,通过学生合作探究,揭示出中像π等无限不循环小数的存在,从而引入了无理数的概念,使学生把数的概念从有理数扩展到实数,对今后的数学学习有着非常重要的意义,并且是同学们进一步学习方程、函数等知识的基础。
另外,无理数的引入,数集的扩充的教学中充满着对立与统一的辨证关系,实数和数轴上的点一一对应蕴含着数形结合的思想,通过这节课的学习不仅是完善了学生的知识结构,而且让学生领会到数形结合的思想,培养了学生的分类意识,使学生养成用多角度思维的思考习惯。
二、说教学目标
知识目标:让学生了解无理数,实数的概念,了解实数与数轴上的点一一对应,初步学会实数的大小比较,能对实数的分类进行初步的辩认。
能力目标:了解实数的分类,培养学生初步分类意识;用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步领会数形结合的数学思想方法。
情感目标:通过合作探究,让学生经历无理数的产生过程;并向学生渗透“数形结合”及分类的数学思想,感受人类(特别是我国古代)在数的发展研究中的伟大成就,从中得到启发和教育。
三、说教学重点和难点
1/ 3。
苏科版数学八年级上册4.3《实数》说课稿1

苏科版数学八年级上册4.3《实数》说课稿1一. 教材分析《实数》是苏科版数学八年级上册4.3节的内容,本节内容是在学生已经掌握了有理数的概念和运算法则的基础上进行讲解的。
实数是数学中的一个基本概念,它包括有理数和无理数两大类。
本节内容主要介绍实数的概念、性质以及实数的分类。
教材通过举例和讲解,使学生能够理解实数的含义,掌握实数的性质,并能够对实数进行分类。
二. 学情分析学生在学习本节内容之前,已经掌握了有理数的概念和运算法则,对数学中的概念和性质有一定的理解能力。
但是,实数作为一个新的概念,对学生来说还是较为抽象的,需要通过实例和讲解来理解和掌握。
另外,实数的分类也是本节内容的难点,学生需要通过教师的引导和自己的思考来理解和掌握。
三. 说教学目标1.知识与技能:使学生理解实数的概念,掌握实数的性质,能够对实数进行分类。
2.过程与方法:通过实例和讲解,使学生能够理解实数的含义,通过教师的引导和学生的思考,使学生能够掌握实数的性质,并通过练习,使学生能够对实数进行分类。
3.情感态度与价值观:培养学生对数学的兴趣,使学生能够主动参与数学的学习,培养学生对知识的探究和思考的能力。
四. 说教学重难点1.教学重点:使学生理解实数的概念,掌握实数的性质,能够对实数进行分类。
2.教学难点:实数的分类,学生需要通过教师的引导和自己的思考来理解和掌握。
五. 说教学方法与手段本节课采用讲授法和实例教学法,通过教师的讲解和实例的讲解,使学生能够理解实数的概念和性质。
同时,采用小组合作学习和问题驱动学习法,引导学生进行思考和讨论,提高学生的学习积极性和主动性。
六. 说教学过程1.导入:通过复习有理数的概念和运算法则,引出实数的概念。
2.新课讲解:讲解实数的概念和性质,通过实例来讲解实数的性质。
3.课堂练习:布置一些实数的分类的练习题,让学生进行练习。
4.课堂小结:对本节课的内容进行小结,使学生能够巩固所学的内容。
5.布置作业:布置一些有关实数的练习题,让学生进行巩固。
中考数学复习课《实数》说课稿

中考数学复习课《实数》说课稿今天我说课的内容是《实数》。
我将从教材分析、教学法分析、教学过程、及板书设计等各方面去阐述我对《实数》这节复习课的教学。
一、教材分析(一)教材的地位和作用本章之前数及其运算的内容都是在有理数范围进行,学习本章之后,将在实数范围内研究数及其运算问题,虽然本章内容不多,篇幅不大,但在中学数学中占有重要地位和作用,本章内容不仅是初中阶段学习二次根式、一元二次方程以及解三角形等知识的基础,也是学习高中数学中函数、不等式等知识的基础。
