八年级 下册期中数学试卷及答案 (2)
数学八年级下册期中试卷及答案(PDF可打印)

2021-2022学年河南省漯河市郾城区八年级(下)期中数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的,把正确选项填在答题框中。
1.(3分)若二次根式有意义,则x的取值范围为()A.x>2B.x<2C.x≤2D.x≥22.(3分)下列二次根式中,最简二次根式是()A.B.C.D.3.(3分)已知△ABC的三边分别为a.b、c,则下列条件中不能判定△ABC是直角三角形的是()A.b2=a2﹣c2B.C.∠C=∠A﹣∠B D.∠A:∠B:∠C=3:4:54.(3分)如图,在由边长均为1的小正方形组成的4×4网格中,将连接任意两个格点的线段称作“格点线”,则“格点线”的长度不可能为()A.B.C.D.55.(3分)如图,在▱ABCD中,∠A+∠C=140°,则∠B的度数为()A.140°B.120°C.110°D.100°6.(3分)如图所示,数轴上点A所表示的数为a,则a的值是()A.﹣1B.﹣+1C.+1D.7.(3分)如图,四边形ABCD的对角线AC,BD交于点O,则不能判断四边形ABCD是平行四边形的是()A.∠ABD=∠BDC,OA=OC B.∠ABC=∠ADC,AB=CDC.∠ABC=∠ADC,AD∥BC D.∠ABD=∠BDC,∠BAD=∠DCB 8.(3分)如图,已知E是正方形ABCD对角线AC上一点,且AB=AE,则∠DBE度数是()A.15°B.32.5°C.22.5°D.30°9.(3分)如图,在长方形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()A.(﹣12+8)cm2B.(16﹣8)cm2C.(8﹣4)cm2D.(4﹣2)cm210.(3分)如图,在菱形ABCD中,AB=6,∠ABC=60°,M为AD中点,P为对角线BD上一动点,连接PA和PM,则PA+PM的值最小是()A.3B.2C.3D.6二、填空题(每小题3分,共15分)11.(3分)比较大小:.12.(3分)若是正整数,则最小的正整数a的值是.13.(3分)已知x=﹣1,则x2+2x﹣6=.14.(3分)如图,湖面上有一朵盛开的红莲,它高出水面30cm.大风吹过,红莲被吹至一边,花朵下部刚好齐及水面,已知红莲移动的水平距离为60cm,则水深是cm.15.(3分)在Rt△ABC中,AC=3,BC=4,点P是斜边AB上一点,若△PAC是等腰三角形,则线段AP的长可能为.三、解答题(本大题共8小题,共75分)16.(10分)计算:(1);(2)()().17.(9分)如图,在▱ABCD中,点E,F分别在BC,AD上,AC与EF相交于点O,且AO=CO.求证:四边形AECF是平行四边形.18.(9分)如图平行四边形ABCD,E在AD边上,且DE=CD,仅用无刻度直尺作图并保留作图痕迹,不写画法.(1)在图1中,画出∠C的角平分线;(2)在图2中,画出∠A的角平分线.19.(9分)明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地°送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.20.(9分)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交AC,BC,AD于点O,E,F.(1)求证:AF=CE;(2)若BE=3,AF=5,求AC的长.21.(9分)如图,将平行四边形ABCD的边AB延长至点E,使BE=AB,连接DE,EC,DE,交BC于点O.(1)求证:△ABD≌△BEC;(2)连接BD,若∠BOD=2∠A,求证:四边形BECD是矩形.22.(10分)如图,四边形ABCD中,AD∥BC,∠A=∠D=90°,点E是AD的中点,连接BE,将△ABE沿BE折叠后得到△GBE,且点G在四边形ABCD内部,延长BG交DC于点F,连接EF.(1)求证:△EGF≌△EDF;(2)求证:BG=CD;(3)若点F是CD的中点,BC=8,求CD的长.23.(10分)如图,已知四边形ABCD为正方形,AB=4,点E为对角线AC上一动点,连接DE、过点E作EF⊥DE.交BC点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.2021-2022学年河南省漯河市郾城区八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的,把正确选项填在答题框中。
八年级下学期数学期中考试试卷含答案(共5套,人教版)

人教版八年级第二学期期中考试试卷数学试题校区 班级 姓名本试卷考试时间为:90分钟 满分为:100分一、选择题(每题3分,共24分)1.下列各组数据中的三个数,可作为三边长构成直角三角形的是A .4,5,6B .2,3,4C .11,12,13D .8,15,17 2.方程0)1()23(22=++--x x x 的一般形式是A .0552=+-x x B . 0552=++x x C . 05-52=+x x D . 052=+x 3.用配方法解方程2410x x --=,方程应变形为A .2(2)3x +=B .2(2)5x += C .122=-)(x D .2(2)5x -=4.2016年国内某地产公司投资破8亿元,连续两年增长后,2018年国内地产投资破9.5亿元, 设这两年平均地产投资年平均增长率为x ,根据题意,所列方程中正确的是A .819.52=+)(xB .8-19.52=)(xC .9.5218=+)(xD .9.5182=+)(x 5.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,且DE ∥AC ,CE ∥BD ,若AC =2,则四边形OCED的周长为A .16B .8C .4D .25题图 6题图 7题图6.如图,△ABC 中,AB =AC =12,BC =8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长是A .20B .16C .13D .127.如图,在平行四边形ABCD 中,AB=3,AD =5,∠BCD 的平分线交BA 的延长线于点E ,则AE 的长为 A .3 B .2.5 C .2 D .1.58.为了研究特殊四边形,李老师制作了这样一个教具(如下左图):用钉子将四根木条钉成一个平行四边形框架ABCD ,并在A 与C 、 B 与D 两点之间分别用一根橡皮筋拉直固定. 课上,李老师右手拿住木条BC ,用左手向右推动框架至AB ⊥BC (如下右图). 观察所得到的四边形,下列判断正确的是 A .∠BCA =45° B .BD 的长度变小 C .AC =BD D .AC ⊥BDA BCDDCBA →二、填空题(每题3分,共24分)9.若关于x 的方程042=-+-a x x 有两个不相等的实数根,写出一个满足条件的整数a 的值:a =____________.10.如下图,作一个以数轴的原点为圆心,长方形对角线为半径的圆弧,交数轴于点A ,则点A 表示的数是____________.11.在平面直角坐标系中,四边形AOBC 是菱形。
新人教版八年级数学下册期中考试卷及答案【完整版】

新人教版八年级数学下册期中考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =.下列结论:①0abc <;②30a c +>;③()220a c b +-<;④()a b m am b +≤+(m 为实数).其中结论正确的个数为( )A .1个B .2个C .3个D .4个6.如果2a a 2a 1-+,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.下列四个图形中,线段BE是△ABC的高的是()A. B.C. D.8.如图,小华剪了两条宽为1的纸条,交叉叠放在一起,且它们较小的交角为60,则它们重叠部分的面积为()A.1 B.2 C 3 D.23 39.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A .12B .1C .2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.已知34(1)(2)x x x ---=1A x -+2B x -,则实数A=__________. 3.分解因式:2x 3﹣6x 2+4x =__________.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x yx y-=⎧⎨+=⎩(2)272253xyyx⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再求值:3x4x2xx1x1--⎛⎫-÷⎪--⎝⎭,其中1x2=.3.已知关于x的分式方程311(1)(2)x kx x x-+=++-的解为非负数,求k的取值范围.4.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.5.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.6.某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B5、C6、C7、D8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1002、13、2x (x ﹣1)(x ﹣2).4、()()2a b a b ++.5、1(21,2)n n -- 6、8三、解答题(本大题共6小题,共72分)1、(1)11x y =⎧⎨=⎩;(2)23x y =⎧⎨=⎩2、x 2-,32-. 3、8k ≥-且0k ≠.4、(1)略;(2)四边形BECD 是菱形,理由略;(3)当∠A =45°时,四边形BECD 是正方形,理由略5、(1)略(2)等腰三角形,理由略6、(1)A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克材料;(2)至少购进A 型机器人14台.。
