2010年中考数学试题及答案-江苏省南通市
2010年江苏省南通市中考数学试卷解析

2010年江苏省南通市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2010•凉山州)﹣4的倒数是()A.B.﹣4 C.4D.﹣2.(3分)(2012•包头)9的算术平方根是()A.3B.﹣3 C.81 D.﹣813.(3分)(2010•南通)用科学记数法表示数0.031,其结果是()A.3.1×102B.3.1×10﹣2C.0.31×10﹣1D.31×1034.(3分)(2010•南通)若使二次根式在实数范围内有意义,则x的取值范围是()A.x≥2B.x>2 C.x<2 D.x≤25.(3分)(2010•南通)如图,⊙O的直径AB=4,点C在⊙O上,∠ABC=30°,则AC的长是()A.1B.C.D.26.(3分)(2010•南通)某纺织厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么估计该厂这10万件产品中合格品约为()A.9.5万件B.9万件C.9500件D.5000件7.(3分)(2010•南通)关于x的方程mx﹣1=2x的解为正实数,则m的取值范围是()A.m≥2B.m≤2C.m>2 D.m<28.(3分)(2010•南通)如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()1A.20 B.15 C.10 D.59.(3分)(2010•南通)如图,已知▱ABCD的对角线BD=4cm,将▱ABCD绕其对称中心O旋转180°,则点D所转过的路径长为()A.4πcm B.3πcm C.2πcm D.πcm10.(3分)(2010•南通)在平面直角坐标系xOy中,已知点P(2,2),点Q在y轴上,△PQO是等腰三角形,则满足条件的点Q共有()A.5个B.4个C.3个D.2个二、填空题(共8小题,每小题3分,满分24分)11.(3分)(2010•南通)如果正比例函数y=kx的图象经过点(1,﹣2),那么k的值等于.12.(3分)(2010•南通)若△ABC∽△DEF,△ABC与△DEF的相似比为1:2,则△ABC与△DEF的周长比为.13.(3分)(2010•南通)分解因式:ax2﹣ax= .14.(3分)(2010•南通)质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字是奇数的概率为.15.(3分)(2010•南通)在平面直角坐标系中,已知线段MN的两个端点的坐标分别是M(﹣4,﹣1)、N(0,1),将线段MN平移后得到线段M′N′(点M、N分别平移到点M′、N′的位置),若点M′的坐标为(﹣2,2),则点N′的坐标为.216.(3分)(2010•南通)如图,小章利用一张左、右两边已经破损的长方形纸片ABCD做折纸游戏,他将纸片沿EF折叠后,D、C两点分别落在D′、C′的位置,并利用量角器量得∠EFB=65°,则∠AED′等于度.17.(3分)(2010•南通)如图,正方形ABCD的边长为4,点M在边DC上,M、N两点关于对角线AC对称,若DM=1,则tan∠ADN=.18.(3分)(2010•南通)设x1、x2是一元二次方程x2+4x﹣3=0的两个根,2x1(x22+5x2﹣3)+a=2,则a= .三、解答题(共10小题,满分96分)19.(10分)(2010•南通)计算:(1)(﹣4)2+(π﹣3)0﹣23﹣|﹣5|;(2)÷(1﹣)20.(8分)(2010•南通)如图,⊙O的直径AB垂直弦CD于M,且M是半径OB的中点,CD=6cm,求直径AB的长.3。
2010年江苏中考数学试题(含答案)

二0一0年江苏常州市升学统一考试数学试卷说明:1.本试卷共5页,全卷满分120分,考试时间为120分钟。
考生应将答案全部填写在答题卡相应位置上,写在本试卷上无效,考试结束后,请将本试卷和答题卡一并交回,考试时不允许使用计算器。
2.答题前,考生务必将自己的姓名,考试证号填写在试卷上,并填写好答题卡上的考生信息。
3.作图必须用2B 铅笔,并请加黑加粗,描写清楚。
一、选择题(本大题共有8小题,每小题2分,共16分。
在每小题所给的四个选项中,只有一个是正确的)1.用激光测距仪测得之间的距离为14000000米,将14000000用科学记数法表示为A.71410⨯ B. 61410⨯ C.71.410⨯ D.80.1410⨯2.函数2y x=的图像经过的点是 A.(2,1) B.(2,1)- C.(2,4) D.1(,2)2-3.函数13y x =-的自变量x 的取值范围是 A.0x ≠ B.3x > C.3x ≠- D.3x ≠4.如图所示几何体的主视图是5.下列运算错误的是235= B. 236= 623= D.2(2)2= 6.若两圆的半径分别为2和3,圆心距为5,则两圆的位置关系为A.外离B.外切C.相交D.内切 7.某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资。
今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会A.平均数和中位数不变B.平均数增加,中位数不变C.平均数不变,中位数增加D.平均数和中位数都增加8.如图,一次函数122y x =-+的图像上有两点A 、B ,A 点的横坐标为2,B 点的横坐标为(042)a a a <<≠且,过点A 、B 分别作x 的垂线,垂足为C 、D ,AOC BOD ∆∆、的面积分别为12S S 、,则12S S 、的大小关系是A. 12S S >B. 12S S =C. 12S S <D. 无法确定二、填空题(本大题共有9小题,第9小题4分,其余8小题每小题2分,共20分。
2010年江苏省南通市中考数学试题及答案(word版)

年南通市初中毕业、升学考试2010学数项事意注考生在答题前请认真阅读本注意事项分钟.考试结束后,请将本试卷和答题卡一并交120分,考试时间为150页,满分为6.本试卷共1 回.毫米黑色字迹的签字笔填写在试卷及答题卡指定0.5.答题前,请务必将自己的姓名、考试证号用2 的位置..答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效.3 分.在每小题给出的四个选项中,恰有一项是30分,共3小题,每小题10一、选择题:本大题共上.位置符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应.......的倒数是4-.111.C4 .-B .-4 D .A 44 的算术平方根是9 .2 81 .-D 81 .C 3 .-B 3 .A ,结果是0.000031用科学记数法表示.36454---- 1031×.D 10 0.31×.C 103.1× .B 103.1×.A的取值范围是在实数范围内有意义,则若.4x6 3 .D .C .B .的长是AC,则=30°ABC上,∠O在⊙C,点=4AB的直径O如图,⊙.5.B 1 .A2.C2 .D 3 O · A B 件进行质检,发现100万件同类产品中随机抽取了10某纺织厂从.6 万件产品中合格品约为10件不合格,那么估计该厂这5其中有C 9.5.A 万件9.B 万件题)5(第件5000.D 件9500.C 的取值范围是m的解为正实数,则的方程x关于..B 2 ≥m.A . 欢迎大家评论.龙门书局的初中数学北师大版的《三点一测》值得一看 12 <m.D 2 >m.C ,则对角线 = 120°BCD,∠= 5AB 中,ABCD如图,菱形.8 A 的长是AC D B 15 .B20 .A 5 .D10 .C C 题)8(第绕其对ABCD,将=4cmBD的对角线ABCD如图,已知.9□□所转过的路径长为D,则点180°旋转O称中心 A D cmπ3.B cm π4.A O D cm π2.C cmπ. C B 题)9(第轴上,y在Q,点)2,2(P中,已知点xOy.在平面直角坐标系10共有Q是等腰三角形,则满足条件的点PQO△个5.A 个2.D 个3.C 个4.B 小题,每小题8二、填空题:本大题共不需写出解答过程,请把答案直接填写在答.分24分,共3.上.题卡相应位置.......▲的值等于k ,那么)2,-1的图象经过点(.如果正比例函数.▲的周长比为DEF与△ABC,则△2∶1的相似比为DEF与△ABC△, DEF∽△ABC.若△12.分解因式:.13 ▲=2六个数字,投掷这个骰子一次,6,5,4,3,2,1.质地均匀的正方体骰子,其六个面上分别刻有14.▲则向上一面的数字是偶数的概率为的两个端点的坐标分别是MN.在平面直角坐标系中,已知线段15 E A D ′N ′M 平移后得到线段MN,将线段)1,0(N、)1,-4(-MD′的坐标为′M ,若点的位置)′N 、′M 分别平移到点N、M(点 B C F .▲的坐标为′N ,则点)2,2(-C′题)16(第做折ABCD.如图,小章利用一张左、右两边已经破损的长方形纸片16的位′C 、′D 两点分别落在C、D折叠后,EF纸游戏,他将纸片沿等于′AED ,则∠65°=EFB置,并利用量角器量得∠度.▲ D A 两点关N、M上,DC在边M,点4的边长为ABCD.如图,正方形17·M tan,则=1DM对称,若AC于对角线.▲=ADN∠ 2 的两个根,3=0-x+4x 是一元二次方程x、x.设1821 C B · N 2 .▲=a,则 =2a3)+-x+5x(x2122题)17(第 . 欢迎大家评论.龙门书局的初中数学北师大版的《三点一测》值得一看 2内作答,解答时应写出文字说明、分.请在答题卡指定区域96小题,共10三、解答题:本大题共.......证明过程或演算步骤.分)10(本小题满分.19);1(计算:302|5|23)(4)(239.)2()(12a96分)8(本小题满分.20的中点,OB是P,垂足CD垂直于弦AB的直径O如图,⊙ A 的长.AB,求直径6 cm=CD ·O C D P B 题)20(第 21分)9(本小题满分.k两点.B、)1,2(A相交于与双曲线如图,直线x y 的值;k及m)求1( 3 2A , 1 的坐标;B直接写出点的方程组y、x)不解关于2(, 3 1 x 2 1 2 3 O x--- 1 -吗?请说明理由.B经过点)直线3(m42B 2 - 3 -题)21(第分)8(本小题满分.22分)进行了统计,x某地区随机抽取若干名八年级学生进行地理会考模拟测试,并对测试成绩(具体统计结果见下表: . 欢迎大家评论.龙门书局的初中数学北师大版的《三点一测》值得一看 3 某地区八年级地理会考模拟测试成绩统计表60 ≤x70 ≤x<6080 ≤x<7090 ≤x<80100 ≤x<90 分数段 217 480 642 1461 1200 人数)填空:1(名学生;▲ ①本次抽样调查共测试了上;▲ ②参加地理会考模拟测试的学生成绩的中位数落在分数段的人数所对应扇形的圆心角的100≤x<90③若用扇形统计图表示统计结果,则分数段为;▲度数为.现已97%分)的为合格,要求合格率不低于60分以上(含60)该地区确定地理会考成绩2(人,通过计算说明本次地理会考模拟测试的合格率是否117分的学生有60知本次测试得达到要求?分)9(本小题满分.23的速度向正m/min50 )班开展数学实践活动,小李沿着东西方向的公路以1光明中学九年级(C处,测得建筑物B后他走到20min 方向上,60°在北偏东C处测得建筑物A东方向行走,在)(已知的距离.AB到公路C方向上,求建筑物45°在北偏西北北C °45 °60 B A 题)23(第分)8(本小题满分.245、吨的货物分配给甲、乙两船运输.现甲、乙两船已分别运走其任务数的490)将一批重1(73甲船比乙船多运在已运走的货物中,,乙两船的任务数各多少吨?求分配给甲、吨.307 )自编一道应用题,要求如下:2(21必须全部用到,不添加其他数据.,,100①是路程应用题.三个数据55 . 欢迎大家评论.龙门书局的初中数学北师大版的《三点一测》值得一看 4②只要编题,不必解答.分)8(本小题满分.25 .DF=AC,CE=FBC在一条直线上,E、、F、B如图,已知:点?如果能,请给出证明;如果不能,请从下列三个条件中ED∥AB能否由上面的已知条件证明成立,并给出证明.ED∥AB,添加到已知条件中,使合适的条件选择一个.......:供选择的三个条件(请从其中选择一个) A ;ED=AB① C ;EF=BC② B E F ACB③∠.DFE∠= D 题)25(第分)10(本小题满分.26如有两个数字已模糊不清.电话本上的小陈手机号码中,由于保管不善,小沈准备给小陈打电话,个数11(手机号码由580y370x139表示这两个看不清的数字,那么小陈的手机号码为y、x果用的整数倍.20个数字之和是11,小沈记得这字组成)y+x)求1(的值;)求小沈一次拨对小陈手机号码的概率.2(分)12(本小题满分.27是大于m(m=AB中,ABCD如图,在矩形C、B上的动点(不与BC为线段E,8=BC,的常数)0y,DE⊥EF,作DE.连结重合).=BF,x=CE,设F交于点BA与射线EFy 的函数关系式;x关于)求1( A D y 的值最大,最大值是多少?为何值时,x,求8=m)若2( F 12y 的值应为多少?m为等腰三角形,DEF△,要使)若3(=m C B E 分)14(本小题满分.272y时,这条抛物线上3=x和3=x)两点,当0,,2(B、)34(A经过c+bx+ax已知抛物线=-- 0(C对应点的纵坐标相等.经过点为坐标原点.O轴平行,x与l)的直线2,-和这条抛物线的解析式;AB)求直线1(为圆心,A)以2(的位置关系,并说明理由;A与⊙l,判断直线A为半径的圆记为⊙AO2yPDO△上的动点,当c+bx+ax)是抛物线n,m(P,1的横坐标为D上的点AB)设直线3(=-的面积.CODP的周长最小时,求四边形 y . 欢迎大家评论.龙门书局的初中数学北师大版的《三点一测》值得一看 5 x O. 欢迎大家评论.龙门书局的初中数学北师大版的《三点一测》值得一看 6年南通市中考数学试卷答案2010 B 、10 C 、9 、D 、8 C 、7 3A、6 D 、5 C 、 4 B A、2 D 、141 8 、18 、17、50°、16 4) ,(2、15 14 ax(x-1) 、13 1:2 、12 -2 、1132a 4 、⑴19 ⑵、2034;⑵k=2 , m=-1、⑴21 B 经过点;⑶)-2,-1(;108°③90 ≤x<80②4000 ① 、⑴>%=符合要求,合格率⑵4000吨280吨和210、分配给甲、乙两船的任务数分别是24 m 、、略25 ) 为整数36+x+y=20k(k根据题意,设、⑴26 x+y=20k-36则18 ≤x+y≤0∵ 18 ≤20k-36≤0∴ 2.7 ≤k≤1.8 为整数k∵k=2 ∴ 2-36=4 x+y=20×∴⑵ 4 3 2 1 0 x 0 1 2 3 4 y 1 小沈一次拨对小陈手机号码的概率是5 90°=CED∠+BEF,∴∠90°=DEF,∴∠DE⊥EF)∵1(、解:27 CED∠=BFE,∴∠90°=BFE∠+BEF∵∠ CDE∽△BEF,∴△90°=C∠=B 又∵∠y xCEBF ,即∴==分4···································································∴···············x+x =- mm1122y 2 +)4x(x+x,则8=m)若2(==---88yy 分7·················时,·············4=x∴当···························2 =的值最大,最大1212812y x+x,则)若3(==- mmmm . 