椭圆双曲线抛物线测试题

合集下载

椭圆双曲线抛物线大题训练题(含答案)

椭圆双曲线抛物线大题训练题(含答案)

椭圆双曲线抛物线训练题一、解答题(共21题;共195分)1.已知椭圆Γ:的左,右焦点分别为F1( ,0),F2( ,0),椭圆的左,右顶点分别为A,B,已知椭圆Γ上一异于A,B的点P,PA,PB的斜率分别为k1,k2,满足.(1)求椭圆Γ的标准方程;(2)若过椭圆Γ左顶点A作两条互相垂直的直线AM和AN,分别交椭圆Γ于M,N两点,问x轴上是否存在一定点Q,使得∠MQA=∠NQA成立,若存在,则求出该定点Q,否则说明理由.2.已知椭圆C:=1(a>b>0)的左、右焦点分别为F1,F2,点A(,)在椭圆C上,且△F1AF2的面积为。

(1)求椭圆C的方程。

(2)设直线y=kx+1和椭圆C交于B,D两点,O为坐标原点,判断在y轴上是否存在点E,使∠OEB=∠OED。

若存在,求出点E的坐标;若不存在,请说明理由。

3.已知椭圆的离心率为,点椭圆的右顶点.(1)求椭圆的方程;(2)过点的直线与椭圆交于两点,直线与直线的斜率和为,求直线l的方程.4.设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设点在椭圆上,且异于椭圆的上、下顶点,点为直线与轴的交点,点在轴的负半轴上.若(为原点),且,求直线的斜率.5.设A,B为曲线C:y= 上两点,A与B的横坐标之和为4.(12分)(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.6.设椭圆的右焦点为,过得直线与交于两点,点的坐标为.(1)当与轴垂直时,求直线的方程;(2)设为坐标原点,证明:.7.已知椭圆C:+ =1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(12分)(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.8.设椭圆的左焦点为,左顶点为,顶点为B.已知(为原点).(Ⅰ)求椭圆的离心率;(Ⅱ)设经过点且斜率为的直线与椭圆在轴上方的交点为,圆同时与轴和直线相切,圆心在直线上,且,求椭圆的方程.9.已知斜率为的直线与椭圆交于两点,线段的中点为(1)证明:(2)设为的右焦点,为上一点,且,证明:10.已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆.(Ⅰ)证明:坐标原点O在圆M上;(Ⅱ)设圆M过点P(4,﹣2),求直线l与圆M的方程.11.设抛物线的焦点为F,过F点且斜率的直线与交于两点,. (1)求的方程。

中职数学 椭圆、双曲线、抛物线测试卷(含答案)

中职数学 椭圆、双曲线、抛物线测试卷(含答案)