人教版数学八年级下学期期中测试卷二(含答案及解析)

人教版数学八年级下学期期中测试卷二一、选择题(本大题共10 小题,每小题3 分,共30 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3 分)计算的结果为()A.10 B.5 C.3 D.22.(3 分)使二次根式有意义的x 的取值范围是()A.x≠2 B.x>2 C.x≤2 D.x≥23.(3 分)下列计算正确的是()A.﹣=B.+ =C.3 ﹣=2 D.2+ =24.(3 分)下列各组数中,以a、b、c 为边的三角形不是直角三角形的是()A.a=1,b=,c=B.a=,b=2,c=C.a=,b=,c=D.a=7,b=24,c=255.(3 分)下列命题中,是真命题的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是正方形6.(3 分)如图,点A(﹣4,4),点B(﹣3,1),则AB 的长度为()A.2B.C.2D.7.(3 分)如图,桌面上的正方体的棱长为2,B 为一条棱的中点.已知蚂蚁沿正方体的表面从A 点出发,到达B 点,则它运动的最短路程为()A.B.4 C.D.58.(3 分)若a,b,c 为直角三角形的三边,则下列判断错误的是()A.2a,2b,2c 能组成直角三角形B.0a,10b,10c 能组成直角三角形C.能组成直角三角形D.能组成直角三角形9.(3 分)如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使得其面积为原矩形面积的一半,则平行四边形ABCD 的内角∠BCD 的大小为()A.100°B.120°C.135°D.150°10.(3 分)将一张正方形纸片按如图的步骤,通过折叠得到④,再沿虚线剪去一个角,展开平铺后得到⑤,其中FM、GN 为折痕,若正方形EFGH 与五边形MCNGF 的面积之比为4:5,则的值为()A.B.C.D.二、填空题:(本大题共6 小题,每小题3 分,共18 分)11.(3 分)化简:+()2=.12.(3 分)若a=2+,b=2﹣,则ab 的值为.13.(3 分)若平行四边形中两个内角的度数比为1:2,则其中较小的内角为.14.(3 分)如图,在3×3 的正方形网格中,每个小正方形边长为1,点A,B,C 均为格点,以点A 为圆心,AB 长为半径作弧,交格线于点D,则CD 的长为.15.(3 分)如图,有一四边形空地ABCD,AB⊥AD,AB=3,AD=4,BC=12,CD=13,则四边形ABCD 的面积为.16.(3 分)如图,△ACB 和△ECD 都是等腰直角三角形,CA=CB,CE=CD,△ABC 的顶点A 在△ECD 的斜边上,若AE=,AD=,则AC 的长为.三、解答题:(本大题共7 小题,共72 分.解答应写出文字说明、演算步骤或证明过程)17.(8 分)计算:(I)(+ )+(﹣);(II)2 ×÷5 .18.(8 分)已知x=2﹣,求代数式(7+4 )x2+(2+ )x+ 的值.19.(10 分)已知四边形ABCD,∠A=∠B=∠C=∠D.求证:四边形ABCD 是矩形.20.(12 分)如图,在每个小正方形的边长为1 的网格中,点A、B、C 均在格点上.(1)直接写出AC 的长为,△ABC 的面积为;(2)请在如图所示的网格中,用无刻度的直尺作出AC 边上的高BD,并保留作图痕迹;(3)求BD 的长.21.(10 分)如图,在△ABC 中,∠ACB=90°,CD⊥AB 于D,M 是斜边的中点.(I)若BC=1,AC=3,求CM 的长;(II)若∠ACD=3∠BCD,求∠MCD 的度数.22.(12 分)在△ABC 中,AB=AC=5.(1)若BC=6,点M、N 在BC、AC 上,将△ABC 沿MN 折叠,使得点C 与点A 重合,求折痕MN 的长;(2)点D 在BC 的延长线上,且BC:CD=2:3,若AD=10,求证:△ABD 是直角三角形.23.(12 分)如图,将一个正方形纸片AOBC 放置在平面直角坐标系中,点A(0,6),B(6,0),动点E 在边AO 上,点F 在边BC 上,沿EF 折叠该纸片,使点O 的对应点M 始终落在边AC 上(点M 不与A,C 重合),点B 落在点N 处,MN 与BC 交于点P.(I)求点C 的坐标;(II)当点M 落在AC 的中点时,求点E 的坐标;(III)当点M 在边AC 上移动时,设AM=t,求点E 的坐标(用t 表示).人教版数学八年级下学期期中测试卷二参考答案与试题解析一、选择题(本大题共10 小题,每小题3 分,共30 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3 分)计算的结果为()A.10 B.5 C.3 D.2【分析】直接利用二次根式的乘法运算法则计算得出答案.【解答】解:=5.故选:B.2.(3 分)使二次根式有意义的x 的取值范围是()A.x≠2 B.x>2 C.x≤2 D.x≥2【分析】利用当二次根式有意义时,被开方式为非负数,得到有关x 的一元一次不等式,解之即可得到本题答案.【解答】解:∵二次根式有意义,∴x﹣2≥0,解得:x≥2,故选:D.3.(3 分)下列计算正确的是()A.﹣=B.+ =C.3 ﹣=2 D.2+ =2【分析】先把各个二次根式化成最简二次根式再合并判断即可.【解答】解:A、,错误,不符合题意;B、,错误,不符合题意;C、,正确,符合题意;D、,错误,不符合题意;故选:C.4.(3 分)下列各组数中,以a、b、c 为边的三角形不是直角三角形的是()A.a=1,b=,c=B.a=,b=2,c=C.a=,b=,c=D.a=7,b=24,c=25【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.【解答】解:A、12+()2=()2,符合勾股定理的逆定理,是直角三角形,故此选项错误;B、22+()2=()2,符合勾股定理的逆定理,是直角三角形,故此选项错误;C、()2+()2≠()2,不符合勾股定理的逆定理,不是直角三角形,故此选项正确;D、72+242=252,符合勾股定理的逆定理,是直角三角形,故此选项错误.故选:C.5.(3 分)下列命题中,是真命题的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是正方形【分析】根据特殊四边形的判定定理进行判断即可.【解答】解:A、对角线互相平分的四边形是平行四边形,正确;B、对角线相等的四边形是矩形,还可能是等腰梯形,错误;C、对角线互相垂直的四边形是菱形,还可能是梯形,错误;D、对角线互相垂直平分的四边形是菱形,错误;故选:A.6.(3 分)如图,点A(﹣4,4),点B(﹣3,1),则AB 的长度为()A.2 B.C.2 D.【分析】根据题意,可以得到AC 和BC 的长,然后利用勾股定理,即可得到AB 的长,本题得以解决.【解答】解:作BC∥x 轴,作AC∥y 轴交BC 于点C,∵点A(﹣4,4),点B(﹣3,1),∴AC=3,BC=1,∵∠ACB=90°,∴AB==,故选:B.7.(3 分)如图,桌面上的正方体的棱长为2,B 为一条棱的中点.已知蚂蚁沿正方体的表面从A 点出发,到达B 点,则它运动的最短路程为()A.B.4 C.D.5【分析】正方体侧面展开为长方形,确定蚂蚁的起点和终点,根据两点之间线段最短,根据勾股定理可求出路径长,【解答】解:如图,它运动的最短路程AB==,故选:C.8.(3 分)若a,b,c 为直角三角形的三边,则下列判断错误的是()A.2a,2b,2c 能组成直角三角形B.0a,10b,10c 能组成直角三角形C.能组成直角三角形D.能组成直角三角形【分析】根据勾股定理得出a2+b2=c2(设 c 为最长边),再逐个判断即可.【解答】解:∴a,b,c 为直角三角形的三边,设c 为最长边,∴a2+b2=c2,A.∵a2+b2=c2,∴4a2+4b2=4c2,即(2a)2+(2b)2=(2c)2,∴以2a,2b,2c 为边能组成直角三角形,故本选项不符合题意;B.∵a2+b2=c2,∴100a2+100b2=100c2,即(10a)2+(10b)2=(10c)2,∴以10a,10b,10c 为边能组成直角三角形,故本选项不符合题意;C.∵a2+b2=c2,∴a2+ b2=c2,即()2+()2=()2,∴以,,为边能组成直角三角形,故本选项不符合题意;D.∵()2+()2≠()2,∴以,,为边不能组成直角三角形,故本选项符合题意;故选:D.9.(3 分)如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使得其面积为原矩形面积的一半,则平行四边形ABCD 的内角∠BCD 的大小为()A.100°B.120°C.135°D.150°【分析】作AE⊥BC 于点E.根据面积的关系可以得到AB=2AE,进而可得∠ABE=30°,再根据平行四边形的性质即可求解.【解答】解:如图,作AE⊥BC 于点E.∵矩形的面积=BC•CF=2S=2BC•AE,平行四边形ABCD∴CF=2AE,∴AB=2AE,∴∠ABE=30°,∵AB∥CD,∴∠BCD=180°﹣∠ABE=150°.故选:D.10.(3 分)将一张正方形纸片按如图的步骤,通过折叠得到④,再沿虚线剪去一个角,展开平铺后得到⑤,其中FM、GN 为折痕,若正方形EFGH 与五边形MCNGF 的面积之比为4:5,则的值为()A.B.C.D.【分析】连接HF,直线HF 与AD 交于点P,根据正方形EFGH 与五边形MCNGF 的面积之比为4:5,设正方形EFGH 与五边形MCNGF 的面积为4x2,5x2,可得GF=2x,根据折叠可得正方形ABCD 的面积为24x2,进而求出FM,最后求得结果.