欢迎大家评论.龙门书局的初中数学北师大版的《三点一测》值得一看 72 分 8························································6 =x,2=x,解得0=12+x8x∴-21EF=DE为等腰三角形,只能DEF△为直角三角形,∴要使DEF△∵14422222222222y+)x8(=+)=x8(=BF+BEEF,x+m=CE+CD=DE又--2m1441442222 0 =64x16+m,即+)x8(=x+m∴---22mm144242 0 =144m32m,即0=32m时,2=x当----2m22 (舍去)4=m或36=m解得-··············6·=m,∴0>m∵分10······································································144242 0 =144m32+m,即0=32+m时,6=x当--2m22 4 =m(舍去)或36=m解得-·······2·=m,∴0>m∵分12·············································································y q+px的解析式为AB)设直线1(、解:28=1=-q+p4=3-2解得则+p2=01=q1y的解析式为AB∴直线分 2·························································1 ·+x=-2 y 时,这条抛物线上对应点的纵坐标相等3=x和3=x∵当-2yy c+ax,∴0=b轴,∴∴抛物线的对称轴为=)代入,得:0,2(B、)3,4(A把-1=+a16=34 A 解得+a4=01=c- B 12y分 4·····················1·x∴抛物线的解析式为=- O x 4 l E C 22 5 的半径为A,即⊙5==AO,∴)3,4(A)∵2(4+3-轴平行x与l)的直线2,0(C∵经过点-y 5 的距离为l到直线A,∴点2=的解析式为l∴直线-················· ·相切A与⊙l∴直线分 8·······························································331yy),1(D,∴,得1+x代入1=x)把3(==---22212 1 +m,即2+n=PH,则H于l⊥直线PH作P过点4 . 欢迎大家评论.龙门书局的初中数学北师大版的《三点一测》值得一看 811222222 1 +m===PO又∵n++m 44 分10·······PO··········=···········PH············∴····················································· ·的周长最小PDO最小时,△PH+PD即PO+PD的长度为定值,∴当DO∵三点在一条直线上时,H、P、D当最小PH+PD3 =n,代入抛物线的解析式,得1的横坐标为P∴点--43 分12·········,···············1················(··)P∴-- 4 的面积为:CODP此时四边形SS=S+ PCO PDOCODP△△四边形 171331 分14··············( =121)=++×××× 82422 y A D B x O P l H C . 欢迎大家评论.龙门书局的初中数学北师大版的《三点一测》值得一看 9。
2010年南通中考数学(含答案)

2010南通中考数学一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上. 1. -4的倒数是 A .4B .-4C .14D .-142. 9的算术平方根是 A .3B .-3C .81D .-813. 用科学记数法表示0.000031,结果是A .3.1×10-4B .3.1×10-5C .0.31×10-4D .31×10-64.x 的取值范围是A .2x -≥B .2x ≠-C .2x ≥D .2x ≠5. 如图,⊙O 的直径AB =4,点C 在⊙O 上,∠ABC =30°,则AC 的长是A .1B.C.D .26. 某纺织厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么估计该厂这10万件产品中合格品约为 A .9.5万件 B .9万件 C .9500件D .5000件7. 关于x 的方程12m x x -=的解为正实数,则m 的取值范围是A .m ≥2B .m ≤2C .m >2D .m <28. 如图,菱形ABCD 中,AB = 5,∠BCD = 120°,则对角线AC 的长是 A .20 B .15 C .10D .59. 如图,已知□ABCD 的对角线BD =4cm ,将□ABCD 绕其对称中心O 旋转180°,则点D 所转过的路径长为 A .4π cmB .3π cmC .2π cmD .π cm10.在平面直角坐标系xOy 中,已知点P (2,2),点Q 在y 轴上,△PQO 是等腰三角形,则满足条件的点Q 共有 A .5个 B .4个 C .3个 D .2个BACD(第8题)(第5题)·O ABC(第9题)ABCDO二、填空题:本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答.题卡相应位置......上. 11.如果正比例函数y kx =的图象经过点(1,-2),那么k 的值等于 .12.若△ABC ∽△DEF , △ABC 与△DEF 的相似比为1∶2,则△ABC 与△DEF 的周长比为 . 13.分解因式:2ax ax -= .14.质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字是偶数的概率为 .15.在平面直角坐标系中,已知线段MN 的两个端点的坐标分别是M (-4,-1)、N (0,1),将线段MN 平移后得到线段M ′N ′(点M 、N 分别平移到点M ′、N ′的位置),若点M ′的坐标为 (-2,2),则点N ′的坐标为 .16.如图,小章利用一张左、右两边已经破损的长方形纸片ABCD 做折纸游戏,他将纸片沿EF 折叠后,D 、C 两点分别落在D ′、C ′的位 置,并利用量角器量得∠EFB =65°,则∠AED ′等于 度. 17.如图,正方形ABCD 的边长为4,点M 在边DC 上,M 、N 两点关于对角线AC 对称,若DM =1,则tan ∠ADN = . 18.设x 1、x 2 是一元二次方程x 2+4x -3=0的两个根,2x 1(x 22+5x 2-3)+a =2,则a = .三、解答题:本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 19.(本小题满分10分)计算:(1)203(4)(π3)2|5|-+----;(2)2293(1)69a a a a-÷-++.20.(本小题满分8分)如图,⊙O 的直径AB 垂直于弦CD ,垂足P 是OB 的中点, CD =6 cm ,求直径AB 的长.O BADC·P (第20题)A(第17题)B DM C· ·(第16题)如图,直线y x m =+与双曲线k y x=相交于A (2,1)、B 两点.(1)求m 及k 的值;(2)不解关于x 、y 的方程组,,y x m ky x =+⎧⎪⎨=⎪⎩直接写出点B 的坐标; (3)直线24y x m =-+经过点B 吗?请说明理由.22.(本小题满分8分)某地区随机抽取若干名八年级学生进行地理会考模拟测试,并对测试成绩(x 分)进行了统计,具体统计结果见下表:某地区八年级地理会考模拟测试成绩统计表(1)填空:①本次抽样调查共测试了 ▲ 名学生;②参加地理会考模拟测试的学生成绩的中位数落在分数段 ▲ 上;③若用扇形统计图表示统计结果,则分数段为90<x ≤100的人数所对应扇形的圆心角的度数为 ▲ ;(2)该地区确定地理会考成绩60分以上(含60分)的为合格,要求合格率不低于97%.现已知本次测试得60分的学生有117人,通过计算说明本次地理会考模拟测试的合格率是否达到要求?23.(本小题满分9分)光明中学九年级(1)班开展数学实践活动,小李沿着东西方向的公路以50 m/min 的速度向正东方向行走,在A 处测得建筑物C 在北偏东60°方向上,20min 后他走到B处,测得建筑物C 在北偏西45°方向上,求建筑物C 到公路AB 的距离. 1.732≈)(第21题)北北(第23题)(1)将一批重490吨的货物分配给甲、乙两船运输.现甲、乙两船已分别运走其任务数的57、37,在已运走的货物中,甲船比乙船多运30吨.求分配给甲、乙两船的任务数各多少吨?(2)自编一道应用题,要求如下:①是路程应用题.三个数据100,25,15必须全部用到,不添加其他数据.②只要编题,不必解答.25.(本小题满分8分)如图,已知:点B 、F 、C 、E 在一条直线上,FB =CE ,AC =DF .能否由上面的已知条件证明AB ∥ED ?如果能,请给出证明;如果不能,请从下列三个条件中选择一个..合适的条件.....,添加到已知条件中,使AB ∥ED 成立,并给出证明. 供选择的三个条件(请从其中选择一个): ①AB =ED ; ②BC =EF ; ③∠ACB =∠DFE .26.(本小题满分10分)小沈准备给小陈打电话,由于保管不善,电话本上的小陈手机号码中,有两个数字已模糊不清.如果用x 、y 表示这两个看不清的数字,那么小陈的手机号码为139x 370y 580(手机号码由11个数字组成),小沈记得这11个数字之和是20的整数倍. (1)求x +y 的值;(2)求小沈一次拨对小陈手机号码的概率.27.(本小题满分12分)如图,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y . (1)求y 关于x 的函数关系式; (2)若m =8,求x 为何值时,y 的值最大,最大值是多少?(3)若y =m12,要使△DEF 为等腰三角形,m 的值应为多少?E(第25题)A BCD EF28.(本小题满分14分)已知抛物线y=ax2+bx+c经过A(-4,3)、B(2,0)两点,当x=3和x=-3时,这条抛物线上对应点的纵坐标相等.经过点C(0,-2)的直线l与x轴平行,O为坐标原点.(1)求直线AB和这条抛物线的解析式;(2)以A为圆心,AO为半径的圆记为⊙A,判断直线l与⊙A的位置关系,并说明理由;(3)设直线AB上的点D的横坐标为-1,P(m,n)是抛物线y=ax2+bx+c上的动点,当△PDO 的周长最小时,求四边形CODP的面积.2010年南通市中考数学试卷答案1、D2、A3、B4、C5、D6、A7、C8、D9、C 10、B 11、-2 12、1:2 13、ax(x-1) 14、21 15、(2,4) 16、50°17、34 18、819、⑴4 ⑵ 3+a a20、3421、⑴ m=-1,k=2 ;⑵ (-1,-2);⑶经过点B 22、⑴ ①4000 ②80<x ≤90 ③108°; ⑵ 符合要求,合格率=5.97975.040001172171==--%>97%23、)13(50- m 24、分配给甲、乙两船的任务数分别是210吨和280吨 25、略 26、⑴根据题意,设36+x+y=20k(k 为整数) 则x+y=20k-36 ∵0≤x+y ≤18 ∴0≤20k-36≤18 1.8≤k ≤2.7 ∵k 为整数 ∴k=2 ∴x+y=20×2-36=4 ⑵小沈一次拨对小陈手机号码的概率是5127、解:(1)∵EF ⊥DE ,∴∠DEF =90°,∴∠BEF +∠CED =90°∵∠BEF +∠BFE =90°,∴∠BFE =∠CED 又∵∠B =∠C =90°,∴△BEF ∽△CDE ∴BEBF =CDCE ,即xy -8=mx∴y =-m1x2+m8x ·················································································· 4分(2)若m =8,则y =-81x2+x =-81( x -4)2+2∴当x =4时,y 的值最大,y 最大=2 ························································· 7分 (3)若y =m12,则-m1x2+m8x =m12∴x2-8x +12=0,解得x 1=2,x 2=6 ························································ 8分∵△DEF 为直角三角形,∴要使△DEF 为等腰三角形,只能DE =EF 又DE 2=CD 2+CE 2=m2+x2,EF 2=BE 2+BF 2=( 8-x )2+y2=( 8-x )2+2144m∴m2+x2=( 8-x )2+2144m,即m2+16x -64-2144m=0当x =2时,m2-32-2144m=0,即m4-32m2-144=0解得m2=36或m2=-4(舍去)∵m >0,∴m =6·····················································································10分 当x =6时,m2+32-2144m=0,即m4+32m2-144=0解得m2=-36(舍去)或m2=4∵m >0,∴m =2·····················································································12分28、解:(1)设直线AB 的解析式为y =px +q则⎩⎪⎨⎪⎧3=-4p +q 0=2p +q 解得⎩⎪⎨⎪⎧p =-21q =1∴直线AB 的解析式为y =-21x +1∵当x =3和x =-3时,这条抛物线上对应点的纵坐标相等 ∴抛物线的对称轴为y 轴,∴b =0,∴y =ax2+c 把A (-4,3)、B (2,0)代入,得:⎩⎪⎨⎪⎧3=16a +c 0=4a +c 解得⎩⎪⎨⎪⎧a =41c =-1∴抛物线的解析式为y =41x2-1······················ 4分(2)∵A (-4,3),∴AO =2243+=5,即⊙A 的半径为5∵经过点C (0,-2)的直线l 与x 轴平行∴直线l 的解析式为y =-2,∴点A 到直线l 的距离为5∴直线l 与⊙A 相切 ················································································· 8分 (3)把x =-1代入y =-21x +1,得y =23,∴D (-1,23)过点P 作PH ⊥直线l 于H ,则PH =n +2,即41m2+1又∵PO =22n m+=222141)( m m+=41m2+1∴PH =PO ······························································································10分 ∵DO 的长度为定值,∴当PD +PO 即PD +PH 最小时,△PDO 的周长最小 当D 、P 、H 三点在一条直线上时,PD +PH 最小 ∴点P 的横坐标为-1,代入抛物线的解析式,得n =-43∴P (-1,-43) ··········································12分此时四边形CODP 的面积为: S 四边形CODP=S △PDO +S △PCO=21×(23+43)×1+21×2×1=817 ··············14分。