数学拓展模块第二章椭圆、双曲线、抛物线(试卷A )一、选择题:(本大题有15个小题,每小题3分,共45分。

在每小题所给出的选项中只有一个符合题目要求)1.已知椭圆221169+=x y 上一点到椭圆的一个焦点的距离为3,则P 到另一个焦点的距离为( ). A .3 B .4 C .5 D .62.椭圆2211625+=x y 的焦距是( ). A .6 B .4 C .10 D .93.已知椭圆方程是224520+=x y ,则它的离心率是( ).A .2B .C .D . 124.长轴是短轴的2倍,且经过点P (-2.0)的椭圆方程是( ).A . 2214+=x yB . 221416+=x yC . 221164+=x y 或2214+=x y D . 221416+=x y 或2214+=x y 5.焦点在x 轴上,长轴长为8.离心率为12,那么椭圆的标准方程为( ). A .2211612+=x y B . 2211612-=x y C . 2211216+=x y D . 2211216-=x y6.与椭圆2211625+=x y 有共同的焦点且过点(-的双曲线的方程是( ). A .22154-=y x B . 22153-=y x C . 22154-=x y D . 22153-=x y 7.双曲线的两个焦点坐标是1F (0,-5), 2F (0,5),且2a =8.则双曲线的方程为( ).A .221169-=y x B . 2211625-=y x C . 2211625-=x y D . 2216425-=x y 8.若双曲线焦点在x 轴上,且它的一条渐进线方程为34=y x ,则离心率是( ).A .54B . 4C . 7D . 79.双曲线221169-=x y ,若过右焦点2F ,且在双曲线右半支上的弦AB 长为5,另一焦点为1F 则△AB 1F 的周长为( ).A .16B .11C . 26D .610.设()0,απ∈,方程221sin cos αα+=x y 表示中心在坐标原点,焦点在x 轴上的双曲线,则α的取值范围是( ).A . ()0,π В. [)0,π C . ,2ππ⎛⎫⎪⎝⎭D .,2ππ⎡⎫⎪⎢⎣⎭11.抛物线250-=x y 的准线方程是( ).A . 54=-x B . 52=x C . 54=y D . 54=-y 12.顶点在原点,准线方程为y =4的抛物线标准方程为( ). A . 216=y x B . 216=-y x C . 216=x y D . 216=-x y13.顶点在原点,对称轴是y 轴,顶点与焦点的距离等于2的抛物线方程是( ). A . 24=±x y B . 24=±y x C . 28=±x y D . 28=±y x 14.顶点在原点,以坐标轴为对称轴且过点(2,-3)的抛物线方程是( ). A . 292=y x 或243=-x y B . 292=-y x C . 292=-y x 或243=x y D . 243=-x y 15.顶点在坐标原点,焦点是(0,-1)的抛物线的标准方程是( ). A . 24=x y B . 24=-x y C . 24=-y x D . 24=y x 二、填空题(本在题有15个小空,每空2分,共30分) 16.已知椭圆221625400+=x y ,其离心率为___________.17.已知椭圆的右焦点F (3,0),F 到右顶点距离为3,则椭圆的方程为___________.18.已知曲线的方程22194+=--x y k k为椭圆的标准方程,则k 的取值范围为___________.19.椭圆各22214+=x y a 与双曲线器22212-=x y a 有相同的焦点,则2a =___________. 20如果方程222+=x ky 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是___________.21.已知1F ,2F 是椭圆221259+=x y 的两个焦点,过1F 的直线与椭圆交于M .N 两点,则△MN 2F 的周长是___________.22.双曲线222516400-=x y 的两条渐近线方程是___________.23.双曲线的实轴长为6,离心率2=e ,焦点在x 轴上,则双曲线的标准方程为___________. 24.双曲线2288-=kx ky 的一个焦点是(0,3),那么k =___________.25.与双曲线221916-=x y 有相同的渐近线,且过点(3,-C 的双曲线方程是___________. 26.方程22125-=--x y k k表示双曲线,则k 的取值范围是___________. 27.抛物线214=-y x 的焦点坐标是___________.28.抛物线上24=-y x 上一点M 到焦点的距离是6,则M 到准线的距离是___________. 29.若抛物线22=y px 上到焦点距离为3的点的横坐标为2.则p =___________.30.抛物线218=-y x 的准线方程是___________.三、解答题:(本大题共45分)31.已知椭圆的短轴长是2,中心与抛物线24=y x 的顶点重合,椭圆的一个焦点是此抛物线的焦点,求该椭圆的方程及离心率.32.椭圆的长轴是短轴的3倍,过点P (3,0),求椭圆的标准方程.33.一椭圆的中心在坐标原点,焦点在x 轴上,焦距为 的焦点,且双曲线的实半轴比椭圆的长半轴小4,且双曲线的离心率与椭圆的离心率之比为73,求此椭圆和双曲线的方程。

椭圆、双曲线抛物线综合练习题及答案.

椭圆、双曲线抛物线综合练习题及答案.

一、选择题(每小题只有一个正确答案,每题6分共36分)1. 椭圆221259x y +=的焦距为。

( ) A . 5 B. 3 C. 4 D 82.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线的方程为 ( )A .221412x y -= B. 221124x y -= C. 221106x y -= D 221610x y -= 3.双曲线22134x y -=的两条准线间的距离等于 ( ) A .67 B. 37 C. 185 D 1654.椭圆22143x y +=上一点P 到左焦点的距离为3,则P 到y 轴的距离为 ( ) A . 1 B. 2 C. 3 D 45.双曲线的渐进线方程为230x y ±=,(0,5)F -为双曲线的一个焦点,则双曲线的方程为。

( )A .22149y x -= B. 22194x y -= C. 2213131100225y x -= D 2213131225100y x -= 6.设12,F F 是双曲线22221x y a b-=的左、右焦点,若双曲线上存在点A ,使1290F AF ︒∠=且123AF AF =,则双曲线的离心率为 ( )A .52B. 102C. 152 D 57.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( )A .y 2=±4B .y 2=±8xC .y 2=4xD .y 2=8x8.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A .2B .3 C.115D.37169.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )10.抛物线y 2=4x 的焦点为F ,准线为l ,经过F 且斜率为3的直线与抛物线在x 轴上方的部分相交于点A ,AK ⊥l ,垂足为K ,则△AKF 的面积是( )A .4B .3 3C .4 3D .8二.填空题。