【解答】解:如图,连接HF,直线HF 与AD 交于点P,∵正方形EFGH 与五边形MCNGF 的面积之比为4:5,设正方形EFGH 与五边形MCNGF 的面积为4x2,5x2,∴GF2=4x2,∴GF=2x,∴HF==2 x,由折叠可知:正方形ABCD 的面积为:4x2+4×5x2=24x2,∴PM2=24x2,∴PM=2 x,∴FM=PH=(PM﹣HF)=(2 x﹣2 x)=(﹣)x,∴==.故选:A.二、填空题:(本大题共6 小题,每小题3 分,共18 分)11.(3 分)化简:+()2=10 .【分析】根据二次根式的性质计算.【解答】解:原式=5+5=10.12.(3 分)若a=2+,b=2﹣,则ab 的值为 1 .【分析】直接利用平方差公式计算得出答案.【解答】解:∵a=2+ ,b=2﹣,∴ab=(2+ )×(2﹣)=4﹣3=1.故答案为:1.13.(3 分)若平行四边形中两个内角的度数比为1:2,则其中较小的内角为60°.【分析】首先设平行四边形中两个内角的度数分别是x°,2x°,由平行四边形的邻角互补,即可得方程x+2x=180,继而求得答案.【解答】解:设平行四边形中两个内角的度数分别是x°,2x°,则x+2x=180,解得:x=60,∴其中较小的内角是:60°.故答案为:60°.14.(3 分)如图,在3×3 的正方形网格中,每个小正方形边长为1,点A,B,C 均为格点,以点A 为圆心,AB 长为半径作弧,交格线于点D,则CD 的长为3﹣.【分析】由勾股定理求出AB,再由勾股定理求出DE,即可得出CD 的长.【解答】解:连接AB,AD,如图所示:∵AD=AB==2 ,∴DE==,∴CD=3﹣.故答案为:3﹣.15.(3 分)如图,有一四边形空地 ABCD ,AB ⊥AD ,AB =3,AD =4,BC =12,CD =13,则四边形ABCD 的面积为 36 .【分析】连接 BD ,先根据勾股定理求出 BD ,进而判断出△BCD 是直角三角形,最后用面积的和即可求出四边形 ABCD 的面积.【解答】解:如图,连接 BD ,∵在 Rt △ABD 中,AB ⊥AD ,AB =3,AD =4,根据勾股定理得,BD =5,在△BCD 中,BC =12,CD =13,BD =5,∴BC 2+BD 2=122+52=132=CD 2,∴△BCD 为直角三角形,∴S 四边形 ABCD =S △ABD +S △BCD= AB •AD + BC •BD= ×3×4+ ×12×5=36.故答案为:36.16.(3 分)如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,△ABC 的顶点 A 在△ ECD 的斜边上,若 AE = ,AD = ,则 AC 的长为 .【分析】连接 BD ,根据等腰直角三角形性质和全等三角形的性质可得 AE =BD =,根据勾股定理可求 BC 的长,即可求解.【解答】解:如图,连接 BD ,∵△ACB 和△ECD 都是等腰直角三角形,∴CE=CD,AC=BC,∠ECD=∠ACB=90°,∠CED=∠EDC=45°,∴∠ACE=∠DCB,且CE=CD,AC=BC,∴△ACE≌△BCD(SAS),∴AE=BD=,∠CED=∠CDB=45°,∵∠ADB=∠EDC+∠CDB,∴∠ADB=90°,∴AB2=AD2+DB2=3+7=10,∴AB=,∵AC2+BC2=AB2,∴AC=BC=,故答案为.三、解答题:(本大题共7 小题,共72 分.解答应写出文字说明、演算步骤或证明过程)17.计算:(I)(+ )+(﹣);(II)2 ×÷5 .【分析】(I)直接化简二次根式进而合并得出答案;(II)直接利用二次根式的乘除运算法则计算得出答案.【解答】解:(I)(+ )+(﹣)=2 +2 + ﹣=3 + ;(II)2 ×÷5=4 ×÷5=3×=.18.已知x=2﹣,求代数式(7+4 )x2+(2+ )x+ 的值.【分析】首先计算x2的值,然后代入所求的式子利用平方差公式计算,最后合并同类二次根式即可.【解答】解:x2=(2﹣)2=7﹣4 ,则原式=(7+4 )(7﹣4 )+(2+ )(2﹣)+=49﹣48+1+=2+ .19.已知四边形ABCD,∠A=∠B=∠C=∠D.求证:四边形ABCD 是矩形.【分析】证出∠A=∠B=∠C=∠D=90°,直接利用三个角是直角的四边形是矩形,进而得出即可.【解答】证明:∵四边形ABCD,∠A=∠B=∠C=∠D,∠A+∠B+∠C+∠D=360°,∴∠A=∠B=∠C=∠D=90°,∴四边形ABCD 是矩形.20.如图,在每个小正方形的边长为1 的网格中,点A、B、C 均在格点上.(1)直接写出AC 的长为,△ABC 的面积为9 ;(2)请在如图所示的网格中,用无刻度的直尺作出AC 边上的高BD,并保留作图痕迹;(3)求BD 的长.【分析】(1)根据勾股定理和三角形的面积公式即可得到结论;(2)根据题意画出线段BD 即可;(3)根据三角形的面积公式即可得到结论.【解答】解:(1)AC==,S△ABC=4×5﹣×2×4﹣×2×5﹣×1×4=9,故答案为,9;(2)如图所示,BD 即为所求,(3)∵S△ABC=AC•BD=BD=9,∴BD=.21.如图,在△ABC 中,∠ACB=90°,CD⊥AB 于D,M 是斜边的中点.(I)若BC=1,AC=3,求CM 的长;(II)若∠ACD=3∠BCD,求∠MCD 的度数.【分析】(I)先利用勾股定理求出AB,再根据直角三角形斜边上的中线等于斜边的一半的性质即可得到CM 的长;(Ⅱ)先求出∠BCD,再根据直角三角形两锐角互余求出∠B,根据直角三角形斜边上的中线等于斜边的一半可得AM=MC,根据等边对等角可得∠ACM=∠A,再求出∠MCD=45°.【解答】解:(Ⅰ)∵在△ABC 中,∠ACB=90°,BC=1,AC=3,∴AB==,∵M 是斜边的中点,∴CM=AB=;(Ⅱ)∵∠ACB=∠ACD+∠BCD=90°,∠ACD=3∠BCD,∴∠ACD=90°×=67.5°,∵CD⊥AB,∴∠A+∠ACD=90°,∴∠A=22.5°,∵CM=AB=AM,∴∠ACM=∠A=22.5°,∴∠MCD=∠ACD﹣∠ACM=67.5°﹣22.5°=45°.22.在△ABC 中,AB=AC=5.(1)若BC=6,点M、N 在BC、AC 上,将△ABC 沿MN 折叠,使得点C 与点A 重合,求折痕MN 的长;(2)点D 在BC 的延长线上,且BC:CD=2:3,若AD=10,求证:△ABD 是直角三角形.【分析】(1)如图1,过A 作AD⊥BC 于D,根据等腰三角形的性质得到BD=CD=3,求得AD =4,根据折叠的性质得到AM=CM,AN=AC=,设AM=CM=x,根据勾股定理即可得到结论;(2)如图2,过A 作AE⊥BC 于E,根据等腰三角形的性质得到BE=CE=BC,设BC=2t,CD =3t,AE=h,得到BE=CE=t,根据勾股定理和勾股定理的逆定理即可得到结论.【解答】解:(1)如图1,过A 作AD⊥BC 于D,∵AB=AC=5,BC=6,∴BD=CD=3,∴AD=4,∵将△ABC 沿MN 折叠,使得点C 与点A 重合,∴AM=CM,AN=AC=,设AM=CM=x,∴MD=x﹣3,∵AD2+DM2=AM2,∴42+(x﹣3)2=x2,解得:x=,∴MN===;(2)如图2,过 A 作AE⊥BC 于E,∵AB=AC,∴BE=CE=BC,∵BC:CD=2:3,∴设BC=2t,CD=3t,AE=h,∴BE=CE=t,∵AB=5,AD=10,∴h2+t2=52,h2+(4t)2=102,联立方程组解得,t=(负值舍去),∴BD=5 ,∵AB2+AD2=52+102=125=(5 )2=BD2,∴△ABD 是直角三角形.23.如图,将一个正方形纸片AOBC 放置在平面直角坐标系中,点A(0,6),B(6,0),动点E 在边AO 上,点F 在边BC 上,沿EF 折叠该纸片,使点O 的对应点M 始终落在边AC 上(点M 不与A,C 重合),点B 落在点N 处,MN 与BC 交于点P.(I)求点C 的坐标;(II)当点M 落在AC 的中点时,求点E 的坐标;(III)当点M 在边AC 上移动时,设AM=t,求点E 的坐标(用t 表示).【分析】(I)根据正方形的性质可得AC⊥OA,CB⊥OB,结合A,B 两点坐标可求解;(II)根据中点的定义可得AM=3,设OE=x,则EM=OE=x,AE=6﹣x,利用勾股定理可求解x 值,进而求解E 点坐标;(III)设点E 的坐标为(0,a),由勾股定理可求解a 值,进而求解E 点坐标.【解答】解:(I)∵正方形AOBC,A(0,6),B(6,0),∴OA=AC=CB=OB=6,且每个内角都是90°,即AC⊥OA,CB⊥OB,∴C(6,6);(II)∵M 为AC 的中点,∴AM=AC=3,设OE=x,则EM=OE=x,AE=6﹣x,在Rt△AEM 中,EM2=AM2+AE2,∴(6﹣x)2+32=x2,解得x=,∴E(0,);(III)设点E 的坐标为(0,a),由题意得OE=EM=a,AE=6﹣a,AM=t,在Rt△EAM 中,EM2=AM2+AE2,∴a2=(6﹣a)2+t2,解得a=,∴点E 的坐标为(0,).。
华师大版八年级下册数学期中考试试题及答案