2010年江苏省南通市中考数学试题答案

2010年南通市中考数学试卷答案1、D2、A3、B4、C5、D6、A7、C8、D9、C 10、B 11、-2 12、1:2 13、ax(x-1) 14、21 15、(2,4) 16、50°17、34 18、8 19、⑴4 ⑵3+a a20、34 21、⑴ m=-1,k=2 ;⑵ (-1,-2);⑶经过点B 22、⑴ ①4000 ②80<x ≤90 ③108°; ⑵ 符合要求,合格率=5.97975.040001172171==--%>97%23、)13(50-m 24、分配给甲、乙两船的任务数分别是210吨和280吨 25、略 26、⑴根据题意,设36+x+y=20k(k 为整数) 则x+y=20k-36∵0≤x+y ≤18∴0≤20k-36≤18 1.8≤k ≤2.7 ∵k 为整数∴k=2∴x+y=20×2-36=4 ⑵小沈一次拨对小陈手机号码的概率是5127、解:(1)∵EF ⊥DE ,∴∠DEF =90°,∴∠BEF +∠CED =90°∵∠BEF +∠BFE =90°,∴∠BFE =∠CED 又∵∠B =∠C =90°,∴△BEF ∽△CDE ∴BE BF =CD CE ,即x y -8=mx∴y =-m 1x2+m8x ·························································································· 4分 (2)若m =8,则y =-81x2+x =-81( x -4)2+2∴当x =4时,y 的值最大,y 最大=2 ······························································· 7分(3)若y =m 12,则-m 1x2+m8x =m 12∴x2-8x +12=0,解得x 1=2,x 2=6 ····························································· 8分 ∵△DEF 为直角三角形,∴要使△DEF 为等腰三角形,只能DE =EF 又DE 2=CD 2+CE 2=m2+x2,EF 2=BE 2+BF 2=( 8-x )2+y2=( 8-x )2+2144m∴m2+x2=( 8-x )2+2144m ,即m2+16x -64-2144m =0 当x =2时,m 2-32-2144m=0,即m 4-32m2-144=0解得m2=36或m2=-4(舍去)∵m >0,∴m =6 ···························································································· 10分当x =6时,m2+32-2144m=0,即m4+32m2-144=0解得m2=-36(舍去)或m2=4∵m >0,∴m =2 ···························································································· 12分28、解:(1)设直线AB 的解析式为y =px +q则⎩⎪⎨⎪⎧3=-4p +q0=2p +q 解得⎩⎪⎨⎪⎧p =-21q =1∴直线AB 的解析式为y =-21x +1 ······················································································· 2分 ∵当x =3和x =-3时,这条抛物线上对应点的纵坐标相等∴抛物线的对称轴为y 轴,∴b =0,∴y =ax2+c把A (-4,3)、B (2,0)代入,得:⎩⎪⎨⎪⎧3=16a +c 0=4a +c 解得⎩⎪⎨⎪⎧a =41c =-1∴抛物线的解析式为y =41x2-1 ··············································· 4分 (2)∵A (-4,3),∴AO =2243+=5,即⊙A 的半径为∵经过点C (0,-2)的直线l 与x 轴平行∴直线l 的解析式为y =-2,∴点A 到直线l 的距离为5∴直线l 与⊙A 相切 ························································································· 8分 (3)把x =-1代入y =-21x +1,得y =23,∴D (-1,23) 过点P 作PH ⊥直线l 于H ,则PH =n +2,即41m2+1 又∵PO =22n m+=222141)(-m m+=41m2+1 ∴PH =PO ……10分∵DO 的长度为定值,∴当PD +PO 即PD +PH 最小时,△当D 、P 、H 三点在一条直线上时,PD +PH 最小 ∴点P 的横坐标为-1,代入抛物线的解析式,得n =-43 ∴P (-1,-43) 12分 此时四边形CODP 的面积为: S 四边形CODP=S △PDO +S △PCO=21×( 23+43)×1+21×2×1=817 14分。
江苏省2010年中考数学试题(13份含有答案及解析)-6

泰州市二○一○年初中毕业、升学统一考试数学试题(考试时间:120分钟 满分:150分)请注意:1.本试卷分选择题和非选择题两部分.2.所有试题的答案均填写在答题卡上,答案写在试卷上无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.第一部分 选择题(共24分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(2010江苏泰州,1,3分)3-的倒数为( )A.3-B.31C.3D. 31- 【分析】如果两个数的积为1,那么这两个数互为倒数.所以3-的倒数为31-. 【答案】D【涉及知识点】有理数的有关概念【点评】涉及与有理数有关的概念题型,关键是对概念的理解,“回到定义中去”直接运用概念解题.【推荐指数】★★★★2.(2010江苏泰州,2,3分)下列运算正确的是( )A.623·a a a = B. 632)(a a -=- C. 33)(ab ab = D.428a a a =÷ 【分析】根据幂的运算性质,“同底数幂相乘,底数不变,指数相加”,选项A 不正确;“积的乘方,等于积中各因式乘方的积”,选项C 不正确;“同底数幂相除,底数不变,指数相减”,选项D 也不正确.【答案】B【涉及知识点】幂的运算性质【点评】用幂的运算性质解答问题,只要熟练掌握根据幂的运算性质即可.【推荐指数】★★★3.(2010江苏泰州,3,3分)据新华社2010年2月9日报道:受特大干旱天气影响,我国西南地区林地受灾面积达到43050000亩.用科学计数法可表示为( )A.810305.4⨯亩B. 610305.4⨯亩C. 71005.43⨯亩D. 710305.4⨯亩【分析】43050000可表示为4.305×10000000,100000=107,因此43050000=4.305×107.【答案】D【涉及知识点】科学记数法【点评】把一个数写成a ×10n的形式(其中1≤a <10,n 为整数,这种计数法称为科学记数法.科学记数法是每年中考试卷中的必考问题,应掌握:⑴表达形式为:,101(10<≤⨯a a n n 表示小数点移动的位数).科学记数法可以表示绝对值大于10的数,也可以表示绝对值小于1的数.⑵当表示绝对值大于10的数时应注意:小数点向左移到第一位数字后,看小数点移动了几位,n 的值就是几,表达式中的n 是应为正整数.⑶当表示绝对值小于1的数时应注意:小数点向右移到第一位不为零的数后,看小数点移动了几位,n 的值就是几,表达式中的n 应为负整数.【推荐指数】★★★★★4.(2010江苏泰州,4,3分)下面四个几何体中,主视图与其它几何体的主视图不同的是( )A. B. C. D.【分析】选项A 、B 、D 的主视图都是矩形,只有选项C 的主视图是三角形与其它三个几何体的主视图不同.【答案】C【涉及知识点】三视图【点评】由立体图形到视图的过程,通常称为读图.要注意两点:一是长、宽、高的关系;二是上下、左右、前后的关系.当然,平时学习中知识的积累也很重要.【推荐指数】★★★★5.(2010江苏泰州,5,3分)下列函数中,y 随x 增大而增大的是( ) A.x y 3-= B. 5+-=x y C. 12y x = D. )0(212<=x x y 【分析】选项A 反比例函数,其增减性要有前提条件,即在“各个象限内”,不能笼统地进行描述,应舍去;B 是一次函数,系数小于零,所以y 随x 增大而减小,舍去,选项D 中的二次函数开口向上,在对称轴的左侧(0)x <,y 随x 增大而减小,舍去.故选C .【答案】C【涉及知识点】一次函数、反比例函数、二次函数的增减性【点评】关于函数的增减性,对于一次函数而言,由系数k 即可确定,二次函数要由开口方向与对称轴来确定,而反比例函数,特别要注意“在每一个象限”这一限制条件.【推荐指数】★★★★6.(2010江苏泰州,6,3分)下列命题:①正多边形都是轴对称图形;②通过对足球迷健康状况的调查可以了解我国公民的健康状况;③方程1312112-=+--x x x 的解是0=x ;④如果一个角的两边与另一个角的两边分别平行,那么这两个角相等.其中真命题的个数有( )A.1个B.2个C.3个D.4个【分析】正多边形都是轴对称图形,对于正偶数边形,即是轴对称图形又是中心对称图形,①正确;对足球迷健康状况调查样本不具有代表性,②不正确;通过解答,③也是正确的;如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,④不正确.【答案】B【涉及知识点】轴对称与中心对称 随机抽样 分式方程的解法 简单的推理【点评】选择题中的判断正误题,往往是多个数学知识点组合在一起,在判断时,一是注意其表达的语言方式,二是注意漏解的情况.【推荐指数】★★★7.(2010江苏泰州,7,3分)一个铝质三角形框架三条边长分别为24cm 、30cm 、36cm ,要做一个与它相似的铝质三角形框架,现有长为27cm 、45cm 的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有( )A.0种B. 1种C. 2种D. 3种【分析】⑴假设以27cm 为一边,把45cm 截成两段,设这两段分别为xcm 、ycm (x <y ).则可得:24303627x y ==①或24303627x y==②(注:27cm 不可能是最小边),由①解得x=18,y=22.5,符合题意;由②解得x =1085,y =1625,x + y =1085+1625=2705=54>45,不合题意,舍去.⑵假设以45cm 为一边,把27cm 截成两段,设这两段分别为xcm 、ycm (x <y ).则可得:24303645x y ==(注:只能是45是最大边),解得x =30,y =752,x + y =30+37.5=67.5>27,不合题意,舍去.综合以上可知,截法只有一种.【答案】B【涉及知识点】相似三角形的判定【点评】在判定三角形相似,未明确对应关系时,特别注意不要忘了分类,再根据不同的对应关系分别计算要求的线段.【推荐指数】★★★★8.(2010江苏泰州,8,3分)已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为( )A.Q P >B. Q P =C. Q P <D.不能确定【分析】可用特殊值法或差值法.特殊值法:取m =15,分别代入得P =6,Q =217,故P <Q ;差值法:P -Q =27811515m m m ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=21m m -+-=21324m ⎛⎫--- ⎪⎝⎭<0,故P <Q .【答案】C【涉及知识点】代数式的大小比较【点评】代数式的大小比交,最常用的方法就是特殊值法、差值法及商值法,在填空题及选择题中,用特殊值法是最简捷的,要注意字母所取值必满足条件.【推荐指数】★★★第二部分 非选择题(共126分)二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(2010江苏泰州,9,3分)数据-1,0,2,-1,3的众数为 .【分析】众数是指一组数据中出现次数最多的那个数,因为这组数据中-1出现的次数最多,所以这组数据的众数为-1.【答案】-1【涉及知识点】众数的概念【点评】平均数、中位数、众数概念是中考试题中的基本题型,只要掌握它们的概念,对照概念即可求出结果.要注意的是,求中位数时要先按大小顺序排列,另外,一组数据的平均数、中位数只有一个,而众数可能多于一个或者没有.【推荐指数】★★10.(2010江苏泰州,10,3分)不等式642-<x x 的解集为 .【分析】移项得246x x -<-、合并同类项得26x -<-、系数化为1,得x >3.