椭圆,双曲线,抛物线练习题及答案

椭圆,双曲线,抛物线练习题及答案

椭圆,双曲线,抛物线练习题及答案1、已知椭圆方程为 $x^2/23+y^2/32=1$,则这个椭圆的焦距为() A.6 B.3 C.35 D.652、椭圆 $4x^2+2y^2=1$ 的焦点坐标是() A.(-2,0),(2,0) B.(0,-2),(0,2) C.(0,-1/2),(0,1/2) D.(-2/2,0),(2/2,0)3、$F_1$,$F_2$ 是定点,且 $FF_{12}=6$,动点$M$ 满足 $MF_1+MF_2=6$,则 $M$ 点的轨迹方程是()A.椭圆 B.直线 C.圆 D.线段4、已知方程$x^2+my^2=1$ 表示焦点在$y$ 轴上的椭圆,则 $m$ 的取值范围是() A.$m1$ D.$1<m<5$5、过点 $(3,-2)$ 且与椭圆 $4x^2+9y^2=36$ 有相同焦点的椭圆方程是()A.$x^2y^2/15+10=1$ B.$x^2y^2/152+102=1$ C.$x^2/10+y^2/15=1$ D.$x^2y^2/102+152=1$6、若直线 $y=mx+1$ 与椭圆 $x^2+4y^2=1$ 只有一个公共点,那么 $m^2$ 的值是()A.$1/2$ B.$3/4$ C.$2/3$ D.$4/5$7、已知椭圆 $C:x^2/9+y^2/2=1$,直线 $l:x/10+y=1$,点$P(2,-1)$,则() A.点 $P$ 在 $C$ 内部,$l$ 与 $C$ 相交B.点 $P$ 在 $C$ 外部,$l$ 与 $C$ 相交 C.点 $P$ 在 $C$ 内部,$l$ 与 $C$ 相离 D.点 $P$ 在 $C$ 外部,$l$ 与 $C$ 相离8、过椭圆 $C:x^2/a^2+y^2/b^2=1$ 的焦点引垂直于 $x$ 轴的弦,则弦长为() A。

$2b^2/a$ B。

$b^2/a$ C。

$b/a$ D。

$2b/a$9、抛物线 $x+2y^2=0$ 的准线方程是() A。

椭圆双曲线抛物线大题及答案

椭圆双曲线抛物线大题及答案

椭圆双曲线抛物线大题及答案近年来,越来越多的数学考试和竞赛中出现了椭圆、双曲线和抛物线的大题。

这些大题考查的是对于这些曲线的了解和掌握,以及运用其性质解决数学问题的能力。

下面,我们来一起探讨一下椭圆、双曲线和抛物线的大题及其答案。

一、椭圆的大题及答案椭圆的一般方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其中$a>b>0$。

1.已知椭圆的焦点为$(\pm c,0)$,准线为$x=\pm a$,则椭圆的方程为$\frac{x^2}{a^2}+\frac{y^2}{a^2-c^2}=1$。

证明:由于椭圆的准线为$x=\pm a$,则$a$为椭圆的半长轴,$b=\sqrt{a^2-c^2}$为椭圆的半短轴。

又由于椭圆的焦点为$(\pmc,0)$,则$c=\sqrt{a^2-b^2}$为椭圆的焦距。

代入椭圆的一般方程,得到$\frac{x^2}{a^2}+\frac{y^2}{a^2-c^2}=1$。

2.已知椭圆的离心率为$\frac{1}{3}$,其中一个焦点为$(4,0)$,则椭圆的方程为$\frac{(x-4)^2}{36}+\frac{y^2}{27}=1$。

证明:由于椭圆的离心率为$\frac{1}{3}$,则椭圆的半长轴为$a=9$,焦距为$c=\frac{a}{3}=3$,半短轴为$b=\sqrt{a^2-c^2}=6$。

又由于一个焦点为$(4,0)$,则另一个焦点为$(-4,0)$。

代入椭圆的一般方程,得到$\frac{(x-4)^2}{36}+\frac{y^2}{27}=1$。

二、双曲线的大题及答案双曲线的一般方程为$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,其中$a>0$,$b>0$。