华师大版八年级下册数学期中考试试卷一、单选题1.在下列分式中,最简分式是()A .11a a --B .22a ba b -+C .-bab b D .1352-ab2.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m ,这个数用科学记数法表示正确的是()A .3.4×10-9m B .0.34×10-9mC .3.4×10-10mD .3.4×10-11m 3.下列计算正确的是()A .3x x x =B .11a a b b +=+C .2+1﹣1=﹣1D .a ﹣3=(a 3)-14.若把分式2xy x y +的x.y 同时扩大3倍,则分式值()A .扩大3倍B .缩小3倍C .不变D .扩大9倍5.已知反比例函数y =21k x+的图上象有三个点(2,y 1),(3,y 2),(﹣1,y 3),则y 1,y 2,y 3的大小关系是()A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 3>y 1>y 2D .y 3>y 2>y 16.函数y =m x与y =mx ﹣m (m≠0)在同一平面直角坐标系中的图象可能是()A .B .C .D .7.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是()A .m <92B .m <92且m≠32C .m >﹣94D .m >﹣94且m≠﹣348.ABCD 中,∠A :∠B :∠C :∠D 的值可以是()A .1:2:3:4B .1:2:2:1C .2:2:1:1D .2:1:2:19.下列说法错误的是()A .平行四边形的对角相等B .平行四边形的对角互补C .平行四边形的对边相等D .平行四边形的内角和是360°10.某施工队要铺设一条长为1500米的管道,为了减少施工对交通造成的影响,施工队实际的工作效率比原计划提高了20%,结果比原计划提前2天完成任务.若设施工队原计划每天铺设管道x 米,则根据题意所列方程正确的是()A .15000(120)0x -﹣1500x =2B .1500x =2+15000(120)0x -C .15000(1+20)0x ﹣1500x =2D .1500x =2+15000(1+20)0x 二、填空题1121()2--+(π﹣3.14)0=___.12.函数y =x 的取值范围是__________.13.已知点P(2﹣a ,2a ﹣7)(其中a 为整数)位于第三象限,则点P 坐标为_____.14.若点A (a ,b )在反比例函数y =5x -的图象上,则代数式ab ﹣4的值为_____.15.一个y 关于x 的函数同时满足两个条件:图象过(2,1)点;当x >0时,y 随x 的增大而减小.这个函数解析式为_________________.(写出一个即可)三、解答题16.解下列方程:(1)11322x x x -+=--.(2)6123x x x =--+.17.先化简,再求值:2x 2x 1x 4xx 2x 4x 4+--⎛⎫-÷ ⎪--+⎝⎭,其中x 是不等式3x 71+>的负整数解.18.已知y=y1+y2,其中y1与x成正比例,y2与x成反比例,并且当x=﹣1时,y=﹣1;当x=2时,y=5,求①y与x的函数关系式;②当x=﹣2时y的值.19.如图,甲、乙两人分别骑自行车和摩托车沿相同路线由A地到B地,行驶过程中的函数图象如图所示,请根据图象回答下列问题:(1)______先出发,提前______小时;(2)______先到达B地,早到______小时;(3)A地与B地相距______千米;(4)甲乙两人在途中的速度分别是多少?20.某村在今年退耕还林活动中,计划植树200亩,全村在完成植树40亩后,某环保组织加入此活动,并且该环保组织植树的速度是水源村植树速度的1.5倍,整个植树过程共用了13天,水源村每天植树多少亩?21.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E,(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.22.如图,一次函数y=ax+b的图象与反比例函数y=mx图象相交于点A(﹣1,2)与点B(﹣4,n).(1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积;(3)在第二象限内,观察函数图像,直接写出不等式ax+b <m x 的解集.23.某商品经销店欲购进A 、B 两种纪念品,若用380元购进A 种纪念品7件,B 种纪念品8件;也可以用380元购进A 种纪念品10件,B 种纪念品6件.(1)求A 、B 两种纪念品的进价分别为多少?(2)若该商店每销售1件A 种纪念品可获利5元,每销售1件B 种纪念品可获利7元,该商店准备用不超过900元购进A 、B 两种纪念品40件,且这两种纪念品全部售出时总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?参考答案1.B【解析】根据最简分式的定义:分子,分母中不含有公因式,不能再约分的分式即可解答.【详解】解:A 、11111()--==----a a a a ,故A 选项不符合题意;B 、22a b a b -+是最简分式,故B 选项符合题意;C 、1(1)1==---b b ab b b a a ,故C 选项不符合题意;D 、1313521344-=-=-⋅a a a b b b,故D 选项不符合题意;故选:B .【点睛】此题考查最简分式的定义,分式的化简,首先要把分子、分母分解因式,互为相反数的因式是比较易忽视的问题,在解题中一定要引起注意.2.C【解析】【详解】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示10n a ⨯的形式,所以将0.00000000034用科学记数法表示103.410-⨯,故选C .考点:科学记数法3.D【解析】【分析】分子和分母同乘以(或除以)一个不为0的数,分数的值不变.【详解】A 、32x x x=,故本选项错误;B 、11=11a a a b b b++≠++,故本选项错误;C 、1213-+=,故本选项错误;D 、()133a a --=,故本选项正确;故选D .【点睛】本题主要考查分式的性质,关键是根据把分式的分子和分母扩大还是缩小相同的倍数,分式的值不变进行解答.4.A【解析】【分析】根据分式的性质即可化简判断.【详解】分式2xyx y+的x.y同时扩大3倍,变为2331823333()x y xy xyx y x y x y⨯⨯==⨯+++故选A.【点睛】此题主要考查分式的性质,解题的关键是把变化后的分式进行约分化简即可.5.A【解析】【分析】先判断出k2+1是正数,再根据反比例函数图象的性质,比例系数k>0时,函数图象位于第一三象限,在每一个象限内y随x的增大而减小判断出y1、y2、y3的大小关系,然后即可选取答案.【详解】解:∵k2≥0,∴k2+1≥1,是正数,∴反比例函数y=21kx+的图象位于第一三象限,且在每一个象限内y随x的增大而减小,∵(2,y1),(3,y2),(﹣1,y3)都在反比例函数图象上,∴0<y2<y1,y3<0,∴y3<y2<y1.故选A.【点睛】本题考查了反比例函数图象的性质,对于反比例函数y=kx(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内,本题先判断出比例系数k2+1是正数是解题的关键.6.C【解析】【分析】分别根据反比例函数及一次函数的图象在坐标系中的位置,对四个选项逐一分析,即可得到答案.【详解】解:A、由反比例函数的图象在可一、三象限知m>0时,-m<0,∴一次函数(0)y mx m m =-≠的图象经过一,三,四象限∴A 错误,C 、由反比例函数的图象在可一、三象限知m >0时,-m <0,∴一次函数(0)y mx m m =-≠的图象经过一,三,四象限C 正确;B 、反比例函数的图象在二、四象限可知当m <0时,-m >0,∴一次函数(0)y mx m m =-≠的图象经过一,二,四象限,∴B 错误,D 、由反比例函数的图象在二、四象限可知当m <0时,-m >0,∴一次函数(0)y mx m m =-≠的图象经过一,二,四象限,∴D 错误;故选C.【点睛】本题主要考查反比例函数和一次函数的图象比例系数的关系,掌握反比例函数和一次函数的比例系数的几何意义,是解题的关键.7.B【解析】【详解】解:去分母得:x+m ﹣3m=3x ﹣9,整理得:2x=﹣2m+9,解得:x=292m -+,已知关于x 的方程333x m m x x++--=3的解为正数,所以﹣2m+9>0,解得m <92,当x=3时,x=292m -+=3,解得:m=32,所以m 的取值范围是:m <92且m≠32.故答案选B .8.D【解析】【分析】根据平行四边形的性质得到∠A=∠C,∠B=∠D,∠B+∠C=180°,∠A+∠D=180°,根据以上结论即可选出答案.【详解】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,AB∥CD,∴∠B+∠C=180°,∠A+∠D=180°,即∠A和∠C的数相等,∠B和∠D的数相等,且∠B+∠C=∠A+∠D.故选D.【点睛】本题主要考查了平行四边形的性质.其性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.9.B【解析】【分析】根据平行四边形性质逐项分析即可.【详解】解:A.平行四边形的对角相等,该选项正确;B.平行四边形的对角相等,该选项错误;C.平行四边形的对边相等,该选项正确;D.平行四边形的内角和是360°,该选项正确;故选B.10.D【解析】【分析】设施工队原计划每天铺设管道x米,实际的工作效率为每天(1+20%)x,根据题意可知,实际比计划提前2天完成任务,列方程即可.【详解】设施工队原计划每天铺设管道x米,实际的工作效率为每天(1+20%)x,由题意得1500x=2+()1500120%x+.故选D.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.11.0【解析】【分析】根据算术平方根的性质、负指数幂和零指数幂计算即可;【详解】原式=3410-+=;故答案为0.【点睛】本题主要考查了实数的计算,结合负指数幂、零指数幂计算是解题的关键.12.x≥-2且x≠1【解析】【分析】根据二次根式有意义的条件和分式有意义的条件即可求出结论.【详解】解:由题意可得2010 xx+≥⎧⎨-≠⎩解得x≥-2且x≠1故答案为:x≥-2且x≠1.【点睛】此题考查的是求自变量的取值范围,掌握二次根式有意义的条件和分式有意义的条件是解决此题的关键.13.