【答案】x >3【涉及知识点】一元一次不等式的解法【点评】一元一次不等式的解法步骤与一元一次方程的解法相似,只是在不等式两边乘或除以同一个负数时,不等号的方向要改变.【推荐指数】★★★★11.(2010江苏泰州,11,3分)等腰△ABC 的两边长分别为2和5,则第三边长为 .【分析】等腰三角形有两条边相等,所以这个等腰三角形的三边长可以是2、2、5或2、5、5这两种情况,但2+2<5,不满足三角形三边关系定理,故舍去,其第三边长只能为5.【答案】5【涉及知识点】等腰三角形 三角形三边关系【点评】在计算等腰三角形的有关边长时,往往只注意分情况求边长,而忘了等腰三角形的三边长仍然需要满足三角形的三边关系定理,在解决此类问题时,千万不能顾此失彼.【推荐指数】★★★★★12.(2010江苏泰州,12,3分)已知扇形的圆心角为120°,半径为15cm ,则扇形的弧长为 cm (结果保留π).【分析】n °圆心角的弧长公式是: 180n R l π=.所以只要将n =120,R =15代入即可. 【答案】10π【涉及知识点】弧长计算公式【点评】圆周长公式为:C=2R π;所以n °圆心角的弧长公式即为: 180n R l π=.在计算弧长时只需将n 、R 分别代入.有时计算不规则图形时,要把不规则图形的问题转化为规则图形的问题.【推荐指数】★★★★★13.(2010江苏泰州,13,3分)一次函数b kx y +=(k 为常数且0≠k )的图象如图所示,则使0>y 成立的x 的取值范围为 .【分析】观察图象可知,直线在x 轴上方即0 y 时,x 的取值在-2的左侧,所以x 的取值范围是x <-2.【答案】x <-2【涉及知识点】一次函数与二元一次方程的关系【点评】二元一次方程转化为用含一个未知数的代数式表示另一个未知数,即得一次函数,在直角坐标系中画出其图象即可直观地看出当自变量取何值时,函值y 的值是大于0、等于0、还是小于0,这也是数形结合思想方法的简单运用.【推荐指数】★★★★★14.(2010江苏泰州,14,3分)已知点A 、B 的坐标分别为(2,0),(2,4),以A 、B 、P 为顶点的三角形与△ABO 全等,写出一个符合条件的点P 的坐标: .【分析】由题意在平面直角坐标系中标出点A 、点B ,要使以A 、B 、P 为顶点的三角形与△ABO 全等,因AB 是公共边,所以∠PBA 或∠PAB 为直角,且PA 或PB 等于2,由此可标出P 1(4,0),再由对称、翻折等图形的变化可求得满足条件的点P 有4个.【答案】(4,0);(4,4);(0,4);(0,0)(只要写出一个即可)【涉及知识点】平面直角坐标系 全等三角形的判定【点评】将全等三角形的判定置于平面直角坐标系中,只要画出图形,根据全等三角形的判定,确定其它的边的位置及大小,即可很方便地求出其坐标.【推荐指数】★★★★★15.(2010江苏泰州,15,3分)一个均匀的正方体各面上分别标有数字1、2、3、4、5、6,这个正方体的表面展开图如图所示.抛掷这个正方体,则朝上一面所标数字恰好等于朝下一面所标数字的3倍的概率是 .【分析】由正方体的展开图可知:1与3相对;2与6相对;4与5相对.这样抛掷这个正方体,点数朝上共有6种等可能的结果,其中朝上一面是6或3时恰好等于朝下一面所标数字的3倍,所以其概率是26即13. 【答案】13【涉及知识点】求简单事件发生的概率.【点评】简单的一步试验事件发生的概率等于事件包含的结果数k 除以所有等可能出现的结果数n ,k P n=.本题就是用这个公式得出方程从而求出n 的值.概率是研究随机现象规律的学科,是新课程增加的内容之一,在中考中作为重要的考点.近年来,概率题不只以“投骰子”和 “扑克牌”为背景,更多的是以生活实际、游戏和新课程核心内容为背景,成为中考试题中一道亮丽的风景..【推荐指数】★★★★★16.(2010江苏泰州,16,3分)如图在68⨯的网格图(每个小正方形的边长均为1个单位长度)中,⊙A 的半径为2个单位长度,⊙B 的半径为1个单位长度,要使运动的⊙B 与静止的⊙A 内切,应将⊙B 由图示位置向左平移 个单位长度.【分析】由图形可直观地得到⊙B 应向左平移4个或6个单位长度,即可与⊙A 内切.【答案】4或6【涉及知识点】两圆内切的概念【点评】注意⊙B 向左移动与⊙A 慢慢靠近再渐渐远去的过程,就不会出现漏解的情况.【推荐指数】★★★17. (2010江苏泰州,17,3分)观察等式:①4219⨯=-,②64125⨯=-,③86149⨯=-…按照这种规律写出第n 个等式: .【分析】先看等式左边,①式是32-1,②式是52-1,③式是72-1…所以第n 个等式左边应是()2211n +-;再看等式右边,①式是24⨯,②式是46⨯,③式是68⨯,所以第n 个等式右边应是2(22)n n +.【答案】())22(21122+=-+n n n 【涉及知识点】规律归纳猜想【点评】规律性猜想题,提供的信息是一种规律,但它隐含在题目中,有待挖掘和开发,一般只要注重观察数字(式)变化规律,经归纳便可猜想出结论.如果实在有困难,还可在平面直角坐标系中描点,根据图像猜测其蕴含的规律.【推荐指数】★★★★18.(2010江苏泰州,18,3分)如图⊙O 的半径为1cm ,弦AB 、CD 的长度分别为2,1cm cm ,则弦AC 、BD 所夹的锐角α= .【分析】由题意易得AB 所对的圆心角为90°,CD 所对的圆心角为60°,连结AD ,则锐角α=∠1+∠2,而∠1与∠2分别是CD 和AB 所对的圆周角,所以∠1+∠2=12(90°+60°).【答案】75°【涉及知识点】圆周角的性质【点评】解决圆中角度计算问题关键是掌握圆心角和圆周角之间的关系,利用同弧和等弧之间的关系进行转化.另外,往往添加能构成直径上的圆周角的辅助线,以便利用直径所对的圆周角是直角这个条件进行计算和证明.【推荐指数】★★★三、解答题:(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(2010江苏泰州,19⑴,8分)计算: (1)12)21(30tan 3)21(01+-+︒---;【分析】根据零指数幂与负整指数幂即:a 0=1(a ≠0)、pp a a 1=-(a ≠0)可得1111()212--=⎛⎫- ⎪⎝⎭=-2、0(12)-=1,由特殊锐角三角函数值可知03tan 303=,再化简二次根式2122323=⨯=.【答案】原式=3231233--⨯++=23123--++=13-+.【涉及知识点】实数的混合运算 零指数幂与负整指数幂 特殊锐角三角函数值 二次根式的化简【点评】实数的混合运算首先注意运算顺序,其次运算律的灵活运用,最后是掌握幂的运算性质、特殊锐角三角函数值、二次根式的化简等知识点.【推荐指数】★★★(2010江苏泰州,19⑵,8分)(2))212(112aa a a a a +-+÷--. 【分析】先对括号内的两个分式通分,最简公分母是a (a +2),再做除法,最后做加减.【答案】原式=()21112a a a a a ---÷+=()()()21111a a a a a a +--⋅+-=211a a +-+ =()121a a a +-++=121a a a +--+=11a -+. 【涉及知识点】分式的加减乘除混合运算【点评】分式的混合运算,要牢记运算法则和运算顺序,并能灵活应用,分式的运算结果应是最简分式或整式.这里要强调一下,在进行分式通分后,根据分式加减法法则进行分式的加减运算,是分母不变,把分子相加减,有些同学生容易受解分式方程去分母这一步的影响,同时把分母去掉了,要引起重视,不能相混淆.【推荐指数】★★★★20.(2010江苏泰州,20,8分)已知△ABC ,利用直尺和圆规,根据下列要求作图(保留作图痕迹,不要求写作法),并根据要求填空:(1)作∠ABC 的平分线BD 交AC 于点D ;(2)作线段BD 的垂直平分线交AB 于点E ,交BC 于点F .由⑴、⑵可得:线段EF 与线段BD 的关系为【分析】(1)作∠ABC 的平分线BD 交AC 于点D :①用圆规在BA 、BC 边上分别截取等长的两线段BG 、BH .②分别以点G 、点H 为圆心,以相同半径画弧,两弧交点为O .③连结BO 并延长交AC 于点D .(2)作线段BD 的垂直平分线交AB 于点E ,交BC 于点F :①分别以点A 和点B 为圆心,以大于21AB 的长为半径作弧,两弧相交于点M 和点N ;②作直线MN .分别交AB 于点E ,交BC 于点F .由作图可证得四边形EBFD 是菱形,所以EF 与BD 互相垂直平分.【答案】⑴、⑵题作图如下:由作图可知线段EF 与线段BD 的关系为:互相垂直平分..【涉及知识点】尺规作图作角的平分线作线段的垂直平分线【点评】中考需要掌握的尺规作图部分有如下的要求:①完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线.②利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形.③探索如何过一点、两点和不在同一直线上的三点作圆.④了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明).我们在掌握这些方法的基础上,还应该会解一些新颖的作图题,进一步培养形象思维能力.【推荐指数】★★★★21.(2010江苏泰州,21,8分)学校奖励给王伟和李丽上海世博园门票共两张,其中一张为指定日门票,另一张为普通日门票.班长提出由王伟和李丽分别转动下图的甲、乙两个转盘(转盘甲被二等分、转盘乙被三等分)确定指定日门票的归属,在两个转盘都停止转动后,若指针所指的两个数字之和为偶数,则王伟获得指定日门票;若指针所指的两个数字之和为奇数,则李丽获得指定日门票;若指针指向分隔线,则重新转动.你认为这个方法公平吗?请画树状图或列表,并说明理由.【分析】求两步(或超过两步)事件概率的题目是中考命题的重点,其计算方法有两种,一种列表法,另一种是画树状图法.用利表法或画树状图法计算两步试验的随机事件的概率时,应把两步试验的所有可能的情况表示出来,从而计算随机事件的概率.【答案】根据题意列表(或画树状图)如下:由列表(或树状图)可知:()2163==和为偶数P ,()2163==和为奇数P . 所以这个方法是公平的.【涉及知识点】利用事件发生的概率判断游戏的公平性【点评】判断事件是否公平,要先用树状图或列表法求出双方获胜的概率,看游戏的规则使双方获胜的可能性是否相同,即概率是否相等.这种类型的题目,如果游戏不公平,有时还要求修改游戏规则使游戏变得公平,修改的方法一是看所有可能的结果中,哪些结果占一半【推荐指数】★★★★★22.(2010江苏泰州,22,8分)如图,四边形ABCD 是矩形,∠EDC =∠CAB ,∠DEC =90°.(1)求证:AC ∥DE ;(2)过点B 作BF ⊥AC 于点F ,连结EF ,试判断四边形BCEF 的形状,并说明理由.【分析】(1)要证AC ∥DE ,设法证两个内错角相等,由已知∠EDC =∠CAB ,再由矩形利用两边平行将∠ACD 作为中间量进行转化;(2)可先猜想四边形BCEF 是平行四边形,设法证EF 、BC 与AD 的关系运用EF 、BC 平行且相等可得证.【答案】⑴在矩形ABCD 中,AC ∥DE ,∴∠DCA =∠CAB ,∵∠EDC =∠CAB ,∴∠DCA =∠EDC ,∴AC ∥DE ;⑵四边形BCEF 是平行四边形.理由:由∠DEC =90°,BF ⊥AC ,可得∠AFB =∠DEC =90°,又∠EDC =∠CAB ,AB=CD ,∴△DEC ≌△AFB ,∴DE =AF ,由⑴得AC ∥DE ,∴四边形AFED 是平行四边形,∴AD ∥EF 且AD =EF ,∵在矩形ABCD 中,AD ∥BC 且AD =BC ,∴EF ∥BC 且EF =BC ,∴四边形BCEF 是平行四边形.【涉及知识点】矩形的性质 平行四边形的判定 全等三角形的判定【点评】从中考试卷来看,平行四边形这一节不会有很复杂的证明题,主要考查平行四边形的性质特征及判别方法综合运用. 掌握这部分内容,首先搞清平行四边形与矩形、菱形、 正方形之间的包含关系.注重把握特殊平行四边形与一般平行四边形的异、同点,才能准确地、灵活地运用.【推荐指数】★★★★★23.(2010江苏泰州,23,10分)近期以来,大蒜和绿豆的市场价格离奇攀升,网民戏称为“蒜你狠”、“豆你玩”.以绿豆为例,5月上旬某市绿豆的市场价已达16元/千克.市政府决定采取价格临时干预措施,调进绿豆以平抑市场价格.经市场调研预测,该市每调进100吨绿豆,市场价格就下降1元/千克.为了即能平抑绿豆的市场价格,又要保护豆农的生产积极性,绿豆的市场价格控制在8元/千克到10元/千克之间(含8元/千克和10元/千克).问调进绿豆的吨数应在什么范围内为宜?【分析】理解了“每调进100吨绿豆,市场价格就下降1元/千克”,即“每调进1吨绿豆,市场价格就下降1001元/千克”,并比较容易列不等式组了. 【答案】设调进绿豆x 吨,根据题意,得1681001610.100x x -≥-≤⎧⎪⎪⎨⎪⎪⎩, 解得 600≤x ≤800. 答:调进绿豆的吨数应不少于600吨,并且不超过800吨.【涉及知识点】一元一次不等式组的应用【点评】本例是不等式组在实际生活中的综合运用,侧重考查如何把生活问题转化为数学问题的能力,建立不等式模型,即“数学建模”. 从近两年的中考题来看,一元一次不等式(组)的实际应用题比以前要有所增加,其呈现的方式通常是与方程、一次函数等知识结合来求解.另外还常常辅以图表来说明有关信息,我们要抓住相等或不等的数量关系,结合图表观察、分析、猜想、归纳从而找到解题的最佳途径.【推荐指数】★★★★24.(2010江苏泰州,24,10分)玉树地震后,全国人民慷慨解囊,积极支援玉树人民抗震救灾,他们有的直接捐款,有的捐物.国家民政部、中国红十字会、中华慈善总会及其他基金会分别接收了捐赠,青海省也直接接收了部分捐赠.截至5月14日12时,他们分别接收捐赠(含直接捐款数和捐赠物折款数)的比例见扇形统计图(图①),其中,中华慈善总会和中国红十字会共接收...捐赠约合人民币15.6亿元.请你根据相关信息解决下列问题:(1)其他基金会接收捐赠约占捐赠总数的百分比是 ;(2)全国接收直接捐款数和捐物折款数共计约 亿元;(3)请你补全图②中的条形统计图;(4)据统计,直接捐款数比捐赠物折款数的6倍还多3亿元,那么直接捐款数和捐赠物折款数各多少亿元?【分析】⑴1-33%-33%-13%-17%=4%,故应填4%;⑵因为中华慈善总会和中国红十字会共接收...捐赠约合人民币15.6亿元,而这两家机构点捐赠的百分比为(13%+17%)=30%,所以全国接收的捐款数和捐物折款数为:15.6÷30%=52亿,应填52亿.⑶由13%×52=6.76亿,可知中华慈善总会所受赠款物的条形高度.⑷小题是一道简单的一元一次方程的应用题,只要抓住总接收的捐款数和和捐物折款数为52亿即可列出方程.