概率图模型
概率图模型的参数学习技巧分享(Ⅲ)

概率图模型的参数学习技巧分享概率图模型是一种用于描述变量之间概率关系的图结构模型。
它在机器学习和人工智能领域有着广泛的应用,如贝叶斯网络、马尔科夫网络等。
在概率图模型中,参数学习是一个至关重要的步骤,它决定了模型的准确度和泛化能力。
本文将分享一些常见的概率图模型参数学习技巧,希望能够为相关领域的研究者和从业者提供一些帮助。
一、极大似然估计(Maximum Likelihood Estimation)极大似然估计是一种常用的参数学习方法,它的思想是通过最大化观测数据的似然函数来估计模型的参数。
在概率图模型中,极大似然估计可以简化为求解一个最优化问题,通过优化算法(如梯度下降、牛顿法等)来求解参数的最优值。
极大似然估计的优点是计算简单,但也存在着过拟合和数据稀疏等问题。
二、贝叶斯估计(Bayesian Estimation)贝叶斯估计是另一种常见的参数学习方法,它基于贝叶斯定理,将参数的不确定性引入到模型中。
贝叶斯估计的核心思想是通过后验概率来估计参数的分布,从而获得更稳健的参数估计结果。
在概率图模型中,贝叶斯估计可以通过马尔科夫链蒙特卡洛(MCMC)等方法来实现,具有较好的鲁棒性和泛化能力。
三、EM算法(Expectation-Maximization Algorithm)EM算法是一种用于概率图模型参数学习的迭代优化算法,它被广泛应用于混合模型、隐马尔可夫模型等。
EM算法的基本思想是通过交替进行“期望步骤”和“最大化步骤”,来逐步优化参数的估计。
在实际应用中,EM算法通常涉及到对数似然函数的优化,需要借助数值计算方法来求解。
四、变分推断(Variational Inference)变分推断是一种近似推断方法,它通过最大化一个变分下界来估计模型的参数。
在概率图模型中,变分推断能够有效地处理复杂的后验分布推断问题,并且具有较好的可解释性和泛化能力。
变分推断的核心挑战在于寻找合适的变分分布和优化算法,以获得高效的参数估计结果。
概率图模型(HMM和CRF)

概率图模型(HMM和CRF)概率图模型是⼀类⽤途来表达相关关系的概率模型。
它以图为表⽰⼯具,最常见的是⽤⼀个结点表⽰⼀个或⼀组随机变量,节点之间的边表⽰变量间的概率相关关系,即“变量相关图”。
根据边的性质不同,概率图模型可⼤致分为两类:第⼀类是使⽤有向⽆环图表⽰变量间的依赖关系,称为有向⽆环图或者贝叶斯⽹;第⼆类是使⽤⽆向图表⽰变量间的相关关系,称为⽆向图或马尔可夫⽹。
隐马尔可夫模型(HMM)是结构最简单的动态贝叶斯⽹,,这是⼀种著名的有向图模型,主要⽤于时序数据建模,在语⾳识别、⾃然语⾔处理等领域有⼴泛应⽤。
HMM的变量可分为两组:⼀组是观测变量,⼀组是状态变量,由于观测变量是隐藏的所以称为隐马尔可夫模型。
马尔可夫链:系统下⼀时刻的状态仅由当前状态决定,不依赖于以往的任何状态。
基于这种依赖关系,所有变量的联合概率分布为:除了结构信息,欲确定⼀个隐马尔可夫模型还需要以下三组参数:状态转移概率:模型在各个状态间转换的概率,通常记为矩阵A输出观测概率:模型根据当前状态获得各个观测值的概率,通常记为矩阵B初始状态概率:模型在初始时刻各状态出现的概率,通常记为Π通过指定上述3种参数λ = {A,B,Π},以及状态空间、观测空间就可以确定⼀个隐马尔可夫模型。
条件随机场(CRF)是⼀种判别式⽆向图模型。
⽣成式模型是直接对联合分布进⾏建模,⽽判别式模型则是对条件分布进⾏建模。
条件随机场试图对多个变量在给定观测值后的条件概率进⾏建模。
具体来说,若令X={x1,x2,...xn}为观测序列,y={y1,y2,...,yn}为标记序列,则条件随机场的⽬标式构建条件概率模型P(y|x)。
与马尔可夫随机场定义联合概率的⽅式类似,条件随机场使⽤势函数和图结构上的团来定义条件概率P(y|x)HMM和CRF的区别1.⼀个式⽣成式模型,⼀个是判别式模型2.⼀个式联合概率分布,⼀个式条件概率3.⼀个是有向图,参数有三种,⽤马尔可夫假设;另⼀个⽆向图,通过状态函数和状态转移特征函数定义条件概率。
概率图模型与因果推断的关系与应用(十)