1.已知双曲线的离心率为2,其中一个焦点为$(5,0)$,则双曲线的方程为$\frac{(x-5)^2}{16}-\frac{y^2}{12}=1$。

高中数学圆锥曲线(椭圆、双曲线、抛物线)经典习题

高中数学圆锥曲线(椭圆、双曲线、抛物线)经典习题

高中数学圆锥曲线(椭圆、双曲线、抛物线)经典习题1.已知圆$x^2+y^2-6x-7=0$与抛物线$y^2=2px(p>0)$的准线相切,则抛物线方程为$y^2=8x$。

2.与双曲线$2x^2-2y^2=1$有公共焦点,离心率互为倒数的椭圆方程为$\dfrac{x^2}{9}+\dfrac{y^2}{16}=1$。

3.方程$k-\dfrac{35}{k}+\dfrac{x^2}{y^2}=1$表示双曲线,则$m$的取值范围是$(-\infty,-7)\cup(0,7)$。

4.经过点$M(3,-2),N(-2,3)$的椭圆的标准方程是$\dfrac{x^2}{16}+\dfrac{y^2}{9}=1$。

5.与双曲线$x^2-y^2=53$有公共渐近线且焦距为8的双曲线方程为$\dfrac{x^2}{16}-\dfrac{y^2}{9}=1$。

6.过点$P(-2,4)$的抛物线的标准方程为$y=\dfrac{1}{8}(x+2)^2$。

7.以$\dfrac{x^2}{4}-\dfrac{y^2}{12}=-1$的上焦点为顶点,下顶点为焦点的椭圆方程为$\dfrac{x^2}{16}+\dfrac{y^2}{48}=1$。

重点二:1.椭圆$16x+25y=400$的焦点为$F_1,F_2$,直线$AB$过$F_1$,则$\triangle ABF_2$的周长为$10$。

2.动圆的圆心在抛物线$y^2=8x$上,且动圆恒与直线$x+2=0$相切,则动圆必过定点$(-1,2)$。

3.椭圆$\dfrac{x^2}{25}+\dfrac{y^2}{9}=1$上的一点$M$到左焦点$F_1$的距离为$2$,$N$是$MF_1$的中点,则$ON=\dfrac{4}{3}$。

4.设椭圆$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$和双曲线$\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$有公共焦点$F_1,F_2$,点$P$是两曲线的一个公共点,则$\cos\angleF_1PF_2=\dfrac{3}{5}$。