因此本节内容具有承上启下的作用。
实数及其运算是中学数学重要的基础知识,中考中多以选择题、填空题和简单的计算题17题的形式出现,主要考查基本概念、基本技能以及基本的数学思想方法。
所以我在明确中考考试大纲的要求下有针对性地对《实数》进行复习。
(二)学情分析知识上,实数这节内容学生都已学过,但是在一些问题上学生有些淡忘,或者说是理解不透,而本节课是一节复习课,虽说是温故更是要让学生明白考试大纲的要求并达到这些要求。
能力上,九年级学生对《实数》的内容都是有此了解的,对于中等生来说一些简单的题目还是可以完成的,正因为是复习课所以有些同学为此可能不够重视,所以如何在复习过程中即不让学生觉得枯燥,又能让学生能够掌握实数相关概念并进行计算至关重要。
心理上,由于初中三年数学知识的累积,有些学生学起数学有点难度,相对于七、八年级的同学来说九年级学生迫切渴望得到肯定,因此我们一方面通过解决一些题目使其得到成就感,另一方面要造机会加大学生探索空间,发挥学生的主动性,增强学生的合作意识。
(三)学习目标根据教学大纲和学生已有的知识基础和认知能力,我确定了如下的学习目标:1、理解有理数、无理数和实数的意义,能用数轴上的点表示有理数,能比较有理数的大小。
2、借助数轴理解相反数和绝对值的意义,会求一个数的相反数、倒数与绝对值,知道|a|的含义。
3、了解乘方与开方互为逆运算,理解平方根、算术平方根、立方根的概念,会求一个数的算术平方根、平方根、立方根。
实数的说课稿

实数的说课稿一、引入本篇文章将详细介绍实数的基本概念、运算以及实数的应用。
实数也是数学中最为基础的概念之一,也是其他高级数学学科的基础。
无论是初中还是高中数学,实数都是必须学的知识点。
二、实数的定义实数是包括有理数和无理数的集合。
可以用一个数轴来表示实数,数轴上的整点与实数一一对应。
实数包括有理数和无理数两部分,其中有理数包括整数、分数、小数等,无理数没有固定的表示,如$\\sqrt{2}$,$\\pi$等。
三、实数的四则运算1. 实数加法实数的加法满足交换律、结合律、分配律,即:$$ \\begin{aligned} a+b &= b+a \\\\ (a+b)+c &= a+(b+c) \\\\ a(b+c) &= ab+ac \\end{aligned} $$这些性质使实数加减法的计算变得非常简单。
2. 实数的减法实数的减法也符合减法公式:a−b=a+(−b)。
其中−b被称为b的相反数。
求相反数的方法是在b前面加一个负号,即−b。
3. 实数的乘法实数的乘法也符合交换律、结合律、分配律,同时还满足乘法对加法的分配律。
具体表现为:$$ \\begin{aligned} a \\times b &= b \\times a \\\\ (a \\times b) \\times c &= a \\times (b \\times c) \\\\ a(b+c) &= ab+ac \\\\ a \\times 0 &= 0 \\times a = 0\\\\ a \\times(-b) &= (-a) \\times b = -ab \\\\ \\frac{a}{b} \\times \\frac{c}{d} &= \\frac{ac}{bd} \\end{aligned} $$4. 实数的除法实数的除法指的是实数之间的除法,除数不为0。
《实数》说课稿

阅读下列材料: . 设x=0.3 =0.333……① 则10x=3.33……② 1 则②-①得9x=3,即x= 3 . 1 ∴0.3 =0.333……= 3
(二)讲授及运用新知
问题:通过前面的探究和学习,我们知道很多数的平方根和 立方根都是无限不循环小数例如 2, 3 ,那么无限不循环小数 叫做什么呢?