概率图模型与因果推断的关系与应用概率图模型(Probabilistic Graphical Models, PGM)是一种用图结构表示随机变量之间依赖关系的模型。
它结合了概率论和图论的方法,能够帮助我们从数据中学习出变量之间的概率分布,进行推断和预测。
而因果推断则是一种用来确定变量之间因果关系的方法。
在实际应用中,概率图模型和因果推断经常结合使用,以解决现实世界中的复杂问题。
概率图模型可以分为贝叶斯网(Bayesian Network)和马尔科夫网(Markov Network)两种主要类型。
贝叶斯网是一种有向图模型,其中每个节点表示一个随机变量,边表示变量之间的依赖关系。
马尔科夫网则是一种无向图模型,其中节点表示随机变量,边表示变量之间的相关性。
概率图模型能够有效地表示复杂的概率分布,通过观察数据来学习模型参数,并用于进行概率推断和预测。
与概率图模型相似,因果推断也是一种用来推断变量之间因果关系的方法。
因果推断的目标是确定一个变量对另一个变量产生了什么样的影响,而不仅仅是确定它们之间的相关性。
因果推断的实现方法包括随机化实验、自然实验和因果图等。
其中因果图就是一种用来表示变量之间因果关系的图模型,它可以帮助我们理解变量之间的因果关系,进行因果推断。
概率图模型与因果推断之间有着密切的关系。
在贝叶斯网和马尔科夫网中,节点之间的依赖关系和因果关系通常是相互交织的。
因果推断可以帮助我们根据概率图模型的结构和参数来推断变量之间的因果关系,从而更加准确地进行概率推断和预测。
另一方面,概率图模型也可以用来帮助我们理解变量之间的因果关系,从而指导因果推断的实施。
在实际应用中,概率图模型和因果推断经常结合使用,以解决现实世界中的复杂问题。
例如,在医学领域,我们可以利用概率图模型来建立疾病与症状之间的依赖关系,然后利用因果推断来确定某种治疗方法对于病情的影响。
在金融领域,我们可以利用概率图模型来建立不同金融指标之间的相关性,然后利用因果推断来确定某个因素对于市场的影响。
概率图模型的推理方法详解(Ⅰ)

概率图模型的推理方法详解概率图模型是一种用图来表示随机变量之间依赖关系的数学模型。
它通过图的节点表示随机变量,边表示随机变量之间的依赖关系,可以用来描述各种复杂的现实世界问题。
概率图模型包括了贝叶斯网络和马尔可夫网络两种主要类型,它们都可以用来进行推理,即根据已知的信息来推断未知的变量。
在本文中,将详细介绍概率图模型的推理方法,包括贝叶斯网络和马尔可夫网络的推理算法。
一、概率图模型概率图模型是一种用图来表示随机变量之间依赖关系的数学模型。
它通过图的节点表示随机变量,边表示随机变量之间的依赖关系,可以用来描述各种复杂的现实世界问题。
概率图模型包括了贝叶斯网络和马尔可夫网络两种主要类型。
贝叶斯网络是一种有向图模型,用来表示变量之间的因果关系;马尔可夫网络是一种无向图模型,用来表示变量之间的相关关系。
概率图模型可以用来进行概率推理,即根据已知的信息来推断未知的变量。
二、贝叶斯网络的推理方法在贝叶斯网络中,每个节点表示一个随机变量,每条有向边表示一个因果关系。
贝叶斯网络的推理方法主要分为两种:精确推理和近似推理。
1. 精确推理精确推理是指通过精确的计算来得到准确的推理结果。
常用的精确推理算法包括变量消去算法和团树传播算法。
变量消去算法通过逐步消去变量来计算联合概率分布,但是对于大型网络来说计算复杂度很高。
团树传播算法通过将网络转化为一个树状结构来简化计算,提高了计算效率。
2. 近似推理近似推理是指通过近似的方法来得到推理结果。
常用的近似推理算法包括马尔科夫链蒙特卡洛算法和变分推断算法。
马尔科夫链蒙特卡洛算法通过构建马尔科夫链来进行抽样计算,得到近似的概率分布。
变分推断算法通过将概率分布近似为一个简化的分布来简化计算,得到近似的推理结果。
三、马尔可夫网络的推理方法在马尔可夫网络中,每个节点表示一个随机变量,每条无向边表示两个变量之间的相关关系。
马尔可夫网络的推理方法主要分为两种:精确推理和近似推理。
1. 精确推理精确推理是指通过精确的计算来得到准确的推理结果。
强化学习算法中的概率图模型方法详解(五)