【答案】⑴4%;⑵52亿;⑶补全图如下:⑷设直接捐款数为x,则捐赠物折款数为:(52-x)依题意得:x=6(52-x)+3解得x=45(亿)(52-x)=52-45=7(亿)答:直接捐款数和捐赠物折款数分别为45亿,7亿元..【涉及知识点】扇形统计图条形统计图【点评】对数据进行整理和分析,要能从统计图中获取信息和数据,并作出合理的判断和预测,有些题目还要求对由数据得到的结论进行合理的质疑.这类题型充分展现了数学的实效性.解决这类题要以生活经验寻求基本的数量关系,要有针对性,要克服光靠图象,不加数学分析的主观臆断.【推荐指数】★★★★★25.(2010江苏泰州,25,10分)庞亮和李强相约周六去登山,庞亮从北坡山脚C处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B 处出发.如图,已知小山北坡的坡度31∶=i ,山坡长为240米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A ?(将山路AB 、AC 看成线段,结果保留根号)【分析】由题意通过作辅助线构造两个共边的直角三角形,再由解直角三角形的知识可求得山坡AB 的长,要使得李强和庞亮同时到达山项,只要将庞亮登到山项的时间算出即可得李强的速度.【答案】过点A 作AD ⊥BC 于点D ,在Rt △ADC 中,由3:1=i 得tan C =3331=∴∠C =30°∴AD =21AC =21×240=120(米) 在Rt △ABD 中,∠B =45°∴AB =2AD =1202(米) 1202÷(240÷24)=1202÷10=122(米/分钟)答:李强以122米/分钟的速度攀登才能和庞亮同时到达山顶A .【涉及知识点】解直角三角形【点评】转化是解直角三解形的关键,解斜三角形一般要通过辅助线把斜三角形转化为几个直角三角形,再解直角三角形.【推荐指数】★★★★★26.(2010江苏泰州,26,10分)保护生态环境,建设绿色社会已经从理念变为人们的行动.某化工厂2009年1 月的利润为200万元.设2009年1 月为第1个月,第x 个月的利润为y 万元.由于排污超标,该厂决定从2009年1 月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y 与x 成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图).⑴分别求该化工厂治污期间及治污改造工程完工后y 与x 之间对应的函数关系式.⑵治污改造工程完工后经过几个月,该厂月利润才能达到2009年1月的水平?⑶当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?【分析】当1≤x ≤5时,图象是反比例函数的图象,设解析式将(1,200)代入即可求其解析式;当x >5时,是一次函数的图象,根据从这时起,该厂每月的利润比前一个月增加20万元,可得一次函数解析式.利润少于100万元要分别从反比例函数和一次函数中求对应的月份.【答案】⑴①当1≤x ≤5时,设k y x =,把(1,200)代入,得200k =,即200y x =;②当5x =时,40y =,所以当x >5时,4020(5)2060y x x =+-=-;⑵当y =200时,20x -60=200,x=13,所以治污改造工程顺利完工后经过13-5=8个月后,该厂利润达到200万元; ⑶对于200y x=,当y =100时,x =2;对于y =20x -60,当y =100时,x =8,所以资金紧张的时间为8-2=6个月.【涉及知识点】反比例函数、一次函数的性质及应用【点评】本题是一道反比例函数及一次函数有关的图象信息题,巧妙地这两个函数结合在一起,考查了同学们对数学知识的实际应用能力.图象信息题的主要特点是已知条件陷臧在给出的图象中,解决此类问题的关键是读懂图象,从图象中找出解题所需要的相关条件,然后正确求解.【推荐指数】★★★★27.(2010江苏泰州,27,12分)如图,二次函数c x y +-=221的图象经过点D ⎪⎭⎫ ⎝⎛-29,3,与x 轴交于A 、B 两点.⑴求c 的值;⑵如图①,设点C 为该二次函数的图象在x 轴上方的一点,直线AC 将四边形ABCD 的面积二等分,试证明线段BD 被直线AC 平分,并求此时直线AC 的函数解析式;⑶设点P 、Q 为该二次函数的图象在x 轴上方的两个动点,试猜想:是否存在这样的点P 、Q ,使△AQP ≌△ABP ?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用)。
江苏省2010年中考数学试题(13份含有答案及解析)-4

江苏省淮安市2010年初中毕业暨中等学校招生文化统一考试数学试题欢迎参加中考,相信你能成功!请先目读以下几点注意事项:1.本卷分为第1卷和第Ⅱ卷两部分,共6页。
满分150分。
考试时闻120分钟。
2.第1卷每小题选出答案后,请用2B铅笔把答题卡上对应题目的答案标号涂黑,如需要改动,请用橡皮擦干净后.再选涂其他答案。
答案答在本试题卷上无效。
3.作答第Ⅱ卷时,用O.5毫米黑色墨水签字笔将答案写在答题卡上的指定位置。
答案答在本试题卷上或规定区域以外无效。
4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚。
5.考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共24分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.(2010江苏淮安,1,3分)-(-2)的相反数是A.2 B.12C.-12D.-2【分析】一个实数a的相反数为-a,所以首先对-(-2)化简为,-(-2)表示-2 的相反数,所以-(-2)=2,故-(-2)的相反数是-2.【答案】D【涉及知识点】相反数的意义【点评】本题属于基础题,主要考查学生对概念的掌握以及多重符号的化简的知识,考查知识点单一,有利于提高本题的信度.【推荐指数】★2.(2010江苏淮安,2,3分)计算32a a 的结果是A.a6B.a5C.2a3D.a【分析】同底数幂的乘法,底数不变指数相加,所以结果为B.【答案】B【涉及知识点】同底数幂的乘法法则【点评】本题属于基础题,主要考查学生对法则的应用,知识点比较单一.【推荐指数】★3.(2010江苏淮安,3,3分)2010年5月27日,上海世博会参观人数达到37.7万人,37.7万用科学记数法表示应为A.0.377×l06 B.3.77×l05C.3.77×l04D.377×103【分析】37.7万可以表示为377000,用a×10n科学记数法表示时,10指数为整数位数减去1,所以377000=3.77×l05.【答案】B【涉及知识点】科学记数法【点评】本题属于基础题,主要考查学生对较大数的科学记数法的表示方法,以及“万”、“亿”等单位与0之间的转化,此类问题一般是比较简单的问题.【推荐指数】★★★★4.(2010江苏淮安,4,3分)在一次信息技术考试中,某兴趣小组8名同学的成绩(单位:分)分别是:7,10,9,8,7,9,9,8,则这组数据的众数是A.7 B.8 C.9 D.10【分析】众数是一组数据中出现次数最多的数据,所以次数据中的众数为9.【答案】C【涉及知识点】众数的概念【点评】本题属于基础题,主要考查学生对概念的掌握,考查知识点单一,有利于提高本题的信度.【推荐指数】★5.(2010江苏淮安,5,3分)若一个多边形的内角和小于其外角和,则这个多边形的边数是A.3 B.4 C.5 D.6【分析】三角形的内角和为180°,四边形的内角和是360°,而且边数越多,内角和越大,而多边形的外角和是360°与边数无关,所以选择A.【答案】A【涉及知识点】多边形的内角和、外角和【点评】本题主要是常见多边形的内角和与外角和的应用,本题比较简单,但是也可以利用不等式的问题解决.【推荐指数】★★6.(2010江苏淮安,6,3分)如图,圆柱的主视图是【分析】主视图是在正面内得到由前向后观察的视图,所以应选择B.【答案】B【涉及知识点】主视图的概念【点评】本题属于基础题,主要考查学生对概念的理解,掌握好正视图概念是解决此问题的关键.【推荐指数】★★7.(2010江苏淮安,7,3分)下面四个数中与11最接近的数是A.2 B.3 C.4 D.5【分析】由于9<11<16,所以11的平方根应在3和4 之间,又因为3.52=12.25,所以11最接近的数为B.【答案】B【涉及知识点】实数的估算【点评】本题主要考察对实数的估算的知识,解决此类问题的步骤是首先确定所在整数的范围,然后再确定两个整数之间的数的平方,进而确定出其范围.【推荐指数】★★8.(2010江苏淮安,8,3分)观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯()1343452343⨯=⨯⨯-⨯⨯……计算:3×(1×2+2×3+3×4+…+99×100)= A .97×98×99 B .98×99×100 C .99×100×101 D .100×101×102 【分析】从材料可以得出1×2,2×3,3×4,……可以用式子表示,即原式=.()()()1113123012234123991001019899100333⎡⎤⨯⨯⨯-⨯⨯+⨯⨯-⨯⨯+⋅⋅⋅⋅⋅⋅+⨯⨯-⨯⨯⎢⎥⎣⎦=123012234123991001019899100⨯⨯-⨯⨯+⨯⨯-⨯⨯+⋅⋅⋅⋅⋅⋅+⨯⨯-⨯⨯=99×100×101,所以选择C. 【答案】C【涉及知识点】材料阅读题【点评】对于材料阅读的问题是中考问题中的常见问题,也属于难度较大的问题,这种问题的规律性比较强,所以找出材料中的规律是解决此类问题的关键. 【推荐指数】★★★★第Ⅱ卷(非选择题 共126分)二、填空题(本大题共有lO 小题,每小题3分,共30分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9. (2010江苏淮安,9,3分)当x= 时,分式13x -与无意义. 【分析】分式无意义的条件是分母为0,所以x -3=0,即x=3. 【答案】x=3【涉及知识点】分是无意义的条件【点评】本题属于基础题,主要考查学生对分式无意义的条件的考察,考查知识点单一. 【推荐指数】★10.(2010江苏淮安,10,3分)已知周长为8的等腰三角形,有一个腰长为3,则最短的一条串位线长为 .【分析】根据等腰三角形的周长和一腰的长,可以求出底边长为5,所以根据三角形中位线的性质,可知较短的中位线是与腰平行的中位线,所以长度为1.5.【答案】1.5【涉及知识点】三角形的中位线和等腰三角形【点评】本题是结合等腰三角形的知识和中位线的性质的问题,三角形的中位线是指连接三角形两边中点的线段,中位线的特征是平行于第三边且等于第三边的一半.【推荐指数】★★11.(2010江苏淮安,11,3分)化简:()()2222x x x+--= .【分析】首先根据完全平方公式可得224444x x x xx++-+-,然后再得88xx=.【答案】8【涉及知识点】分式的约分和完全平方公式【点评】本题属于基础题,主要考查学生的计算能力和对公式的把握程度.【推荐指数】★★12.(2010江苏淮安,12,3分)若一次函数y=2x+l的图象与反比例函数图象的一个交点横坐标为l,则反比例函数关系式为.【分析】由于交点在一次函数上,所以把x=1代入函数的解析式,可得y=3,所以点的坐标为(1,3),设反比例函数的解析式为kyx=,把(1,3)代入可得k=3,所以反比例函数的解析式为3yx =.【答案】B【涉及知识点】反比例函数和一次函数【点评】本题主要考察点在函数图像上的知识和反比例函数解析式的确定方法,属于中等难度的问题.【推荐指数】★★★13.(2010江苏淮安,13,3分)如图,已知点A,B,C在⊙O上,AC∥0B,∠BOC=40°,则∠ABO= .题13图【分析】由于∠BOC和∠BAC都是弧BC所对的圆周角和圆心角,所以可知2∠BAC=∠BOC,所以∠BAC=20°,又因为AC∥0B,所以∠ABO=∠BAC=20°.【答案】20°【涉及知识点】圆周角的性质和平行线的性质【点评】本题是圆周角与平行线知识相结合的问题,属于中等难度的问题,解决此类问题的关键是记忆在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.【推荐指数】★★14.(2010江苏淮安,14,3分)在比例尺为1:200的地图上,测得A,B两地间的图上距离为4.5 cm,则A,B两地间的实际距离为m.【分析】根据图上距离:实际距离=比例尺,所以可以得到A、B间的实际距离=4.5×200=900cm=9m.【答案】9【涉及知识点】相似比【点评】本题属于基础问题,主要考察的是比例尺=图上距离:实际距离.【推荐指数】★15.(2010江苏淮安,15,3分)将半径为5,圆心角为144°的扇形围成一个圈锥的侧面,则这个圆锥的底面半径为.【分析】根据弧长公式可以求出圆锥底面周长为14454180ππ⨯=,所以底面半径为422ππ=. 【答案】2【涉及知识点】弧长公式【点评】本题属于中难度的问题,主要是考察对弧长公式的记忆,以及圆锥和扇形之间的关系.【推荐指数】★★★★16.(2010江苏淮安,16,3分)小明根据方程5x+2=6x -8编写了一道应用题.请你把空缺的部分补充完整.某手工小组计划教师节前做一批手工品赠给老师,如果每人做5个,那么就比计划少2个; .请问手工小组有几人?(设手工小组有x 人)【分析】从题目可以看出总工作量为5x+2,所以该空格可以填写,若每人作6个,就比原计划多8个.【答案】若每人作6个,就比原计划多8个 【涉及知识点】一元一次方程【点评】本题是实际应用型的问题,属于中等难度的问题. 【推荐指数】★ 17.(2010江苏淮安,17,3分)如图,在直角三角形ABC 中,∠ABC=90°,AC=2,BC=3,以点A 为圆心,AB 为半径画弧,交AC 于点D ,则阴影部分的面积是 .题17图 题18图 【分析】首先根据勾股定理求出AB=1,又因为AC=2,所以∠C=30°,然后根据阴影部分的面积等于三角形的面积131322⨯⨯=,减去扇形的面积6013606ππ⋅⋅=,所以阴影部分的面积为326π-. 【答案】326π- 【涉及知识点】扇形的面积公式、勾股定理、直角三角形30°的判定 【点评】本题属于综合型的问题,属于中等偏难的问题. 【推荐指数】★★★★18.(2010江苏淮安,18,3分)已知菱形ABCD 中,对角线AC=8cm ,BD=6cm ,在菱形内部(包括边界)任取一点P ,使△ACP 的面积大于6 cm 2的概率为 . 【分析】根据三角形的面积公式可知当△ACP 面积为6时,高为32cm ,所以当点P 在垂直于BD 距离AC 32cm 的直线上时,所构成的面积均为6,然后再结合相似三角形的面积比,可知概率为:14. 