(﹣1,﹣1).【解析】【详解】试题分析:根据第三象限点的坐标性质得出a的取值范围,进而得出a的值:∵点P(2﹣a,2a﹣7)(其中a为整数)位于第三象限,∴20270aa-<⎧⎨-<⎩,解得:2<a<3.5,因为a为整数,故a=3,代入计算,则点P坐标为:(﹣1,﹣1).故答案为(﹣1,﹣1).考点:点的坐标.14.-9【解析】【分析】由点A在反比例函数图象上,可得出ab=-5,将其代入代数式ab-4中即可得出结论.【详解】解:∵点A(a,b)在反比例函数y=5x-的图象上∴ab=-5∴ab-4=-5-4=-9.故答案为:-9.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是找出ab=2.本题属于基础题,难度不大,解决该题型题目时,由点在反比例函数图象上可以得出点的横纵坐标之积为定值,将其代入代数式即可.15.y=【解析】【详解】符合题意的函数解析式可以是y=,y=﹣x+3,y=﹣x2+5等,(本题答案不唯一)16.(1)无解;(2)43 x=-.【解析】【分析】(1)方程两边同时乘以(2)x -约去分母,化为整式方程,解出整式方程,然后检验是否是原方程的根;(2)方程两边同时乘以(2)(3)x x -+约去分母,化为整式方程,解出整式方程,然后检验是否是原方程的根.【详解】解:(1)11322x x x -+=--约去分母,得:13(2)1x x +-=-,解得:2x =,检验:当2x =时,2220x -=-=,∴2x =是增根,原分式方程无解;(2)6123x x x =--+约去分母,得:6(3)(2)(2)(3)x x x x x +=---+,解得:43x =-,检验:当43x =-时,4450(2)(3)(2)(3)0339x x -+=---+=-≠,∴原分式方程的解为43x =-.【点睛】本题主要考查了解分式方程,解题的关键是熟练掌握解分式方程的基本步骤,特别注意要检验是否是原方程的根.17.x 2x-;3【解析】【分析】先将括号里面的通分后,将除法转换成乘法,约分化简.然后解一元一次不等式求出负整数解,代x 的值求值.【详解】解:原式=()()()()2222x 2x 4x x x 4x 4x 2==x x 2x x 2x 4x x 2---+---÷⋅----解3x 71+>得x 2>-,负整数解为x=1-将x=1-代入原式=12=3 1---18.①y=3x-2x;②-5【解析】【分析】①设y1=kx,y2=nx则y=y1+y2=kx+nx,再把当x=-1时,y=-1,当x=2时,y=5代入求出k、n的值,进而可得答案;②把x=-2代入(1)所得的函数解析式即可.【详解】解:①设y1=kx,y2=nx则y=y1+y2=kx+nx,∵当x=-1时,y=-1,当x=2时,y=5,∴1522k nnk-=--⎧⎪⎨=+⎪⎩,解得:32 kn=⎧⎨=-⎩,∴y关于x的函数关系式为y=3x-2 x;②把x=-2代入y=3x-2x得:y=-6+1=-5.【点睛】此题主要考查了待定系数法求函数的解析式,关键是正确表示出函数解析式.19.(1)甲,3;(2)乙,3;(3)80;(4)10千米/小时,40千米/小时【解析】【分析】(1)由图象可得出甲先出发3小时;(2)乙在3小时后出发,且比甲先到终点3小时;(3)根据图象可得出A,B两地之间的距离;(4)根据路程除以时间等于速度,可得出答案.【详解】(1)由图象可得甲,3;(2)由图象可得乙,3;(3)由图象可得80;(4)甲:80÷8=10(千米/小时)乙:80÷2=40(千米/小时).故答案为甲,3;乙,3;80.【点睛】本题考查了函数的图象,利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.20.8【解析】【分析】根据整个植树过程共用了13天,以及环保组织植树的速度是全村植树速度的1.5倍表示出两者的植树天数得出等式求解即可.【详解】解:设全村每天植树x亩则由题意得4020040131.5x x x-+=+,即40160132.5x x+=∴10016013 2.5x+=∴解得8x=把8x=代入原分式方程中,方程左右两边相等∴8x=是方程的解答:水源村每天植树8亩.【点睛】本题主要考查了分式方程的实际应用,根据植树的天数得出等式是解题关键. 21.(1)详见解析;(2).【解析】【详解】试题分析:(1)由平行四边形的性质和角平分线易证∠BAE=∠BEA,根据等腰三角形的性质可得AB=BE;(2)易证△ABE是等边三角形,根据等边三角形的性质可得AE=AB=4,AF=EF=2,由勾股定理求出BF,再由AAS证明△ADF≌△ECF,即△ADF的面积=△ECF的面积,因此平行四边形ABCD 的面积=△ABE 的面积=12AE•BF ,即可得出结果.试题解析:(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,AB=CD ,∴∠B+∠C=180°,∠AEB=∠DAE ,∵AE 是∠BAD 的平分线,∴∠BAE=∠DAE ,∴∠BAE=∠AEB ,∴AB=BE ,∴BE=CD ;(2)解:∵AB=BE ,∠BEA=60°,∴△ABE 是等边三角形,∴AE=AB=4,∵BF ⊥AE ,∴AF=EF=2,∴BF=,∵AD ∥BC ,∴∠D=∠ECF ,∠DAF=∠E ,在△ADF 和△ECF 中,D ECF DAF E AF EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△ECF (AAS ),∴△ADF 的面积=△ECF 的面积,∴平行四边形ABCD 的面积=△ABE 的面积=12AE•BF=12考点:全等三角形的判定与性质;平行四边形的性质.22.(1)y =﹣2x ,y=522x +(2)154(3)﹣5<x <﹣4或﹣1<x <0【解析】【分析】(1)将点A (-1,2)代入反比例函数解析式即可求得反比例函数解析式,将两点代入一次函数即可求得一次函数解析式.(2)求得C 点的坐标后利用S AOB S AOC S BOC =- 求面积即可.(3)根据图像即可得到结论.【详解】(1)将点A (﹣1,2)代入函数y =m x ,解得:m =﹣2,∴反比例函数解析式为y =﹣2x,将点A (﹣1,2)与点B (﹣4,12)代入一次函数y =ax+b ,解得:a =12,b =52∴一次函数的解析式为y =x 2+52;(2)C 点坐标(﹣5,0)∴S △AOB =S △AOC ﹣S △BOC =5﹣54=154;(3)由图象知,不等式ax+b <m x的解集为:﹣5<x <﹣4或﹣1<x <0.【点睛】本题考查了反比例函数与一次函数的交点问题,熟练掌握用待定系数法确定函数的解析式是解题的关键.23.(1)A ,B 两种纪念品的进价分别为20元、30元;(2)应进A 种纪念品30件,B 种纪念品l0件,才能使获得利润最大,最大值是220元.【解析】【详解】分析:(1)设A 种纪念品的进价为x 元、B 种纪念品的进价为y 元,件数×进价=付款,可得到一个二元一次方程组,解即可.(2)获利=利润×件数,设购买A 商品a 件,则购买B 商品(40﹣a )件,由题意可得到两个不等式,解不等式组即可.详解:(1)设A 种纪念品的进价为x 元、B 种纪念品的进价为y 元.由题意得:78380106380x y x y +=⎧⎨+=⎩,解得:2030x y =⎧⎨=⎩.答:A 种纪念品的进价为20元、B 种纪念品的进价为30元.(2)设商店准备购进A 种纪念品a 件,则购进B 种纪念品(40﹣a )件.由题意得:2030409005740216a a a a +-≤⎧⎨+-≥⎩()(),解得:30≤a≤32.设总利润为w .总获利w=5a+7(40﹣a )=﹣2a+280.∵w 是a 的一次函数,且w 随a 的增大而减小,∴当a=30时,w 最大,最大值w=﹣2×30+280=220,∴40﹣a=10,∴当购进A 种纪念品30件,B 种纪念品10件时,总获利不低于216元,且获得利润最大,最大值是220元.点睛:利用了总获利=A 利润×A 件数+B 利润×B 件数,件数×进价=付款,还用到了解二元一次方程组以及二元一次不等式组的知识.。
新人教版八年级数学下册期中考试卷及答案【完美版】

新人教版八年级数学下册期中考试卷及答案【完美版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.已知多项式2x 2+bx +c 分解因式为2(x -3)(x +1),则b ,c 的值为( ).A .b =3,c =-1B .b =-6,c =2C .b =-6,c =-4D .b =-4,c =-6 3.函数2y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 4.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m ≠32C .m >﹣94D .m >﹣94且m ≠﹣34 5.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( )A .91.210⨯个B .91210⨯个C .101.210⨯个D .111.210⨯个6.如果a ,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=( )A .30°B .35°C .45°D .60°8.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度9.如图,两个不同的一次函数y=ax+b 与y=bx+a 的图象在同一平面直角坐标系的位置可能是( )A .B .C .D .10.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠DOF =142°,则∠C 的度数为( )A .38°B .39°C .42°D .48°二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.