在强化学习算法中,概率图模型是一种常用的方法之一。
概率图模型是指用图来表示随机变量之间的依赖关系的一种模型。
它将变量之间的关系用图的形式表示出来,并通过概率分布来描述这些变量之间的关系。
在强化学习中,概率图模型可以用来表示状态之间的依赖关系,并且可以通过这些关系来进行决策和预测。
在强化学习中,智能体需要根据环境的状态来做出决策,以获得最大的累积奖励。
概率图模型可以帮助智能体对环境的状态进行建模,并且可以通过这些模型来进行决策。
在概率图模型中,有两种常用的表示方法:贝叶斯网络和马尔可夫网络。
贝叶斯网络是一种有向图模型,它用有向边表示变量之间的依赖关系。
在贝叶斯网络中,每个节点表示一个随机变量,有向边表示这个节点依赖于其他节点。
通过这种方式,可以用贝叶斯网络来表示状态之间的依赖关系,并且可以通过这些关系来进行决策和预测。
马尔可夫网络是一种无向图模型,它用无向边表示变量之间的依赖关系。
在马尔可夫网络中,每个节点表示一个随机变量,无向边表示这些节点之间的相关性。
通过这种方式,可以用马尔可夫网络来表示状态之间的依赖关系,并且可以通过这些关系来进行决策和预测。
在强化学习中,概率图模型可以用来表示智能体与环境之间的状态转移关系。
这些状态转移关系可以通过贝叶斯网络或马尔可夫网络来表示,然后可以通过这些网络来进行决策和预测。
通过这种方式,智能体可以更好地理解环境的状态,并且可以更准确地做出决策。
除了表示状态之间的依赖关系,概率图模型还可以用来表示智能体对环境的观测。
在强化学习中,智能体通常不能直接观测环境的状态,而是通过观测来了解环境的状态。
概率图模型可以用来表示智能体观测到的信息,并且可以通过这些信息来进行决策和预测。
通过概率图模型,智能体可以更好地理解环境的状态和观测,并且可以更准确地做出决策。
通过这种方式,概率图模型可以帮助强化学习算法更好地适应不同的环境,并且可以更有效地学习和改进。
总的来说,概率图模型是强化学习算法中一种非常重要的方法。
概率图模型的推理方法详解(六)

概率图模型的推理方法详解概率图模型是一种用于描述随机变量之间关系的工具,它能够有效地表示变量之间的依赖关系,并且可以用于进行推理和预测。
在实际应用中,概率图模型广泛应用于机器学习、人工智能、自然语言处理等领域。
本文将详细介绍概率图模型的推理方法,包括贝叶斯网络和马尔科夫随机场两种主要类型的概率图模型,以及它们的推理算法。
1. 贝叶斯网络贝叶斯网络是一种用有向无环图表示的概率图模型,它描述了变量之间的因果关系。
在贝叶斯网络中,每个节点表示一个随机变量,节点之间的有向边表示了变量之间的依赖关系。
贝叶斯网络中的概率分布可以由条件概率表来表示,每个节点的条件概率表描述了该节点在给定其父节点的取值情况下的概率分布。
在进行推理时,我们常常需要计算给定一些证据的情况下,某些变量的后验概率分布。
这可以通过贝叶斯网络的条件概率分布和贝叶斯定理来实现。
具体来说,给定一些证据变量的取值,我们可以通过贝叶斯网络的条件概率表计算出其他变量的后验概率分布。
除了基本的推理方法外,贝叶斯网络还可以通过变量消除、置信传播等方法进行推理。
其中,变量消除是一种常用的推理算法,它通过对变量进行消除来计算目标变量的概率分布。
置信传播算法则是一种用于处理概率传播的通用算法,可以有效地进行推理和预测。
2. 马尔科夫随机场马尔科夫随机场是一种用无向图表示的概率图模型,它描述了变量之间的联合概率分布。
在马尔科夫随机场中,每个节点表示一个随机变量,边表示了变量之间的依赖关系。
不同于贝叶斯网络的有向图结构,马尔科夫随机场的无向图结构表示了变量之间的无向关系。
在进行推理时,我们常常需要计算给定一些证据的情况下,某些变量的后验概率分布。
这可以通过马尔科夫随机场的联合概率分布和条件随机场来实现。
具体来说,给定一些证据变量的取值,我们可以通过条件随机场计算出其他变量的后验概率分布。
除了基本的推理方法外,马尔科夫随机场还可以通过信念传播算法进行推理。
信念传播算法是一种用于计算概率分布的通用算法,可以有效地进行推理和预测。
概率图模型及其在机器学习中的应用