高考数学总复习 椭圆、双曲线、抛物线单元测试题

高考数学总复习 椭圆、双曲线、抛物线单元测试题

高考数学总复习 椭圆、双曲线、抛物线单元测试题一.选择题(1) 抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为 ( )A 2B 3C 4D 5 (2) 若焦点在x轴上的椭圆2212x y m +=的离心率为12,则m=( )A B32 C83D23(3) 若方程x 2+ky 2=2表示焦点在y 轴上的椭圆, 那么实数k 的取值范围是 ( )A (0, +∞)B (0, 2)C (1, +∞)D (0, 1)(4) 设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为023=-y x ,F 1、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PF( )A 1或 5B 6C 7D 9(5) 对于抛物线y 2=2x 上任意一点Q, 点P(a, 0)都满足|PQ|≥|a |, 则a 的取值范围是( )A [0, 1]B (0, 1)C (]1,∞- D (-∞, 0)(6) 若椭圆)0(12222〉〉=+b a by a x 的左、右焦点分别为F 1、F 2,线段F 1F 2被抛物线y 2=2bx 的焦点分成5:3两段,则此椭圆的离心率为( )A1716B 17174C 54D 552(7) 已知双曲线)0(1222>=-a y ax 的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为 ( )A23 B23C 26D 332(8) 设A(x 1,y 1),B(x 2,y 2)是抛物线y 2=2px(p>0)上的两点,并且满足OA ⊥OB. 则y 1y 2等于( )A – 4p 2B 4p 2C – 2p 2D 2p 2(9) 已知双曲线1222=-y x 的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=则点M 到x 轴的距离为( )A43B53C 3 (10) 设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P , 若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )A2B C 2 1 二.填空题(11) 若双曲线的渐近线方程为x y 3±=,它的一个焦点是()0,10,则双曲线的方程是__________.(12)设中心在原点的椭圆与双曲线2 x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 .(13) 过双曲线22221x y a b-=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________.(14) 以下同个关于圆锥曲线的命题中 ①设A 、B 为两个定点,k 为非零常数,k PB PA =-||||,则动点P 的轨迹为双曲线;②过定圆C 上一定点A 作圆的动弦AB ,O 为坐标原点,若),(21OB OA OP +=则动点P 的轨迹为椭圆; ③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;④双曲线13519252222=+=-y x y x 与椭圆有相同的焦点.其中真命题的序号为 (写出所有真命题的序号) 三.解答题(15)点A 、B 分别是椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥.求点P 的坐标; .(16) 已知抛物线C: y=-21x 2+6, 点P (2, 4)、A 、B 在抛物线上, 且直线PA 、PB 的倾斜角互补. (Ⅰ)证明:直线AB 的斜率为定值;(Ⅱ)当直线AB 在y 轴上的截距为正数时, 求△PAB 面积的最大值及此时直线AB 的方程.(17) 双曲线12222=-by a x (a>1,b>0)的焦距为2c,直线l 过点(a,0)和(0,b),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥54c.求双曲线的离心率e 的取值范围(18) 已知抛物线)0(22>=p px y 的焦点为F ,A 是抛物线上横坐标为4、且位于x 轴上方的点,A 到抛物线准线的距离等于5.过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M.(1)求抛物线方程;(2)过M 作FA MN ⊥,垂足为N ,求点N 的坐标;(3)以M 为圆心,MB 为半径作圆M ,当)0,(m K 是x 轴上一动点时,讨论直线AK 与圆M 的位置关系.参考答案一选择题:1.D[解析]:点A 与抛物线焦点的距离就是点A 与抛物线准线的距离,即5)1(4=-- 2.B[解析]:∵焦点在x 轴上的椭圆2212x y m +=的离心率为12,∴2122=-m 则m=233.D[解析]: ∵方程x 2+ky 2=2,即12222=+ky x 表示焦点在y 轴上的椭圆 ∴22>k故10<<k 4.C[解析]:双曲线19222=-y ax 的一条渐近线方程为023=-y x ,故2=a 又P 是双曲线上一点,故4||||||21=-PF PF ,而3||1=PF ,则=||2PF 75.C[解析]:对于抛物线y 2=2x 上任意一点Q, 点P(a, 0)都满足|PQ|≥|a |,若,0≤a 显然适合若0>a ,点P(a, 0)都满足|PQ|≥|a |就是2222)2(y y a a +-≤ 即1142≤+≤y a ,此时10≤<a 则a 的取值范围是(]1,∞- 6.D[解析]:3522=-+b c bc ,5245222==∴=∴=a c e a c b c 7.D[解析]:双曲线)0(1222>=-a y a x 的准线为122+±=a a x抛物线x y 62-=的准线为23=x 因为两准线重合,故122+a a =23,2a =3,则该双曲线的离心率为328.A[解析]:∵A(x 1,y 1),B(x 2,y 2)是抛物线y 2=2px(p>0)上的两点,并且满足OA ⊥OB.∴04)(0,12122212121=+∴=+∴-=⋅y y py y y y x x k k OBOA 则y 1y 2 = – 4p 29.C[解析]:∵120,MF MF ⋅=∴点M 在以F 1F 2为直径的圆322=+y x 上故由32||1232222=⎪⎩⎪⎨⎧=-=+y y x y x 得 则点M 到x 轴的距离为332 10.D[解析]:不妨设点P 在 x 轴上方,坐标为),(2ab c ,∵△F 1PF 2为等腰直角三角形∴|PF 2|=|F 1F 2|,即c a b 22=,即e e a c ac a 2122222=-∴=- 故椭圆的离心率e1二填空题:11. 1922=-y x [解析]: 因为双曲线的渐近线方程为x y 3±=,则设双曲线的方程是λ=-922y x ,又它的一个焦点是()0,10 故1109=∴=+λλλ12. 1222=+y x [解析]:双曲线2 x 2-2y 2=1的焦点为()0,1±,离心率为2故椭圆的焦点为()0,1±,离心率为22, 则1,2,1===b a c ,因此该椭圆的方程是1222=+y x 13. 2[解析]:设双曲线22221x y a b-=(a >0,b >0)的左焦点F 1,右顶点为A ,因为以MN 为直径的圆恰好过双曲线的右顶点, 故|F 1M|=|F 1A|,∴c a ab +=2∴2112=∴+=-e e e 14. ③④[解析]:根据双曲线的定义必须有||||AB k ≤,动点P 的轨迹才为双曲线,故①错 ∵),(21OB OA OP +=∴P 为弦AB 的中点,故090=∠APC 则动点P 的轨迹为以线段AC 为直径的圆。