计算:16=_______.3.使x 2-有意义的x 的取值范围是________.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别是AB ,AC 的中点,点F 是AD 的中点.若AB=8,则EF=________.6.如图所示,在△ABC 中,∠BAC=106°,EF 、MN 分别是AB 、AC 的垂直平分线,点E 、N 在BC 上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)2(1)30x +-= (2)4(2)3(2)x x x +=+2.先化简,再求值:822224x x x x x +⎛⎫-+÷ ⎪--⎝⎭,其中12x =-.3.若方程组3133x y m x y m +=+⎧⎨+=-⎩的解满足x 为非负数,y 为负数.(1)请写出x y +=_____________;(2)求m 的取值范围;(3)已知4m n +=,且2n >-,求23m n -的取值范围.4.已知:如图所示△ACB 和△DCE 都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE ,BD .求证:AE=BD .5.如图所示,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC =63°,求∠DAC 的度数.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、B4、B5、C6、C7、B8、C9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、()()()22a b a a -+-2、43、x 2≥4、10.5、26、32°三、解答题(本大题共6小题,共72分)1、(1)11x =,21x =;(2)12x =-,243x =.2、3.3、(1)1;(2)m >2;(3)-2<2m -3n <184、略.5、24°.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)

20232024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=62. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=63. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=64. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8D. 4x2y=65. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=66. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=67. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=68. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=69. 下列哪个选项是正确的?A. 3x+5y=10C. 5x+3y=15D. 4x2y=610. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=6二、填空题(每题2分,共20分)1. 2x+3y=6,求x的值。
2. 3x+5y=10,求y的值。
3. 4x2y=6,求x的值。
4. 5x+3y=15,求y的值。
5. 2x4y=8,求x的值。
6. 3x+5y=10,求y的值。
7. 4x2y=6,求x的值。
8. 5x+3y=15,求y的值。
9. 2x4y=8,求x的值。
10. 3x+5y=10,求y的值。
三、解答题(每题5分,共25分)1. 解方程组:2x+3y=63x+5y=102. 解方程组:5x+3y=153. 解方程组:2x4y=83x+5y=104. 解方程组:3x+5y=104x2y=65. 解方程组:5x+3y=152x4y=8四、计算题(每题10分,共30分)1. 计算:2x+3y=63x+5y=102. 计算:4x2y=65x+3y=153. 计算:2x4y=83x+5y=10五、应用题(每题10分,共20分)1. 应用题:2x+3y=62. 应用题: 4x2y=6 5x+3y=15答案解析:一、选择题1. A2. B3. C4. D5. A6. B7. C8. D9. A10. B二、填空题1. x=12. y=23. x=24. y=35. x=26. y=27. x=28. y=39. x=210. y=2三、解答题1. x=1, y=22. x=2, y=33. x=2, y=24. x=2, y=35. x=2, y=2四、计算题1. x=1, y=22. x=2, y=33. x=2, y=2五、应用题1. x=1, y=22. x=2, y=38. 简答题(每题5分,共25分)1. 简述一元二次方程的一般形式。
八年级数学下册期中试卷及答案【完整版】

八年级数学下册期中试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.估计7+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.一次函数24y x =+的图像与y 轴交点的坐标是( )A .(0,-4)B .(0,4)C .(2,0)D .(-2,0)3.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,4.已知x 是整数,当30x -取最小值时,x 的值是( )A .5B .6C .7D .85.下列说法中,错误的是( )A .不等式x <5的整数解有无数多个B .不等式x >-5的负整数解集有有限个C .不等式-2x <8的解集是x <-4D .-40是不等式2x <-8的一个解6.如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一些蜂蜜,此时一只蚂蚁正好也在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,那么蚂蚁要吃到甜甜的蜂蜜所爬行的最短距离是( )A .13B .14C .15D .167.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A .AB ∥DC ,AD ∥BCB .AB=DC ,AD=BC C .AO=CO ,BO=DOD .AB ∥DC ,AD=BC8.如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( )A .4 cmB .5 cmC .6 cmD .10 cm9.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .7010.下列图形中,是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.若n 边形的内角和是它的外角和的2倍,则n =__________.3.在△ABC 中,AB=15,AC=13,高AD=12,则ABC ∆的周长为____________.4.如图,已知函数y=x+b 和y=ax+3的图象交点为P ,则不等式x+b >ax+3的解集为________.5.如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别是AB ,AC 的中点,点F 是AD 的中点.若AB=8,则EF=________.6.如图,AC 平分DCB ∠,CB CD =,DA 的延长线交BC 于点E ,若49EAC ∠=,则BAE ∠的度数为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:(1)2153x x =+ (2)3111x x x =-+-2.化简求值:[4(xy-1)2-(xy+2)(2-xy)]÷14xy,其中x=-2, y=15.3.已知:关于x 的方程2x (k 2)x 2k 0-++=,(1)求证:无论k 取任何实数值,方程总有实数根;(2)若等腰三角形ABC 的一边长a=1,两个边长b ,c 恰好是这个方程的两个根,求△ABC 的周长.4.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF ∥BC交BE的延长线于点F(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF 的面积.5.如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠2.(1)求证:AE=CF;(2)求证:四边形EBFD是平行四边形.6.重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?(2)由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、A5、C6、C7、D8、B9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、1002、63、32或424、x>15、26、82.三、解答题(本大题共6小题,共72分)1、(1)x=1(2)x=22、20xy-32,-40.3、(1)略;(2)△ABC的周长为5.4、(1)证明略;(2)证明略;(3)10.5、(1)见详解;(2)见详解6、(1)200元和100元(2)至少6件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.