【答案】14【涉及知识点】菱形的性质、相似三角形的性质、概率【点评】本题是概率的知识和相似三角形的知识的综合问题,属于较难的问题. 【推荐指数】★★★三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(2010江苏淮安,19,8分)(1)计算:1913-+--;(2)解不等式组30,2(1) 3.x x x -<⎧⎨+≥+⎩【答案】(1)原式=3+1-3=1.(2)30,.2(1)3x x x -<⎧⎨++⎩①≥②解①得:x <3,解②得:x ≥1,所以不等式的解集为:1≤x <3.【点评】本题主要是考察基本运算和不等式的基本解法,题目一般是不难,最主要是书写格式必须要注意.【推荐指数】★★★ 20.(2010江苏淮安,20,8分)已知:如图,点C 是线段AB 的中点,CE=CD ,∠ACD=∠BCE, 求证:AE=BD .题20图【分析】要证明AE=BD ,所以可以证明△ACE 和△BCD 全等,由于两个三角形中具备AC=BC ,CE=CD 两条边相等,所以只要再具备夹角相等即可. 【答案】证明:∵点C 是线段AB 的中点, ∴AC=BC ,∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE, 即∠ACE=∠BCD,在△ACE和△BCD中,AC BCACE BCD CE CD⎧=⎪∠=∠⎨⎪=⎩,∴△ACE≌△BCD(SAS),∴AE=BD.【涉及知识点】三角形全等的条件【点评】本题是一个简单考察三角形全等条件的证明题,关键是对证明方法的选用.【推荐指数】★★★21.(2010江苏淮安,21,8分)在完全相同的五张卡片上分别写上1,2,3,4,5五个数字后,装入一个不透明的口袋内搅匀.(1)从口袋内任取一张卡片,卡片上数字是偶数的概率是;(2)从口袋内任取一张卡片记下数字后放回.搅匀后再从中任取一张,求两张卡片上数字和为5的概率.【分析】在(1)中由于卡片中共有5个数字,而偶数的个数为2个,所以概率为25;(2)中的问题可以列出树形图,共有25中可能,而其中是5的倍数的有5中情况,所以概率为1 5【答案】解:(1)2 5(2)1 5【涉及知识点】概率【点评】本题主要是对概率的求法,此问题属于中等难度的问题.【推荐指数】★★★★22.(2010江苏淮安,22,8分)有A,B,C,D四个城市,人口和面积如下表所示:A城市B城市C城市D城市人口(万人) 300 150 200 100面积(万平方公里) 20 5 10 4(1)问A城市的人口密度是每平方公里多少人?(2)请用最恰当的统计图......表示这四个城市的人口密度.【分析】人口密度表示单位面积中人口的数量,所以可以求出人口密度.【答案】解:(1)A城市的人口密度:3001520=(万人/万平方公里);B城市的人口密度:150305=(万人/万平方公里);C城市的人口密度:2002010=(万人/万平方公里);D城市的人口密度:100254=(万人/万平方公里).(2)可以用条形统计图表示:【涉及知识点】统计图【点评】统计图表是中考的必考内容,本题主要考察合理选择统计图表的知识,数据的问题在中考试卷中也有越来越综合的趋势.【推荐指数】★★★★23.(2010江苏淮安,23,10分)玉树地震后,有一段公路急需抢修.此项工程原计划由甲工程队独立完成,需要20天.在甲工程队施工4天后,为了加快工程进度,又调来乙工程队与甲工程队共同施工,结果比原计划提前10天,为抗震救灾赢得了宝贵时间.求乙工程队独立完成这项工程需要多少天.【分析】可设乙工程队单独完成这项任务需要x天,则可以根据甲工作4天的工作量与甲乙合作6天的工作量的和为整体1解决.【答案】解:设乙工程队独立完成这项工程需要x天,所以1114()(20104)12020x⨯++⨯--=,解得x=12,经检验x=12是分式方程的解,所以乙工程队独立完成这项工程需12天.【涉及知识点】分式方程的应用【点评】本题属于难度比较大的问题,所考察的知识点比较单一,主要是考察利用分式方程解决实际问题,这种问题是中考中的常见问题,通常是以社会生活中的热点问题为背景.【推荐指数】★★★★24.(2010江苏淮安,24,10分)已知二次函数y=ax2+bx+c的图象与y轴交于点A(O,-6),与x轴的一个交点坐标是B(-2,0).(1)求二次函数的关系式,并写出顶点坐标;(2)将二次函数图象沿x轴向左平移52个单位长度,求所得图象对应的函数关系式.【分析】.【答案】解:(1)【涉及知识点】【点评】.【推荐指数】★★★★★25.(2010江苏淮安,25,10分)某公园有一滑梯,横截面如图薪示,AB表示楼梯,BC 表示平台,CD表示滑道.若点E,F均在线段AD上,四边形BCEF是矩形,且sin∠BAF=23,BF=3米,BC=1米,CD=6米.求:(1) ∠D的度数;(2)线段AE的长.题25图【分析】(1)要求∠D的度数,可以求出CE和CD的长度,进而根据直角三角形30°角的判定方法求出∠D的度数;(2)要求AD的长度,可以根据解直角三角形的正弦值,求出AF,然后再结合勾股定理求出DE,从而求出AD.【答案】解:(1)∵四边形BCEF是矩形,∴∠BFE=∠CEF=90°,CE=BF,BC=FE,∴∠BFA=∠CED=90°,∵CE=BF,BF=3米,∴CE=3米,∵CD=6米,∠CED=90°,∴∠D=30°.(2)∵sin∠BAF=23,∴23 BFAB,∵BF=3米,∴AB=92米,∴22935322AF⎛⎫=-=⎪⎝⎭米,∵CD=6米,∠CED=90°,∠D=30°,∴3 cos302DECD==∴33DE=米,∴AE=9322+米.【涉及知识点】解直角三角形、勾股定理、直角三角形的性质、矩形的性质【点评】本题属于综合性的问题,设计的知识点比较多,属于中等偏难的问题.【推荐指数】★★★★26.(2010江苏淮安,26,10分)(1)观察发现如题26(a)图,若点A,B在直线l同侧,在直线l上找一点P,使AP+BP的值最小.做法如下:作点B关于直线l的对称点B',连接AB',与直线l的交点就是所求的点P 再如题26(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD 上找一点P,使BP+PE的值最小.做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为.题26(a)图题26(b)图(2)实践运用如题26(c)图,已知⊙O的直径CD为4,AD的度数为60°,点B是AD的中点,在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值.题26(c)图题26(d)图(3)拓展延伸如题26(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留作图痕迹,不必写出作法.【分析】(1)由于等边三角形是极其特殊的三角形,所以根据勾股定理求出CE的长度;(2)首先根据材料提供的方法求出P点的位置,然后再结合圆周角等的性质,求出最短的距离;(3)从(1)(2)可以得出,理由轴对称来解决,找B关于AC对称点E,连DE 延长交AC于P即可.【答案】解:(1)3;(2)如图:作点B关于CD的对称点E,则点E正好在圆周上,连接OA、OB、OE,连接AE交CD与一点P,AP+BP最短,因为AD的度数为60°,点B是AD的中点,所以∠AEB=15°,因为B关于CD的对称点E,所以∠BOE=60°,所以△OBE为等边三角形,所以∠OEB=60°,所以∠OEA=45°,又因为OA=OE,所以△OAE为等腰直角三角形,所以AE=22.(3)找B关于AC对称点E,连DE延长交AC于P即可,【涉及知识点】圆周角的性质、勾股定理、对称【点评】本题属于综合性的问题,此类问题设计的知识点比较多,解决起来有点难度.【推荐指数】★★★★★27.(2010江苏淮安,27,12分)红星食品厂独家生产具有地方特色的某种食品,产量y1(万千克)与销售价格x(元/千克)(2≤x≤10)满足函数关系式y1=0.5x+11.经市场调查发现:该食品市场需求量y2(万千克)与销售价格x(元/千克)(2≤x≤10)的关系如图所示.当产量小于或等于市场需求量时,食品将被全部售出;当产量大于市场需求量时,只能售出符合市场需求量的食品,剩余食品由于保质期短将被无条件销毁.(1)求y2与x的函数关系式;(2)当销售价格为多少时,产量等于市场需求量?(3)若该食品每千克的生产成本是2元,试求厂家所得利润W(万元)与销售价格x(元/千克) (2≤x ≤10)之间的函数关系式.题27图【分析】从图像可以看出函数是一次函数,所以可以根据待定系数法求出函数的解析式,然后再根据题意表示出利润和销售价格之间的函数关系.【答案】解:(1)设函数的解析式为y 2=kx+b ,把(2,12)和(10,4)代入函数的解析式可得:212104k b k b ⎧+=⎨+=⎩,解得114k b ⎧=-⎨=⎩,所以函数的解析式为y 2=-x+14.(2)由题意可得:0.5x+11=-x+14,所以x=2,所以当销售价格为2元时,产量等于市场需求量.(3)设当销售单价为x 时,产量为y , 则由题意得:W=(x -2)y=(x -2)(0.5x+11) =0.5x 2+10x -22=()2110722x +-(2≤x ≤10) 【涉及知识点】二次函数、一次函数【点评】本题属于综合性的问题,设计的知识点比较多,此类问题是每年中考问题中的必考点.【推荐指数】★★★★★28.(2010江苏淮安,28,12分)如题28(a)图,在平面直角坐标系中,点A 坐标为(12,0),点B 坐标为(6,8),点C 为OB 的中点,点D 从点O 出发,沿△OAB 的三边按逆时针方向以2个单位长度/秒的速度运动一周.(1)点C 坐标是( , ),当点D 运动8.5秒时所在位置的坐标是( , ); (2)设点D 运动的时间为t 秒,试用含t 的代数式表示△OCD 的面积S,并指出t 为何值 时,S 最大;(3)点E 在线段AB 上以同样速度由点A 向点B 运动,如题28(b)图,若点E 与点D 同时 出发,问在运动5秒钟内,以点D ,A ,E 为顶点的三角形何时与△OCD 相似(只考虑以点A .O 为对应顶点的情况):题28(a)图 题28(b)图【分析】(1)若求点的坐标,可以过该点作x 轴的垂线,所以可以借助于平行线等分线段定理解决,求出D 和C 的坐标;(2)此问题是分类得问题,当点D 在不同的边上时,三角形的面积是不同的,然后根据图形之间的关系求出函数解析式,然后根据求最值的问题解决;(3)与(2)一样,只不过借助于三角形相似来解决.【答案】解:(1)C (3,4)、D (9,4)(2)当D 在OA 上运动时,14242S t t =⨯⨯=(0<t <6); 当D 在AB 上运动时,过点O 作OE ⊥AB ,过点C 作CF ⊥AB ,垂足分别为E 和F ,过D 作DM ⊥OA ,过B 作BN ⊥OA ,垂足分别为M 和N ,如图:设D 点运动的时间为t 秒,所以DA=2t -12,BD=22-2t , 又因为C 为OB 的中点, 所以BF 为△BOE 的中位线, 所以12CF OE =, 又因为11822AB OE OA ⋅=⨯, 所以485OE =,所以245CF =, 因为BN ⊥OA ,DM ⊥OA , 所以△ADM ∽△ABN , 所以212108t DM-=,所以8485t DM -=, 又因为△△△△BCD OCDOAB OAD SS S S =--,所以△1184812412812(222)22525OCD t S t -=⨯⨯-⨯⨯-⨯-⨯, 即△2426455OCD t S =-+(6≤t <11), 所以当t=6时,△OCD 面积最大,为△2462642455OCD S ⨯=-+=; 当D 在OB 上运动时,O 、C 、D 在同一直线上,S=0(11≤t ≤16). (3)设当运动t 秒时,△OCD ∽△ADE ,则O CO DA DA E=,即521222tt t=-,所以t=3.5;设当运动t 秒时,△OCD ∽△AED ,则O C O DA E A D=,即522122t t t =-,所以225300t t +-=,所以152654t -+=,252654t --=(舍去),所以当t 为3.5秒或52654-+秒时两三角形相似.【涉及知识点】一次函数的最值、平面直角坐标系、相似三角形【点评】本题是综合性比较强的问题,它巧妙的运用运动的观点,把相似三角形和平面直角坐标系以及一次函数等知识结合起来,属于难度较大的问题.【推荐指数】★★★★★。
2010年南通市中考数学试卷及答案

2010年江苏省南通市中考数学试卷一、选择题(共10小题每小题3分满分30分)1.(3分)﹣4的倒数是()A.B.﹣4 C.4 D.﹣2.(3分)9的算术平方根是()A.3 B.﹣3 C.81 D.﹣813.(3分)(2010•南通)用科学记数法表示数0.031其结果是()A.3.1×102B.3.1×10﹣2C.0.31×10﹣1 D.31×1034.(3分)(2010•南通)若使二次根式在实数范围内有意义则x的取值范围是()A.x≥2 B.x>2 C.x<2 D.x≤25.(3分)(2010•南通)如图⊙O的直径AB=4点C在⊙O上∠ABC=30°则AC的长是()A.1 B.C.D.26.(3分)(2010•南通)某纺织厂从10万件同类产品中随机抽取了100件进行质检发现其中有5件不合格那么估计该厂这10万件产品中合格品约为()A.9.5万件B.9万件C.9500件D.5000件7.(3分)(2010•南通)关于x的方程mx﹣1=2x的解为正实数则m的取值范围是()A.m≥2 B.m≤2 C.m>2 D.m<28.(3分)(2010•南通)如图在菱形ABCD中AB=5∠BCD=120°则对角线AC等于()A.20 B.15 C.10 D.59.(3分)(2010•南通)如图已知▱ABCD的对角线BD=4cm将▱ABCD绕其对称中心O 旋转180°则点D所转过的路径长为()A.4πcmB.3πcm C.2πcm D.πcm10.(3分)(2010•南通)在平面直角坐标系xOy中已知点P(22)点Q在y轴上△PQO 是等腰三角形则满足条件的点Q共有()A.5个B.4个C.3个D.2个二、填空题(共8小题每小题3分满分24分)11.(3分)(2010•南通)如果正比例函数y=kx的图象经过点(1﹣2)那么k的值等于.12.(3分)(2010•南通)若△ABC∽△DEF△ABC与△DEF的相似比为1:2则△ABC 与△DEF的周长比为.13.(3分)(2010•南通)分解因式:ax2﹣ax=.14.(3分)(2010•南通)质地均匀的正方体骰子其六个面上分别刻有1、2、3、4、5、6六个数字投掷这个骰子一次则向上一面的数字是偶数的概率为.15.