(完整版)双曲线基础训练题(含答案)

(完整版)双曲线基础训练题(含答案)

双曲线基础训练题1.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 ( D )A .椭圆B .线段C .双曲线D .两条射线2.方程11122=-++k y k x 表示双曲线,则k 的取值范围是(D ) A .11<<-k B .0>k C .0≥k D .1>k 或1-<k3. 双曲线14122222=--+m y m x 的焦距是( C ) A .4 B .22 C .8 D .与m 有关4.已知m,n 为两个不相等的非零实数,则方程m x -y+n=0与n x 2+my 2=mn 所表示的 曲线可能是 ( C )5.焦点为()6,0,且与双曲线1222=-y x 有相同的渐近线的双曲线方程是( B )A .1241222=-y xB .1241222=-x yC .1122422=-x yD .1122422=-y x6.若a k <<0,双曲线12222=+--k b y k a x 与双曲线12222=-by a x 有 ( D )A .相同的虚轴B .相同的实轴C .相同的渐近线D . 相同的焦点7.过双曲线191622=-y x 左焦点F 1的弦AB 长为6,则2ABF ∆(F 2为右焦点)的周长是( A )A .28B .22C .14D .128.双曲线方程为152||22=-+-ky k x ,那么k 的取值范围是 ( D )A .k >5B .2<k <5C .-2<k <2D .-2<k <2或k >59.双曲线的渐近线方程是y=±2x ,那么双曲线方程是 ( D ) A .x 2-4y 2=1B .x 2-4y 2=1C .4x 2-y 2=-1 D .4x 2-y 2=110.设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PF (C )A .1或5B . 6C . 7D . 911.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则双曲线的离心率e 的最大值为 ( B ) A .43B .53C .2D .7312.设c 、e 分别是双曲线的半焦距和离心率,则双曲线12222=-by a x (a>0, b>0)的一个顶点到它的一条渐近线的距离是 ( D )A .caB .c bC .ea D .eb13.双曲线)1(122>=-n y nx 的两焦点为F 1,F 2,P 在双曲线上,且满足|PF 1|+|PF 2|=,22+n 则△PF 1F 2的面积为 ( B )A .21 B .1 C .2 D .414.二次曲线1422=+my x ,]1,2[--∈m 时,该曲线的离心率e 的取值范围是( C )A .]23,22[ B .]25,23[C .]26,25[D .]26,23[15.直线1+=x y 与双曲线13222=-y x 相交于B A ,两点,则AB =_____6416.设双曲线12222=-by a x 的一条准线与两条渐近线交于A 、B 两点,相应的焦点为F ,若以AB 为直径的圆恰好过F17.双曲线122=-by ax 的离心率为5,则a :b= 4或4118.求一条渐近线方程是043=+y x ,一个焦点是()0,4的双曲线标准方程,并求此双曲线的离心率.(12分)[解析]:设双曲线方程为:λ=-22169y x ,∵双曲线有一个焦点为(4,0),0>∴λ双曲线方程化为:2548161691169222=⇒=+⇒=-λλλλλy x ,∴双曲线方程为:1251442525622=-y x ∴455164==e .19.(本题12分)已知双曲线12222=-by a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是.23求双曲线的方程; [解析]∵(1),332=a c 原点到直线AB :1=-by a x 的距离.3,1.2322==∴==+=a b c ab b a ab d .故所求双曲线方程为 .1322=-y x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二单元 椭圆、双曲线、抛物线一.选择题(1) 抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为 ( )A 2B 3C 4D 5(2) 若焦点在x 轴上的椭圆2212x y m +=的离心率为12,则m= ( )A B32 C83D23(3) 若方程x 2+ky 2=2表示焦点在y 轴上的椭圆, 那么实数k 的取值围是 ( )A (0, +∞)B (0, 2)C (1, +∞)D (0, 1)(4) 设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为023=-y x ,F 1、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PF( )A 1或 5B 6C 7D 9(5) 对于抛物线y 2=2x 上任意一点Q, 点P(a, 0)都满足|PQ|≥|a|, 则a 的取值围是( )A [0, 1]B (0, 1)C (]1,∞- D (-∞, 0)(6) 若椭圆)0(12222〉〉=+b a by a x 的左、右焦点分别为F 1、F 2,线段F 1F 2被抛物线y 2=2bx 的焦点分成5:3两段,则此椭圆的离心率为( )A1716 B 17174 C 54D552 (7) 已知双曲线)0(1222>=-a y ax 的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为 ( ) A23 B23C 26D332 (8) 设A(x 1,y 1),B(x 2,y 2)是抛物线y 2=2px(p>0)上的两点,并且满足OA ⊥OB. 