如图所示,DE是线段AB的垂直平分线,下列结论一定成立的是()A. ED=CD B. AD=BD C. AB=AC D. BD=AC2.已知等腰三角形的两边长分别为5cm、2cm,则该等腰三角形的周长是()A. 7cm B. 9cm C. 12cm或者9cm D. 12cm3.若x>y,则下列式子中错误的是()A. x﹣3>y﹣3 B.>C. x+3>y+3 D.﹣3x>﹣3y4.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A. x<4 B. x<2 C. 2<x<4 D. x>25.如图,△ABC与△ACD都是等边三角形,△ACD是由△ABC()A.绕点A顺时针旋转60°得到的B.绕点A顺时针旋转120°得到的C.绕点C顺时针旋转60°得到的D.绕点C顺时针旋转120°得到的6.下列基本图形经过平移,旋转成轴对称变换后不能得到下图的是()A. + B. +++ C.D.7.函数y=kx+b(k、b为常数,k≠0)的图象如图,则关于x的不等式kx+b>0的解集为()A. x>0 B. x<0 C. x<2 D. x>28.初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数()A.至多6人B.至少6人C.至多5人D.至少5人9.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,如果AC=3cm,那么AE+DE等于()A. 2cm B. 3cm C. 4cm D. 5cm10.已知关于x的不等式组的解集为3≤x<5,则a,b的值为()A. a=﹣3,b=6 B. a=6,b=﹣3 C. a=1,b=2 D. a=3,b=6二、填空题(每题3分,共24分)11.如果等腰三角形的一个底角是50°,那么它的顶角是度.12.“x与3的和不小于x的2倍”,用不等式表示为.13.点A(﹣5,y1)、B(﹣2,y2)都在直线y=﹣2x上,则y1与y2的关系是.14.如图,在等边三角形ABC中,D、E、F分别是边BC、AC、AB的中点,图中的四个小等边三角形可以看成是由△FBD平移得到的三角形是.15.如图,已知△ABC中,∠ABC=45°,AC=3,F是高AD和BE的交点,则线段BF的长度为.16.某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对道.17.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB= °.18.若关于x,y的方程组的解满足x+y<2,则a的取值范围为.三、解答题(共46分)19.解不等式并把解集表示在数轴上.<x+5.20.解不等式组并把解集表示在数轴上..21.如图在网格中按要求画出图形,先将△ABC向下平移5格得到△A1B1C1,再以点O为旋转中心将ABC 沿顺时针旋转90°得到△A2B2C2.22.如图,已知点E,C在线段BF上,BE=CF,AB∥DE,∠ACB=∠F.求证:△ABC≌△DEF.23.某工厂计划生产A、B两种产品共10件,其生产成本和利润如下表:A种产品 B种产品成本(万元∕件) 2 5利润(万元∕件) 1 2(1)若工厂投入资金不多于44万元,且获利多于14万元,问工厂会有哪几种生产方案?请说明理由.(2)在(1)的条件下,哪种生产方案获利最大?并求出最大利润.24.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.如图所示,DE是线段AB的垂直平分线,下列结论一定成立的是()A. ED=CD B. AD=BD C. AB=AC D. BD=AC考点:线段垂直平分线的性质.分析:根据线段的垂直平分线的性质进行判断即可.解答:解:∵DE是线段AB的垂直平分线,∴DB=DA,∴B正确,故选:B.点评:本题考查的是线段的垂直平分线的性质等几何知识.掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.2.已知等腰三角形的两边长分别为5cm、2cm,则该等腰三角形的周长是()A. 7cm B. 9cm C. 12cm或者9cm D. 12cm考点:等腰三角形的性质;三角形三边关系.分析:题目给出等腰三角形有两条边长为4cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解答:解:①5cm为腰,2cm为底,此时周长为12cm;②5cm为底,2cm为腰,则两边和小于第三边无法构成三角形,故舍去.∴其周长是12cm.故选D.点评:此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握情况.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.3.若x>y,则下列式子中错误的是()A. x﹣3>y﹣3 B.>C. x+3>y+3 D.﹣3x>﹣3y考点:不等式的性质.分析:根据不等式的基本性质,进行判断即可.解答:解:A、根据不等式的性质1,可得x﹣3>y﹣3,故A选项正确;B、根据不等式的性质2,可得>,故B选项正确;C、根据不等式的性质1,可得x+3>y+3,故C选项正确;D、根据不等式的性质3,可得﹣3x<﹣3y,故D选项错误;故选:D.点评:本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A. x<4 B. x<2 C. 2<x<4 D. x>2考点:在数轴上表示不等式的解集.分析:根据不等式组解集在数轴上的表示方法可知,不等式组的解集是指它们的公共部分,公共部分是2左边的部分.解答:解:不等式组的解集是指它们的公共部分,公共部分是2左边的部分.因而解集是x<2.故选B.点评:不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.如图,△ABC与△ACD都是等边三角形,△ACD是由△ABC()A.绕点A顺时针旋转60°得到的B.绕点A顺时针旋转120°得到的C.绕点C顺时针旋转60°得到的D.绕点C顺时针旋转120°得到的考点:旋转的性质;等边三角形的性质.分析:根据旋转的定义和等边三角形的性质即可解答.解答:解:图中△ACD可以看作由△ABC绕A点顺时针旋转60°得到.故选A.点评:本题考查了旋转的性质和等边三角形的性质,对于旋转关键要确定旋转角,确定旋转角时一定要首先找到对应点.6.下列基本图形经过平移,旋转成轴对称变换后不能得到下图的是()A. + B. +++ C.D.考点:几何变换的类型.分析:根据平移、旋转和轴对称的性质即可得出正确结果.解答:解:A、经过平移可得到上图,故此选项错误;B、经过平移可得到上图,故此选项错误;C、经过平移、旋转或轴对称变换后,都不能得到上图,故此选项正确;D、经过旋转可得到上图,故此选项错误.故选:C.点评:本题考查平移、旋转和轴对称的性质.平移的基本性质:①平移不改变图形的形状、大小和方向;②经过平移,对应点所连的线段平行或在同一直线上,对应线段平行且相等,对应角相等.旋转的性质:①旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变;②两组对应点连线的交点是旋转中心.轴对称的性质:①翻折变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变;②对称轴是任何一对对应点所连线段的垂直平分线.7.函数y=kx+b(k、b为常数,k≠0)的图象如图,则关于x的不等式kx+b>0的解集为()A. x>0 B. x<0 C. x<2 D. x>2考点:一次函数与一元一次不等式.分析:从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式kx+b>0的解集.解答:解:函数y=kx+b的图象经过点(2,0),并且函数值y随x的增大而减小,所以当x<2时,函数值小于0,即关于x的不等式kx+b>0的解集是x<2.故选C.点评:本题考查了一次函数与不等式(组)的关系及数形结合思想的应用,注意几个关键点(交点、原点等),做到数形结合.8.初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数()A.至多6人B.至少6人C.至多5人D.至少5人考点:一元一次不等式的应用.专题:应用题.分析:本题可设参加合影的人数为x,根据平均每人分摊的钱不足0.5元,列出不等式,解出x即可.解答:解:设参加合影的人数为x,则有:0.35x+0.8<0.5x﹣0.15x<﹣0.8x>5所以至少6人.故应选B.点评:本题考查的是不等式的运用,解此类题目时常常是先设出未知数,再根据题意列出不等式、求解.9.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,如果AC=3cm,那么AE+DE等于()A. 2cm B. 3cm C. 4cm D. 5cm考点:角平分线的性质.专题:压轴题.分析:要求AE+DE,现知道AC=3cm,即AE+CE=3cm,只要CE=DE则问题可以解决,而应用其它条件利用角平分线的性质正好可求出CE=DE.解答:解:∵∠ACB=90°,∴EC⊥CB,又BE平分∠ABC,DE⊥AB,∴CE=DE,∴AE+DE=AE+CE=AC=3cm故选B.点评:此题主要考查角平分线性质:角平分线上的任意一点到角的两边距离相等;做题时要认真观察各已知条件在图形上的位置,根据位置结合相应的知识进行思考是一种很好的方法.10.已知关于x的不等式组的解集为3≤x<5,则a,b的值为()A. a=﹣3,b=6 B. a=6,b=﹣3 C. a=1,b=2 D. a=3,b=6考点:解一元一次不等式组.分析:先解不等式组,解集为a+b≤x<,再由不等式组的解集为3≤x<5,转化成关于a,b的方程组来解即可.