6)有理数都是有限数。… ………………… ( 有理数都是有限数。
例2:将例1⑵中各数填入相应的集合内 整数集合 { } 负分数集合{ } 正数集合 { } 负数集合 { } 有理数集合{ } 无理数集合{ }
思考与讨论: 1、我们知道每个有理数都可以用数轴上的点 来表示,无理数是否也可以用数轴上的点表 示呢? 2、当数从有理数扩充到实数后,有理数关于 相反数和绝对值的意义同样适合于实数吗? 总结:数a的相反数是-a,这里a表示任意一个 实数,一个正实数的绝对值是本身,一个负 实数的绝对值是它的相反数。0的绝对值是0。
归纳:任何一个有理数都可以写成有限小数和无限循环 小数的形式,反过来,任何有限小数或无限循环小数也 都是有理数。 追问:任何一个有限小数和无限循环小数都能化成分数吗?
1 3
. .. 问题:根据上面提供的方法,你能把0.7、014.化成
分数吗?想一想是不是任何无限循环小数都可以 化成分数? 归纳:任何一个有限小数和一个无限循环小数都可 以化成分数,所以任何一个有限小数和一个无限 循环小数都是有理数。
(按定义分) 按定义分)
分数 无理数 正实数
ቤተ መጻሕፍቲ ባይዱ
无限不循环小数
正有理数 正无理数
实数
(按性质分) 按性质分)
0
负实数
负有理数 负无理数
判断下列说法是否正确,并说明理由: 判断下列说法是否正确,并说明理由:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《实数》说课稿
博白县顿谷镇初中庞博东尊敬的各位评委,大家好!我今天说课的内容是人教版七年级数学下册第六章第三节“实数”第一课时,下面,我将从以下几个方面对这节课的设计进行说明。
(即教材分析,学情分析,教学法分析,教学过程,评价与反思)
一、教材分析
1、教材的地位和作用
本节课是在数的开方的基础上引进无理数的概念,并将数从有理数范围扩充到实数范围。
从有理数到实数,这是数的范围的一次重要扩充。
对今后学习数学有重要意义。
在中学阶段,多数数学问题是在实数范围内研究的
2、教学目标:
知识技能:1 了解无理数和实数的概念以及实数的分类。
2 知道实数与数轴上的点具有一一对应关系。
3、教学重点、难点
重点:了解无理数和实数的概念;实数的分类。
难点:对无理数的认识。
二、学情分析
在学习本节课前,学生已掌握对一个非负数开平方和对一个数开立方运算。
课本对学生掌握实数要求不高。
只要求学生了解无理数
和实数的意义。
但实数的知识却贯穿中学数学始终,所以我们只能逐步加深学生对实数的认识。
本节主要引导学生熟知实数的概念和意义,为后面学习打下基础。
三、 教法学法分析:
教法分析:为了更好的把握教学内容的整体性、联续性,我采用问题情境导入法引入新课,用类比归纳法和探究分析法展开数学活动。
在教学中注重学生的动手实践能力和自主探究能力的培养,使学生经历:观察、比较、交流、归纳、反思等理性思维的基本过程。
学法分析:为了有效地突出重点、突破难点,本节课我采用以学生自主探究、小组合作交流为主的学习方式,启发学生进行观察、类比、分析,让学生多动手动脑,积极参与到概念的建立,问题求解当中来,使学生的主观能动性得到最大程度的发挥。
四、教学过程:针对本节教材的特点,我把教学过程设计为以下六个环节:
(一)温旧激情,引入课题
兴趣是最好的老师,课堂伊始,出示几个语气亲切简单的问题“你从什么时候开始接触数学?到目前为止,你认识了哪些数?”激发学生情感的同时,自然引入有理数,让学生回忆有理数的分类,并及时板书“有理数可以分为正有理数、0、负有理数或整数、分数”,为引入实数的分类作好铺垫,也建立新知与旧知的联系,让学生各类型举一个例,如“3,53
,847,119,9011,9
5”让学生写成小数形式,你有什么发现?放手让学生去探究,动手实践,合作交流,找出规律。
师生共同总结“任何一个有理数都可以写成有限小数和无限循环小数的形式,反过来,任何有限小数或无限循环小数也都是有理数。
追问:任何一个有限小数和无限循环小数都能化成分数吗? 本节设计的问题层层递进,在学生解决一个问题后,接着提出另一个更具挑 战性的问题,以此激发学生学习探究的兴趣。
对有理数的重新认识从有理数的分类开始,将分数与小数进行互化,学生通过动手计算,发现有理数的出场作了准备,从而引入新课。
(二)、拓展深化,探究交流
1、概念:
(1)有理数就是无限不循环小数。
(2)有理数与无理数统称为实数。
2、你知道我们见过的无理数,一般是以哪几种形式出现的吗?