则y 1y 2等于( )A – 4p 2B 4p 2C – 2p 2D 2p 2(9) 已知双曲线1222=-y x 的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=u u u u r u u u u r 则点M 到x 轴的距离为( )A43B53(10) 设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )A2B 12C 21二.填空题(11) 若双曲线的渐近线方程为x y 3±=,它的一个焦点是()0,10,则双曲线的方程是__________.(12)设中心在原点的椭圆与双曲线2 x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 .(13) 过双曲线22221x y a b-=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________.(14) 以下同个关于圆锥曲线的命题中 ①设A 、B 为两个定点,k 为非零常数,k PB PA =-||||,则动点P 的轨迹为双曲线;②过定圆C 上一定点A 作圆的动弦AB ,O 为坐标原点,若),(21+=则动点P 的轨迹为椭圆;③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;④双曲线13519252222=+=-y x y x 与椭圆有相同的焦点. 其中真命题的序号为 (写出所有真命题的序号)三.解答题(15)点A 、B 分别是椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥.求点P 的坐标; .(16) 已知抛物线C: y=-21x 2+6, 点P (2, 4)、A 、B 在抛物线上, 且直线PA 、PB 的倾斜角互补.(Ⅰ)证明:直线AB 的斜率为定值;(Ⅱ)当直线AB 在y 轴上的截距为正数时, 求△PAB 面积的最大值及此时直线AB 的方程.(17) 双曲线12222=-by a x (a>1,b>0)的焦距为2c,直线l 过点(a,0)和(0,b),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥54c.求双曲线的离心率e 的取值围(18) 已知抛物线)0(22>=p px y 的焦点为F ,A 是抛物线上横坐标为4、且位于x 轴上方的点,A 到抛物线准线的距离等于5.过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M.(1)求抛物线方程;(2)过M 作FA MN ⊥,垂足为N ,求点N 的坐标;(3)以M 为圆心,MB 为半径作圆M ,当)0,(m K 是x 轴上一动点时,讨论直线AK 与圆M 的位置关系.参考答案一选择题: 1.D[解析]:点A 与抛物线焦点的距离就是点A 与抛物线准线的距离,即5)1(4=-- 2.B[解析]:∵焦点在x 轴上的椭圆2212x y m +=的离心率为12,∴2122=-m 则m=233.D[解析]: ∵方程x 2+ky 2=2,即12222=+ky x 表示焦点在y 轴上的椭圆 ∴22>k故10<<k 4.C[解析]:双曲线19222=-y ax 的一条渐近线方程为023=-y x ,故2=a 又P 是双曲线上一点,故4||||||21=-PF PF ,而3||1=PF ,则=||2PF 75.C[解析]:对于抛物线y 2=2x 上任意一点Q, 点P(a, 0)都满足|PQ|≥|a|,若,0≤a 显然适合若0>a ,点P(a, 0)都满足|PQ|≥|a|就是2222)2(y y a a +-≤ 即1142≤+≤y a ,此时10≤<a 则a 的取值围是(]1,∞- 6.D[解析]:3522=-+b c bc ,5245222==∴=∴=a c e a c b c 7.D[解析]:双曲线)0(1222>=-a y a x 的准线为122+±=a a x抛物线x y 62-=的准线为23=x 因为两准线重合,故122+a a =23,2a =3,则该双曲线的离心率为328.A[解析]:∵A(x 1,y 1),B(x 2,y 2)是抛物线y 2=2px(p>0)上的两点,并且满足OA ⊥OB.∴04)(0,12122212121=+∴=+∴-=⋅y y py y y y x x k k OBOA 则y 1y 2 = – 4p 29.C[解析]:∵120,MF MF ⋅=u u u u r u u u u r ∴点M 在以F 1F 2为直径的圆322=+y x 上故由32||1232222=⎪⎩⎪⎨⎧=-=+y y x y x 得 则点M 到x 轴的距离为332 10.D[解析]:不妨设点P 在 x 轴上方,坐标为),(2ab c ,∵△F 1PF 2为等腰直角三角形∴|PF 2|=|F 1F 2|,即c a b 22=,即e e a c ac a 2122222=-∴=- 故椭圆的离心率e1二填空题:11. 1922=-y x[解析]: 因为双曲线的渐近线方程为x y 3±=,则设双曲线的方程是λ=-922y x ,又它的一个焦点是()0,10 故1109=∴=+λλλ12. 1222=+y x [解析]:双曲线2 x 2-2y 2=1的焦点为()0,1±,离心率为2故椭圆的焦点为()0,1±,离心率为22, 则1,2,1===b a c ,因此该椭圆的方程是1222=+y x 13. 2[解析]:设双曲线22221x y a b-=(a >0,b >0)的左焦点F 1,右顶点为A ,因为以MN 为直径的圆恰好过双曲线的右顶点, 故|F 1M|=|F 1A|,∴c a ab +=2∴2112=∴+=-e e e 14. ③④[解析]:根据双曲线的定义必须有||||AB k ≤,动点P 的轨迹才为双曲线,故①错 ∵),(21+=∴P 为弦AB 的中点,故090=∠APC 则动点P 的轨迹为以线段AC 为直径的圆。