解答:解:不等式组,由①得,x≥a+b,由②得,x<,∴,解得,故选A.点评:本题是一道综合性的题目.考查了不等式组和二元一次方程组的解法,是中考的热点,要灵活运用.二、填空题(每题3分,共24分)11.如果等腰三角形的一个底角是50°,那么它的顶角是80 度.考点:等腰三角形的性质.分析:由已知等腰三角形的一个底角是,50°,利用等腰三角形的性质得另一个底角也是50°,结合三角形内角和定理可求顶角的度数.解答:解:∵三角形是等腰三角形,∴两个底角相等,∵等腰三角形的一个底角是50°,∴另一个底角也是50°,∴顶角的度数为180°﹣50°﹣50°=80°.故答案为:80.点评:本题考查了等腰三角形的性质及三角形内角和定理;借助三角形的内角定理求解有关角的度数问题是一种很重要的方法,要熟练掌握.12.“x与3的和不小于x的2倍”,用不等式表示为x+3≥2x.考点:由实际问题抽象出一元一次不等式.分析:首先表示出“x与3的和”为x+3,再表示“不小于x的2倍”为x+3≥2x即可.解答:解:由题意得:x+3≥2x,故答案为:x+3≥2x.点评:此题主要考查了由实际问题抽象出一元一次不等式,关键是要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.因此建立不等式要善于从“关键词”中挖掘其内涵,不同的词里蕴含这不同的不等关系.13.点A(﹣5,y1)、B(﹣2,y2)都在直线y=﹣2x上,则y1与y2的关系是y1>y2.考点:一次函数图象上点的坐标特征.分析:根据一次函数的比例系数的符号以及相应自变量的大小可得所求结果.解答:解:∵比例系数为﹣2<0,﹣5<﹣2,∴y1>y2.故答案为y1>y2.点评:考查一次函数图象上点的坐标的特点;用到的知识点为:一次函数的比例系数小于0,y随x的增大而减小.14.如图,在等边三角形ABC中,D、E、F分别是边BC、AC、AB的中点,图中的四个小等边三角形可以看成是由△FBD平移得到的三角形是△AFE和△EDC .考点:平移的性质;等边三角形的性质.分析:根据三角形的中位线平行于第三边并且等于第三边的一半判断出△ABC被分成的四个小三角形是全等三角形,然后根据平移的性质解答.解答:解:∵D、E、F分别是边BC、AC、AB的中点,∴图中四个小等边三角形是全等三角形,∴可以看成是由△FBD平移得到的三角形是△AFE和△EDC.故答案为:△AFE和△EDC.点评:本题考查了平移的性质,等边三角形的性质,熟记性质并准确识图是解题的关键,难点在于先确定出四个等边三角形是全等三角形.15.如图,已知△ABC中,∠ABC=45°,AC=3,F是高AD和BE的交点,则线段BF的长度为 3 .考点:全等三角形的判定与性质.分析:求出∠BDF=∠ADC,∠DBF=∠DAC,∠DAB=∠DBA,推出BD=AD,根据ASA证△BFD≌△ACD,即可得出答案.解答:解:∵AD⊥BC,BE⊥AC,∴∠BEA=∠ADC=∠ADB=90°,∴∠DAB=90°﹣45°=45°=∠ABD,∠C+∠CBE=90°,∠C+∠CAD=90°,∴BD=AD,∠DBF=∠CAD,∵在△BFD和△ACD中,∴△BFD≌△ACD(ASA),∴BF=AC=3,故答案为:3.点评:本题考查了全等三角形的性质和判定,全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等.16.某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对13 道.考点:一元一次不等式的应用.专题:应用题.分析:根据小明得分要超过90分,就可以得到不等关系:小明的得分≤90分,设应答对x道,则根据不等关系就可以列出不等式求解.解答:解:设应答对x道,则10x﹣5(20﹣x)>90解得x>12∴x=13点评:解决本题的关键是读懂题意,找到符合题意的不等关系式,正确表示出小明的得分是解决本题的关键.17.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB= 70 °.考点:旋转的性质.专题:探究型.分析:直接根据图形旋转的性质进行解答即可.解答:解:∵将△OAB绕点O逆时针旋转100°得到△OA1B1,∠AOB=30°,∴△OAB≌△OA1B1,∴∠A1OB1=∠AOB=30°.∴∠A1OB=∠A1OA﹣∠AOB=70°.故答案为:70.点评:本题考查的是旋转的性质,熟知图形旋转前后对应边、对应角均相等的性质是解答此题的关键.18.若关于x,y的方程组的解满足x+y<2,则a的取值范围为a>﹣4 .考点:解一元一次不等式;二元一次方程组的解.分析:把方程组的两个方程相加,即可求得x+y,则可以得到一个关于a的不等式,解不等式即可求得a的范围.解答:解:,①+②得:4(x+y)=4﹣a,则x+y=(4﹣a),则(4﹣a)<2,解得:a>﹣4.故答案是:a>﹣4.点评:本题是一个方程组与不等式的综合题目.转化为关于a的不等式是本题的一个难点.三、解答题(共46分)19.解不等式并把解集表示在数轴上.<x+5.考点:解一元一次不等式;在数轴上表示不等式的解集.分析:去分母,移项,合并同类项,系数化成1即可.解答:解:<x+5,2+6x<2x+10,6x﹣2x<10﹣2,4x<8,x<2,在数轴上表示不等式的解集为:.点评:本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,能根据不等式的基本性质求出不等式的解集是解此题的关键,难度适中.20.解不等式组并把解集表示在数轴上..考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.解答:解:,解①得:x>1,解②得:x≥2.,则不等式组的解集是:x≥2.点评:本题考查了不等式组的解法,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.21.如图在网格中按要求画出图形,先将△ABC向下平移5格得到△A1B1C1,再以点O为旋转中心将ABC 沿顺时针旋转90°得到△A2B2C2.考点:作图-旋转变换;作图-平移变换.分析:根据平移的性质:对应点所连的线段平行且相等,可得平移的图形;根据对应点与旋转中心的距离相等且旋转角相等,可得旋转的图形.解答:解:如图:.点评:本题考查了作图,利用了平移的性质作图,旋转的性质作图.22.如图,已知点E,C在线段BF上,BE=CF,AB∥DE,∠ACB=∠F.求证:△ABC≌△DEF.考点:全等三角形的判定;平行线的性质.专题:证明题.分析:根据平行线的性质可知由∠B=∠DEF.BE=CF,∠ACB=∠F,根据ASA定理可知△ABC≌△DEF.解答:证明:∵AB∥DE,∴∠B=∠DEF.∵BE=CF,∴BC=EF.∵∠ACB=∠F,∴,∴△ABC≌△DEF(ASA).点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.23.某工厂计划生产A、B两种产品共10件,其生产成本和利润如下表:A种产品 B种产品成本(万元∕件) 2 5利润(万元∕件) 1 2(1)若工厂投入资金不多于44万元,且获利多于14万元,问工厂会有哪几种生产方案?请说明理由.(2)在(1)的条件下,哪种生产方案获利最大?并求出最大利润.考点:一元一次不等式组的应用.分析:(1)根据计划投入资金不多于44万元,且获利多于14万元,这两个不等关系即可列出不等式组,求得x的范围,再根据x是非负整数,确定x的值,x的值的个数就是方案的个数;(2)得出利润y与A产品数量x的函数关系式,根据增减性可得,B产品生产越多,获利越大,因而B 取最大值时,获利最大,据此即可求解.解答:解:(1)设应生产A种产品x件,则生产B种产品有(10﹣x)件,由题意有:解得:2≤x<6;所以可以采用的方案有:①A种产品2件,B种产品8件;②A种产品3件,B种产品7件;③A种产品4件,B种产品6件;④A种产品5件,B种产品5件;共4种方案;(2)设总利润为y万元,生产A种产品x件,则生产B种产品(10﹣x)件,则利润y=x+2(10﹣x)=﹣x+20,则y随x的增大而减小,即可得,A产品生产越少,获利越大,所以当A种产品2件,B种产品8件;时可获得最大利润,其最大利润为2×1+8×2=18万.点评:本题考查一元一次不等式组的实际运用,关键从表格种获得成本价和利润,然后根据利润和成本做为不等量关系列不等式组分别求出解,然后求出哪种方案获利最大从而求出来.24.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.考点:全等三角形的判定与性质;等腰三角形的性质.专题:证明题.分析:(1)根据等腰三角形三线合一的性质可得∠BAE=∠EAC,然后利用“边角边”证明△ABE和△ACE 全等,再根据全等三角形对应边相等证明即可;(2)先判定△ABF为等腰直角三角形,再根据等腰直角三角形的两直角边相等可得AF=BF,再根据同角的余角相等求出∠EAF=∠CBF,然后利用“角边角”证明△AEF和△BCF全等即可.解答:证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠EAC,在△ABE和△ACE中,,∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵∠BAC=45°,BF⊥AF,∴△ABF为等腰直角三角形,∴AF=BF,∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠EAF+∠C=90°,∵BF⊥AC,∴∠CBF+∠C=90°,∴∠EAF=∠CBF,在△AEF和△BCF中,,∴△AEF≌△BCF(ASA).点评:本题考查了全等三角形的判定与性质,等腰三角形三线合一的性质,等腰直角三角形的判定与性质,同角的余角相等的性质,是基础题,熟记三角形全等的判定方法与各性质是解题的关键.。