(1)字母形式:(2)开方开不尽的带根号的数:(3)一些无限不循环小数:
3、你能对我们学过的数进行合理的分类吗?(1)按定义来分(2)按正负来分
4、把下列各数填入相应的集合内:
2273.141,,,,,1.414,0.020202,7378π----
5、我们知道,每个有理数都可以用数轴上的点来表示,那么无理数是否也可以用数轴上的点表示出来呢?你能在数轴上找到表示这样的无理数的点吗?
通过让学生参与无理数的概念的建立和发现数系扩充必要性的过程,促使学生对数学学习的兴趣,培养学生初步的发现能力。
通过对实数进行分类,让学生进一步领会分类的思想,培养学生从多角度思考问题的能力,为他们以后更好地学习新知识做准备。
同时也能使学生加深对无理数和实数认识。
学习中学生互相的讨论和交流,可以深刻地体验知识之间的内在联系,初步形成对实数的整体认识。
通过对实数分类的练习与巩固,加深学生对各种数的认识,加深对实数概念的理解。
轴上的点来表示。
借助数轴对无理数进行研究,从形的角度,再一次体会无理数,同时也感受实数与数轴上的点的一一对应关系,进一步体会数形结合思想。
(三)随堂练习,巩固新知
1、判断
(1)有理数包括整数、分数、0。
(2)不带根号的数都是有理数。
(3)带根号的 数都是无理数。
(4)无限小数都是无理数。
(5)无理数都是无限小数。
2,下列各数中:41
-, 7-,3.14159,π,3
10,34-,0,38 ,16,2.121122111222……其中有理数有 。
无理数有 。
(四)课堂小结,反思提高
小结:通过这节课的学习,你有哪些收获?使学生能回顾、总结、梳理所学的知识,将所学的知识与已有的知识进行紧密联系,改善学生的学习方式。
(五)布置作业-必做题:6.3 1、2题 选做题:6.3 3题
(六)板书设计-把实数的概念及分类板书在黑板上,突出要点。
五、评价与反思
“不活动起来,是很难学到什么东西的,也肯定学不到更多的东西”,学东西的最好的途径是亲自发现它,本节课的教学设计中注重学生的认知水平和亲身感受出发,创设学习情境,提高学生学习数学的积极性和学习兴趣,设计系列活动让学生经历不同的学习过程。
在活动中让学生动手试一试,说说自己的发现并与同学交流讨论,在交流中尝试得出结论:有理数都是有限小数或无限循环小数"的数学事实,体验无理数的存在与数系扩展的必要。
通过合作探索,经历无理数的产生过程,精心设问,适时、适度采用激励性语言,提高学生学习积极性,从而较好地完成实数概念的建构,达到教学目标。
我的说课到此结束,不当之处敬请批评指正,谢谢!
最新文件---------------- 仅供参考--------------------已改成word文本--------------------- 方便更改。