故②错三解答题(15) 解:由已知可得点A (-6,0),F (4,0)设点P 的坐标是},4{},,6{),,(y x FP y x AP y x -=+=则,由已知得.623,018920)4)(6(120362222-===-+⎪⎩⎪⎨⎧=+-+=+x x x x y x x y x 或则由于).325,23(,325,23,0的坐标是点于是只能P y x y ∴==> (16) (Ⅰ)证: 易知点P 在抛物线C 上, 设PA 的斜率为k, 则直线PA 的方程是y-4=k(x-2).代入y=-21x 2+6并整理得x 2+2kx-4(k+1)=0此时方程应有根x A 及2, 由韦达定理得:2x A =-4(k+1) , ∴x A =-2(k+1). ∴y A =k(x A -2)+4.=-k 2-4k+4. ∴A(-2(k+1), -k 2-4k+4).由于PA 与PB 的倾斜角互补, 故PB 的斜率为-k.同理可得B(-2(-k+1), -k 2+4k+4) ∴k AB =2. (Ⅱ) ∵AB 的方程为y=2x+b, b>0.代入方程y=-21x 2+6消去y 得21x 2+2x+b-6=0. |AB|=2)216(52]624[212b b -=--+)()(.∴S=21|AB|d=21·252165b b ⋅-)(9364)3216()216(3=++-≤⋅⋅-b b b b b b .此时方程为y=2x+316.(17) 解:直线l 的方程为bx+ay-ab=0.由点到直线的距离公式,且a>1,得到点(1,0)到直线l 的距离d 1 =22)1(ba ab +-.同理得到点(-1,0)到直线l 的距离d 2 =22)1(ba ab ++.s= d 1 +d 2=22b a ab+=cab2. 由s ≥54c,得cab 2≥54c,即5a 22a c -≥2c 2.于是得512-e ≥2e 2.即4e 2-25e+25≤0.解不等式,得45≤e 2≤5.由于e>1>0, 所以e 的取值围是525≤≤e (18) 解:(1)抛物线.2,524,222=∴=+-==p pp x px y 于是的准线为 ∴抛物线方程为y 2= 4x .(2)∵点A 的坐标是(4,4), 由题意得B (0,4),M (0,2),又∵F (1,0), ∴,43,;34-=∴⊥=MN FA k FA MN k 则FA 的方程为y=34(x -1),MN 的方程为.432x y -=-解方程组).54,58(5458,432)1(34N y x x y x y ∴⎪⎪⎩⎪⎪⎨⎧==⎪⎪⎩⎪⎪⎨⎧-=--=得(3)由题意得,圆M 的圆心是点(0,2),半径为2.当m=4时,直线AK 的方程为x =4,此时,直线AK 与圆M 相离, 当m ≠4时,直线AK 的方程为),(44m x my --=即为,04)4(4=---m y m x 圆心M (0,2)到直线AK 的距离2)4(16|82|-++=m m d ,令1,2>>m d 解得1>∴m 当时,直线AK 与圆M 相离;当m=1时,直线AK 与圆M 相切;当1<m 时,直线AK 与圆M 相交.。

相关文档
最新文档