(3分)(2010•南通)在平面直角坐标系中已知线段MN的两个端点的坐标分别是M (﹣4﹣1)、N(01)将线段MN平移后得到线段M′N′(点M、N分别平移到点M′、N′的位置)若点M′的坐标为(﹣22)则点N′的坐标为.16.(3分)(2010•南通)如图小章利用一张左、右两边已经破损的长方形纸片ABCD做折纸游戏他将纸片沿EF折叠后D、C两点分别落在D′、C′的位置并利用量角器量得∠EFB=65°则∠AED′等于度.17.(3分)(2010•南通)如图正方形ABCD的边长为4点M在边DC上M、N两点关于对角线AC对称若DM=1则tan∠ADN=.18.(3分)(2010•南通)设x1、x2是一元二次方程x2+4x﹣3=0的两个根2x1(x22+5x2﹣3)+a=2则a=.三、解答题(共10小题满分96分)19.(10分)(2010•南通)计算:(1)(﹣4)2+(π﹣3)0﹣23﹣|﹣5|;(2)÷(1﹣)20.(8分)(2010•南通)如图⊙O的直径AB垂直弦CD于M且M是半径OB的中点CD=6cm求直径AB的长.21.(9分)(2010•南通)如图直线y=x+m与双曲线y=相交于A(21)、B两点.(1)求m及k的值;(2)不解关于x、y的方程组直接写出点B的坐标;(3)直线y=﹣2x+4m经过点B吗?请说明理由.22.(8分)某地区随机抽取若干名八年级学生进行地理会考模拟测试并对测试成绩(x分)进行了统计具体统计结果见下表:分数段90<x≤100 80<x≤90 70<x≤80 60<x≤70 x≤60人数1200 1461 642 480 217(1)填空:①本次抽样调查共测试了名学生;②参加地理会考模拟测试的学生成绩的中位数落在分数段上;③若用扇形统计图表示统计结果则分数段为90<x≤100的人数所对应扇形的圆心角的度数为;(2)该地区确定地理会考成绩60分以上(含60分)的为合格要求合格率不低于97%.现已知本次测试得60分的学生有117人通过计算说明本次地理会考模拟测试的合格率是否达到要求?23.(9分)(2010•南通)光明中学九年级(1)班开展数学实践活动小李沿着东西方向的公路以50m/min的速度向正东方向行走在A处测得建筑物C在北偏东60°方向上20min 后他走到B处测得建筑物C在北偏西45°方向上求建筑物C到公路AB的距离.(已知≈1.732)24.(8分)(2010•南通)(1)将一批重490吨的货物分配给甲、乙两船运输.现甲、乙两船已分别运走其任务数的、在已运走的货物中甲船比乙船多运30吨.求分配给甲、乙两船的任务数各多少吨?(2)自编一道应用题要求如下:①是路程应用题.三个数据100必须全部用到不添加其他数据.②只要编题不必解答.25.(8分)(2010•南通)如图已知:点B、F、C、E在一条直线上FB=CE AC=DF.能否由上面的已知条件证明AB∥ED?如果能请给出证明;如果不能请从下列三个条件中选择一个合适的条件添加到已知条件中使AB∥ED成立并给出证明.供选择的三个条件(请从其中选择一个):①AB=ED;②BC=EF;③∠ACB=∠DFE.26.(10分)(2010•南通)小沈准备给小陈打电话由于保管不善电话本上的小陈手机号码中有两个数字已模糊不清.如果用x、y表示这两个看不清的数字那么小陈的手机号码为139x370y580(手机号码由11个数字组成)小沈记得这11个数字之和是20的整数倍.(1)求x+y的值;(2)求小沈一次拨对小陈手机号码的概率.27.(12分)(2010•南通)如图在矩形ABCD中AB=m(m是大于0的常数)BC=8E 为线段BC上的动点(不与B、C重合).连接DE作EF⊥DE EF与射线BA交于点F设CE=x BF=y.(1)求y关于x的函数关系式;(2)若m=8求x为何值时y的值最大最大值是多少?(3)若y=要使△DEF为等腰三角形m的值应为多少?28.(14分)(2010•南通)已知抛物线y=ax2+bx+c经过A(﹣43)、B(20)两点当x=3和x=﹣3时这条抛物线上对应点的纵坐标相等.经过点C(0﹣2)的直线l与x轴平行O 为坐标原点.(1)求直线AB和这条抛物线的解析式;(2)以A为圆心AO为半径的圆记为⊙A判断直线l与⊙A的位置关系并说明理由;(3)设直线AB上的点D的横坐标为﹣1P(m n)是抛物线y=ax2+bx+c上的动点当△PDO 的周长最小时求四边形CODP的面积.2010年江苏省南通市中考数学试卷参考答案与试题解析一、选择题(共10小题每小题3分满分30分)1.(3分)【考点】倒数.【分析】根据倒数的定义可知﹣4的倒数是﹣.【解答】解:因为﹣4×(﹣)=1所以﹣4的倒数是﹣.故选D.【点评】主要考查了倒数的定义:若两个数的乘积是1我们就称这两个数互为倒数.要求掌握并熟练运用.2.(3分)【考点】算术平方根.【分析】根据算术平方根的定义:一个非负数的正的平方根即为这个数的算术平方根.所以结果必须为正数由此即可求出9的算术平方根.【解答】解:∵32=9∴9的算术平方根是3.故选:A.【点评】此题主要考查了算术平方根的定义易错点正确区别算术平方根与平方根的定义.3.(3分)【考点】科学记数法—表示较小的数.【分析】用科学记数法将一个绝对值小于1的数表示成a×10的n次幂的形式其中1≤|a|<10n是一个负整数n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).【解答】解:0.031=3.1×10﹣2.故选B.【点评】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时n为正整数n等于原数的整数位数减1;当原数的绝对值<1时n为负整数n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).4.(3分)【考点】二次根式有意义的条件.【分析】根据二次根式的定义可知被开方数必须为非负数即可求解.【解答】解:根据题意得:x﹣2≥0求得x≥2.故选:A.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数否则二次根式无意义.5.(3分)【考点】圆周角定理;含30度角的直角三角形.【分析】先根据圆周角定理证得△ABC是直角三角形然后根据直角三角形的性质求出AC 的长.【解答】解:∵AB是⊙O的直径∴∠ACB=90°;Rt△ABC中∠ABC=30°AB=4;∴AC=AB=2.故选D.【点评】本题考查的是圆周角定理的推论和直角三角形的性质.6.(3分)【考点】用样本估计总体.【分析】由于100件中进行质检发现其中有5件不合格那么合格率可以计算出来然后利用样本的不合格率估计总体的不合格率就可以计算出10万件中的不合格品产品数进而求得合格品数.【解答】解:∵100件中进行质检发现其中有5件不合格∴合格率为(100﹣5)÷100=95%∴10万件同类产品中合格品约为100000×95%=95000=9.5万件.故选A.【点评】本题和实际生活结合比较紧密生产中遇到的估算产量问题通常采用样本估计总体的方法.7.(3分)【考点】解一元一次不等式;一元一次方程的解.【分析】根据题意可得x>0将x化成关于m的一元一次方程然后根据x的取值范围即可求出m的取值范围.【解答】解:由mx﹣1=2x移项、合并得(m﹣2)x=1∴x=.∵方程mx﹣1=2x的解为正实数∴>0解得m>2.故选C.【点评】此题考查的是一元一次方程的解法将x用含m的代数式来表示根据x的取值范围可求出m的取值范围.8.(3分)【考点】菱形的性质;等边三角形的判定与性质.【分析】根据菱形的性质及已知可得△ABC为等边三角形从而得到AC=AB.【解答】解:∵AB=BC∠B+∠BCD=180°∠BCD=120°∴∠B=60°∴△ABC为等边三角形∴AC=AB=5故选D.【点评】本题考查了菱形的性质和等边三角形的判定.9.(3分)【考点】弧长的计算;平行四边形的性质.【分析】点D所转过的路径长是一段弧是一段圆心角为180°半径为OD的弧故根据弧长公式计算即可.【解答】解:BD=4∴OD=2∴点D所转过的路径长==2π.故选C.【点评】本题主要考查了弧长公式:l=.10.(3分)【考点】等腰三角形的判定;坐标与图形性质.【分析】根据题意画出图形由等腰三角形的判定找出满足条件的Q点选择正确答案.【解答】解:如上图:满足条件的点Q共有(02)(02)(0﹣2)(04).故选B.【点评】本题考查了等腰三角形的判定及坐标与图形的性质;利用等腰三角形的判定来解决特殊的问题其关键是根据题意画出符合实际条件的图形再利用数学知识来求解.二、填空题(共8小题每小题3分满分24分)11.(3分)【考点】待定系数法求正比例函数解析式.【分析】把点的坐标代入函数解析式就可以求出k的值.【解答】解:∵图象经过点(1﹣2)∴1×k=﹣2解得:k=﹣2.故答案为:﹣2.【点评】本题主要考查函数图象经过点的意义经过点说明点的坐标满足函数解析式.12.(3分)【考点】相似三角形的性质.【分析】根据相似三角形的周长的比等于相似比得出.【解答】解:∵△ABC∽△DEF△ABC与△DEF的相似比为1:2∴△ABC与△DEF的周长比为1:2.故答案为:1:2.【点评】本题主要考查了相似三角形的性质:相似三角形(多边形)的周长的比等于相似比.13.(3分)【考点】因式分解-提公因式法.【分析】提取公因式ax然后整理即可.【解答】解:ax2﹣ax=ax(x﹣1).【点评】本题主要考查提公因式法分解因式项本身就是公因式的提取公因式后要注意剩下1或﹣1不要漏项.14.(3分)【考点】概率公式.【分析】由质地均匀的正方体骰子其六个面上分别刻有1、2、3、4、5、6六个数字投掷这个骰子一次则向上一面的数字是偶数的有3种情况直接利用概率公式求解即可求得答案.【解答】解:∵质地均匀的正方体骰子其六个面上分别刻有1、2、3、4、5、6六个数字投掷这个骰子一次则向上一面的数字是偶数的有3种情况∴投掷这个骰子一次则向上一面的数字是偶数的概率为:=.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.15.(3分)【考点】坐标与图形变化-平移.【分析】比较M(﹣4﹣1)与M′(﹣22)的横坐标、纵坐标可知平移后横坐标加2纵坐标加3由于点M、N平移规律相同坐标变化也相同即可得N′的坐标.【解答】解:由于图形平移过程中对应点的平移规律相同由点M到点M′可知点的横坐标加2纵坐标加3故点N′的坐标为(0+21+3)即(24).故答案填:(24).【点评】本题考查图形的平移变换关键是要懂得左右平移点的纵坐标不变而上下平移时点的横坐标不变平移变换是中考的常考点.比较对应点的坐标变化寻找变化规律并把变化规律运用到其它对应点上.16.(3分)【考点】平行线的性质;翻折变换(折叠问题).【分析】先根据平行线的性质求出∠DEF的度数再根据图形反折变换及平角的定义即可得出结论.【解答】解:∵AD∥BC∠EFB=65°∴∠DEF=∠EFB=65°∵将纸片沿EF折叠后D、C两点分别落在D′、C′的位置∴∠D′EF=∠DEF=65°∴∠AED′=180°﹣(∠DEF+∠D′EF)=180°﹣130°=50°.故答案为:50.【点评】本题考查的是平行线的性质及折叠的性质熟知图形反折不变性的性质是解答此题的关键.17.(3分)【考点】正方形的性质;轴对称的性质;锐角三角函数的定义.【分析】M、N两点关于对角线AC对称所以CN=CM进而求出CN的长度.再利用∠ADN=∠DNC即可求得tan∠ADN.【解答】解:在正方形ABCD中BC=CD=4.∵DM=1∴CM=3∵M、N两点关于对角线AC对称∴CN=CM=3.∵AD∥BC∴∠ADN=∠DNC∵tan=∠DNC==∴tan∠ADN=.故答案为:.【点评】本题综合考查了正方形的性质轴对称的性质以及锐角三角函数的定义.18.(3分)【考点】根与系数的关系.【分析】先根据根与系数的关系求出x1+x2x1•x2的值然后化简所求代数式把x1+x2x1•x2的值整体代入求值即可.【解答】解:根据题意可得x1+x2=﹣=﹣4x1•x2==﹣3又∵2x1(x22+5x2﹣3)+a=2∴2x1x22+10x1x2﹣6x1+a=2﹣6x2+10x1x2﹣6x1+a=2﹣6(x1+x2)+10x1x2+a=2﹣6×(﹣4)+10×(﹣3)+a=2∴a=8.故答案为:8.【点评】本题考查了根与系数的关系一元二次方程的两个根x1、x2具有这样的关系:x1+x2=﹣x1•x2=.三、解答题(共10小题满分96分)19.(10分)【考点】分式的混合运算;绝对值;有理数的乘方;零指数幂.【分析】(1)此题是实数的运算根据实数运算法则计算;(2)此题是分式的计算首先把第一个分式的分子、分母分别因式分解约分从而化简第一个分式再通分进行计算.【解答】解:(1)(﹣4)2+(π﹣3)0﹣23﹣|﹣5|=16+1﹣8﹣5=4;(2)÷(1﹣)=×=.【点评】第一小题考查的是实数的运算分别利用绝对值的意义零指数幂的定义幂的定义等知识解决问题;第二小题考查分式的运算关键是通分合并同类项注意混合运算的运算顺序.20.(8分)【考点】垂径定理;勾股定理.【分析】连接OC根据垂径定理可求CM=DM=4再运用勾股定理可求半径OC则直径AB可求.【解答】解:连接OC∵直径AB⊥CD∴CM=DM=CD=3cm∵M是OB的中点∴OM=由勾股定理得:OC2=OM2+CM2∴∴OC=2cm∴直径AB的长=4cm.【点评】解此类题一般要把半径、弦心距、弦的一半构建在一个直角三角形里运用勾股定理求解.21.(9分)【考点】反比例函数综合题;一次函数的图象.【分析】(1)把点A的坐标分别代入解析式y=x+m与y=即可求出m及k的值;(2)观察直线与双曲线在第三象限内的交点即可得出点B的坐标;(3)把点B的横坐标代入直线的解析式y=﹣2x+4m算出对应的y值然后与点B的纵坐标比较即可得出结果.【解答】解:(1)∵点A(21)在直线y=x+m上∴1=2+m∴m=﹣1;∵点A(21)在双曲线y=上∴k=2×1=2.(2)观察图象可知直线与双曲线在第三象限内交于点(﹣1﹣2)∴点B的坐标为(﹣1﹣2);(3)∵m=﹣1∴直线y=﹣2x+4m即直线y=﹣2x﹣4当x=﹣1时y=﹣2×(﹣1)﹣4=﹣2∴直线y=﹣2x+4m经过点B.【点评】本题主要考查了利用待定系数法求函数的解析式利用函数图象写出点的坐标及判断一个点在函数图象上的方法还体现了数形结合的思想.22.(8分)【考点】频数(率)分布表;用样本估计总体;中位数.【分析】(1)①把所有的人数加起来即可;②根据中位数的定义解答③算出这个分数段人数所占的百分比再乘以360°即可;(2)求出该地区确定地理会考成绩60分以上(含60分)的人数再除以总人数求出百分比与97%比较大于97%时为合格小于97%时为不合格.【解答】解:(1)①1200+1461+642+480+217=4000(人);②学生的成绩已按大小顺序排列第2000和第2001个数的平均数是中位数即落在80<x≤90分数段内;③1200÷4000×100%×360°=108°;故填4000;80<x≤90;108°.(2)∵(1200+1461+642+480+117)÷4000×100%=97.5%>97%∴本次地理会考模拟测试的合格率达到要求.【点评】本题考查读频数分布表获取信息的能力.同时考查中位数的求法:给定n个数据按从小到大排序如果n为奇数位于中间的那个数就是中位数;如果n为偶数位于中间两个数的平均数就是中位数.任何一组数据都一定存在中位数的但中位数不一定是这组数据量的数;以及圆心角的计算方法.23.(9分)【考点】解直角三角形的应用-方向角问题.【分析】作CD⊥AB于D构造出Rt△ACD与Rt△BCD求出AB的长度.根据平行线的性质求出三角形各角之间的关系利用特殊角的三角函数值求解.【解答】解:作CD⊥AB于D.设AD=x则BD=50×20﹣x=1000﹣x.∵∠EAC=60°∴∠CAB=90°﹣60°=30°.在Rt△BCD中∵∠FBC=45°∴∠CBD=∠BCD=45°∴CD=DB=1000﹣x.在Rt△ACD中∵∠CAB=30°∴CD=tan30°•AD即DB=CD=tan30°•AD=1000﹣x=x解得:x≈633.98∴CD=1000﹣633.98=366.02.答:建筑物C到公路AB的距离为366.02m.【点评】此题考查的是直角三角形的性质解答此题的关键是构造出两个特殊角度的直角三角形再利用特殊角的三角函数值解答.24.(8分)【考点】二元一次方程组的应用.【分析】(1)先设分配给甲、乙两船的任务数分别是x吨和y吨根据题意找出等量关系列方程组即可求解;(2)可设计为行程问题中的相遇问题.【解答】(1)解:设分配给甲、乙两船的任务数分别是x吨和y吨根据题意得解之得.答:分配给甲、乙两船的任务数分别是210吨和280吨.(2)甲、乙两人骑自行车从两地同时出发相向而行.甲走了全程的乙走了全程的这时两人相距100公里问全程多少公里?【点评】解题关键是要读懂题目的意思根据题目给出的条件找出合适的等量关系列出方程组再求解.在进行编题时要熟知行程问题中的各种类型才容易选取合适的类型编题.25.(8分)【考点】全等三角形的判定与性质.【分析】只有FB=CE AC=DF.不能证明AB∥ED;可添加:①AB=ED可用SSS证明△ABC≌△DEF得到∠B=∠E再根据平行线的判定方法可得AB∥ED;也可添加:③∠ACB=∠DFE可用SAS证明△ABC≌△DEF;但不能添加②这就是SSA不能判定△ABC≌△DEF.【解答】解:不能;可添加:①AB=ED可用SSS证明△ABC≌△DEF;∵FB=CE∴FB+FC=CE+FC即BC=EF在△ABC和△DEF中∴△ABC≌△DEF(SSS)∴∠B=∠E∴AB∥ED.【点评】此题主要考查了全等三角形的判定与性质以及平行线的判定关键是掌握证明三角形全等的方法以及全等三角形的性质定理.26.(10分)【考点】二元一次方程组的应用;概率公式.【分析】(1)设这11个数字之和是20的a倍先根据题意列出x+y和a之间的等量关系再根据电话号码的数字最大数是9和最小数是0得到0≤x+y≤18解不等式根据a是整数即可求解;(2)利用电话号码每个数位上的数是0﹣﹣9共10个数字可求得一次拨对电话的概率.【解答】解:(1)设这11个数字之和是20的a倍根据题意得1+3+9+x+3+7+y+5+8=20a即x+y=20a﹣36∵0≤x+y≤18∴0≤20a﹣36≤18解得1.8≤a≤2.7∵a是整数∴a=2∴x+y=20×2﹣36=4.(2)共有5对数一次打对号码的概率是.【点评】主要考查了不等式组和方程的综合运用以及概率的求法.解题的关键是根据实际意义得到所需要的相等关系和不等关系利用未知数的整数值求解.用到的知识点为:概率=所求情况数与总情况数之比.27.(12分)【考点】二次函数的最值;等腰三角形的判定;勾股定理;矩形的性质.【分析】(1)利用互余关系找角相等证明△BEF∽△CDE根据对应边的比相等求函数关系式;(2)把m的值代入函数关系式再求二次函数的最大值;(3)∵∠DEF=90°只有当DE=EF时△DEF为等腰三角形把条件代入即可.【解答】解:(1)∵EF⊥DE∴∠BEF=90°﹣∠CED=∠CDE又∠B=∠C=90°∴△BEF∽△CDE∴=即=解得y=;(2)由(1)得y=将m=8代入得y=﹣x2+x=﹣(x2﹣8x)=﹣(x﹣4)2+2所以当x=4时y取得最大值为2;(3)∵∠DEF=90°∴只有当DE=EF时△DEF为等腰三角形∴△BEF≌△CDE∴BE=CD=m此时m=8﹣x解方程=得x=6或x=2当x=2时m=6当x=6时m=2.【点评】本题把相似三角形与求二次函数解析式联系起来在解题过程中充分运用相似三角形对应边的比相等建立函数关系式.28.(14分)【考点】二次函数综合题.【分析】(1)用待定系数法即可求出直线AB的解析式;根据“当x=3和x=﹣3时这条抛物线上对应点的纵坐标相等”可知:抛物线的对称轴为y轴然后用待定系数法即可求出抛物线的解析式;(2)根据A点坐标可求出半径OA的长然后判断A到直线l的距离与半径OA的大小关系即可;(3)根据直线AB的解析式可求出D点的坐标即可得到OD的长由于OD的长为定值若△POD的周长最小那么PD+OP的长最小可过P作y轴的平行线交直线l于M;首先证PO=PM此时PD+OP=PD+PM而PD+PM≥DM因此PD+PM最小时应有PD+PM=DM即D、P、M三点共线由此可求得P点的坐标;此时四边形CODP是梯形根据C、O、D、P四点坐标即可求得上下底DP、OC的长而梯形的高为D点横坐标的绝对值由此可求出四边形CODP的面积.【解答】解:(1)设直线AB的解析式为y=kx+b则有:解得;∴直线AB的解析式为y=﹣x+1;由题意知:抛物线的对称轴为y轴则抛物线经过(﹣43)(20)(﹣20)三点;设抛物线的解析式为:y=a(x﹣2)(x+2)则有:3=a(﹣4﹣2)(﹣4+2)a=;∴抛物线的解析式为:y=x2﹣1;(2)易知:A(﹣43)则OA==5;而A到直线l的距离为:3﹣(﹣2)=5;所以⊙A的半径等于圆心A到直线l的距离即直线l与⊙A相切;(3)过D点作DM∥y轴交直线于点M交抛物线于点P则P(m n)M(m﹣2);∴PO2=m2+n2PM2=(n+2)2;∵n=m2﹣1即m2=4n+4;∴PO2=n2+4n+4=(n+2)2即PO2=PM2PO=PM;易知D(﹣1)则OD的长为定值;若△PDO的周长最小则PO+PD的值最小;∵PO+PD=PD+PM≥DM∴PD+PO的最小值为DM即当D、P、M三点共线时PD+PM=PO+PD=DM;此时点P的横坐标为﹣1代入抛物线的解析式可得y=﹣1=﹣即P(﹣1﹣);∴S四边形CPDO=(CO+PD)×|x D|=×(2++)×1=.【点评】此题主要考查了二次函数解析式的确定、直线与圆的位置关系、图形面积的求法等知识还涉及到解析几何中抛物线的相关知识能力要求极高难度很大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年南通市初中毕业、升学考试数 学注 意 事 项考生在答题前请认真阅读本注意事项1.本试卷共6页,满分为150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在试卷及答题卡指定的位置. 3.答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应.....位置..上. 1. -4的倒数是 A .4B .-4C .14D .-142. 9的算术平方根是 A .3B .-3C .81D .-813. 用科学记数法表示0.000031,结果是A .3.1×10-4B .3.1×10-5C .0.31×10-4D .31×10-64. 若36x -在实数范围内有意义,则x 的取值范围是A .2x -≥B .2x ≠-C .2x ≥D .2x ≠5. 如图,⊙O 的直径AB =4,点C 在⊙O 上,∠ABC =30°,则AC 的长是A .1B .2C .3D .26. 某纺织厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么估计该厂这10万件产品中合格品约为 A .9.5万件 B .9万件 C .9500件D .5000件7. 关于x 的方程12mx x -=的解为正实数,则m 的取值范围是A .m ≥2B .m ≤2C .m >2D .m <28. 如图,菱形ABCD 中,AB = 5,∠BCD = 120°,则对角线BACD(第8题)(第5题)·O ABCAC 的长是A .20B .15C .10D .59. 如图,已知□ABCD 的对角线BD =4cm ,将□ABCD 绕其对称中心O 旋转180°,则点D 所转过的路径长为 A .4π cmB .3π cmC .2π cmD .π cm10.在平面直角坐标系xOy 中,已知点P (2,2),点Q 在y 轴上,△PQO 是等腰三角形,则满足条件的点Q 共有 A .5个 B .4个 C .3个 D .2个二、填空题:本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相....应位置...上. 11.如果正比例函数y kx =的图象经过点(1,-2),那么k 的值等于 ▲ .12.若△ABC ∽△DEF , △ABC 与△DEF 的相似比为1∶2,则△ABC 与△DEF 的周长比为 ▲ . 13.分解因式:2ax ax -= ▲ .14.质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字是偶数的概率为 ▲ .15.在平面直角坐标系中,已知线段MN 的两个端点的坐标分别是M (-4,-1)、N (0,1),将线段MN 平移后得到线段M ′N ′(点M 、N 分别平移到点M ′、N ′的位置),若点M ′的坐标为 (-2,2),则点N ′的坐标为 ▲ .16.如图,小章利用一张左、右两边已经破损的长方形纸片ABCD 做折纸游戏,他将纸片沿EF 折叠后,D 、C 两点分别落在D ′、C ′的位 置,并利用量角器量得∠EFB =65°,则∠AED ′等于 ▲ 度. 17.如图,正方形ABCD 的边长为4,点M 在边DC 上,M 、N 两点关于对角线AC 对称,若DM =1,则tan ∠ADN = ▲ . 18.设x 1、x 2 是一元二次方程x 2+4x -3=0的两个根,2x 1(x 22+5x 2-3)+a =2,则a = ▲ .(第9题)ABCDOA (第17题)BDM NC··EDBD ′ A(第16题)F CC′三、解答题:本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.19.(本小题满分10分)计算:(1)203(4)(π3)2|5|-+----;(2)2293(1)69aa a a-÷-++.20.(本小题满分8分)如图,⊙O的直径AB垂直于弦CD,垂足P是OB的中点,CD=6 cm,求直径AB的长.21.(本小题满分9分)如图,直线y x m=+与双曲线kyx=相交于A(2,1)、B两点.(1)求m及k的值;(2)不解关于x、y的方程组,,y x mkyx=+⎧⎪⎨=⎪⎩直接写出点B的坐标;(3)直线24y x m=-+经过点B吗?请说明理由.OBAD C·P(第20题)ABO xy(第21题)2123-3 -1-213-3-1-222.(本小题满分8分)某地区随机抽取若干名八年级学生进行地理会考模拟测试,并对测试成绩(x 分)进行了统计,具体统计结果见下表:某地区八年级地理会考模拟测试成绩统计表分数段 90<x ≤100 80<x ≤90 70<x ≤80 60<x ≤70 x ≤60 人数1200 1461 642 480 217(1)填空:①本次抽样调查共测试了 ▲ 名学生;②参加地理会考模拟测试的学生成绩的中位数落在分数段 ▲ 上;③若用扇形统计图表示统计结果,则分数段为90<x ≤100的人数所对应扇形的圆心角的度数为 ▲ ;(2)该地区确定地理会考成绩60分以上(含60分)的为合格,要求合格率不低于97%.现已知本次测试得60分的学生有117人,通过计算说明本次地理会考模拟测试的合格率是否达到要求?23.(本小题满分9分)光明中学九年级(1)班开展数学实践活动,小李沿着东西方向的公路以50 m/min 的速度向正东方向行走,在A 处测得建筑物C 在北偏东60°方向上,20min 后他走到B 处,测得建筑物C 在北偏西45°方向上,求建筑物C 到公路AB 的距离.(已知3 1.732 )北北 ABC60°45°(第23题)24.(本小题满分8分)(1)将一批重490吨的货物分配给甲、乙两船运输.现甲、乙两船已分别运走其任务数的57、37,在已运走的货物中,甲船比乙船多运30吨.求分配给甲、乙两船的任务数各多少吨? (2)自编一道应用题,要求如下:①是路程应用题.三个数据100,25,15必须全部用到,不添加其他数据. ②只要编题,不必解答.25.(本小题满分8分)如图,已知:点B 、F 、C 、E 在一条直线上,FB =CE ,AC =DF .能否由上面的已知条件证明AB ∥ED ?如果能,请给出证明;如果不能,请从下列三个条件中选择一个..合适的...条件..,添加到已知条件中,使AB ∥ED 成立,并给出证明. 供选择的三个条件(请从其中选择一个): ①AB =ED ; ②BC =EF ; ③∠ACB =∠DFE .26.(本小题满分10分)小沈准备给小陈打电话,由于保管不善,电话本上的小陈手机号码中,有两个数字已模糊不清.如果用x 、y 表示这两个看不清的数字,那么小陈的手机号码为139x 370y 580(手机号码由11个数字组成),小沈记得这11个数字之和是20的整数倍. (1)求x +y 的值;(2)求小沈一次拨对小陈手机号码的概率.ABDEFC(第25题)27.(本小题满分12分)如图,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y . (1)求y 关于x 的函数关系式;(2)若m =8,求x 为何值时,y 的值最大,最大值是多少? (3)若12y m,要使△DEF 为等腰三角形,m 的值应为多少?28.(本小题满分14分)已知抛物线y =ax 2+bx +c 经过A (-4,3)、B (2,0)两点,当x =3和x =-3时,这条抛物线上对应点的纵坐标相等.经过点C (0,-2)的直线l 与 x 轴平行,O 为坐标原点. (1)求直线AB 和这条抛物线的解析式;(2)以A 为圆心,AO 为半径的圆记为⊙A ,判断直线l 与⊙A 的位置关系,并说明理由; (3)设直线AB 上的点D 的横坐标为-1,P (m ,n )是抛物线y =ax 2+bx +c 上的动点,当△PDO 的周长最小时,求四边形CODP 的面积.A BCDEF(第27题)-1 y xO(第28题)12 3 4 -2 -4-3 3 -1-2 -3 -4 4 1 2。