概率图模型及其在机器学习中的应用机器学习是人工智能领域中的重要分支,它主要研究如何通过大量数据和学习算法构建模型,以实现自动化决策和预测。
在机器学习中,概率图模型是一种重要的工具,它可以帮助我们更好地建模和解决许多实际应用问题,包括推荐系统、自然语言处理、计算机视觉等。
一、什么是概率图模型概率图模型(Probabilistic Graphical Models,PGM)是一种用图形表示变量之间概率依赖关系的数学工具。
它的核心思想是通过变量节点和边来表示随机变量之间的联合概率分布,从而实现“图形化建模”。
概率图模型有两类:有向图模型(Directed Graphical Model,DGM)和无向图模型(Undirected Graphical Model,UGM)。
有向图模型又称贝叶斯网络(Bayesian Network,BN),它是一类有向无环图(DAG),其中结点表示随机变量,边表示变量之间的依赖关系。
无向图模型又称马尔科夫随机场(Markov Random Field,MRF),它是一个无向图,其中结点表示变量,边表示变量之间的关系。
概率图模型的优点在于可以通过图形的方式自然地表示变量之间的依赖关系,更容易理解和解释模型的含义。
而且,概率图模型能够有效地减少模型参数量,提高模型估计的准确性和效率。
二、概率图模型在机器学习中的应用概率图模型在机器学习中的应用非常广泛,下面介绍其中几个应用场景。
1.概率图模型在推荐系统中的应用推荐系统是机器学习中的一个重要研究方向,概率图模型可以帮助我们建立更精确和智能的推荐模型。
以贝叶斯网络为例,它可以用来表示用户-物品之间的依赖关系。
在一个面向物品的模型中,图中的结点表示物品,边表示商品之间的关系。
通过学习用户的历史行为数据,我们可以基于贝叶斯网络进行商品推荐,从而提高推荐准确率。
2.概率图模型在自然语言处理中的应用自然语言处理是人工智能领域中的重要研究方向,它旨在让计算机能够理解和处理人类语言。
概率图模型的推理方法详解(十)

概率图模型的推理方法详解概率图模型是一种用于描述随机变量之间关系的数学工具,它通过图的形式表示变量之间的依赖关系,并利用概率分布来描述这些变量之间的关联。
在概率图模型中,常用的两种图结构是贝叶斯网络和马尔可夫随机场。
而推理方法则是通过已知的观测数据来计算未知变量的后验概率分布,从而进行推断和预测。
一、贝叶斯网络的推理方法贝叶斯网络是一种有向无环图,它由节点和有向边组成,每个节点表示一个随机变量,有向边表示变量之间的依赖关系。
在贝叶斯网络中,推理问题通常包括给定证据条件下计算目标变量的后验概率分布,以及对未观测变量进行预测。
常用的推理方法包括变量消去法、固定证据法和采样法。
变量消去法是一种精确推理方法,它通过对贝叶斯网络进行变量消去来计算目标变量的后验概率分布。
这种方法的优点是计算结果准确,但当网络结构复杂时,计算复杂度会很高。
固定证据法是一种近似推理方法,它通过将已知的证据变量固定,然后对目标变量进行推理。
这种方法的优点是计算速度快,但结果可能不够准确。
采样法是一种随机化推理方法,它通过蒙特卡洛采样来计算目标变量的后验概率分布。
这种方法的优点是可以处理复杂的网络结构,但计算效率较低。
二、马尔可夫随机场的推理方法马尔可夫随机场是一种无向图,它由节点和边组成,每个节点表示一个随机变量,边表示变量之间的依赖关系。
在马尔可夫随机场中,推理问题通常包括给定证据条件下计算目标变量的后验概率分布,以及对未观测变量进行预测。
常用的推理方法包括置信传播法、投影求解法和拉普拉斯近似法。
置信传播法是一种精确推理方法,它通过消息传递算法来计算目标变量的后验概率分布。
这种方法的优点是计算结果准确,但当网络结构复杂时,计算复杂度会很高。
投影求解法是一种近似推理方法,它通过对目标变量进行投影求解来计算后验概率分布。
这种方法的优点是计算速度快,但结果可能不够准确。
拉普拉斯近似法是一种随机化推理方法,它通过拉普拉斯近似来计算目标变量的后验概率分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高分辨率遥感图像处理
高分遥感 数据特点
传统多/高 光谱遥感信 息处理方式 研究目标 研究策略 研究手段
高分辨率遥感数据提供了更加细致的 “图-谱”信息,同时具备亚米级的空 间分辨率以及纳米级的光谱分辨率 一般是单纯从光谱特性或者从图 像特征出发进行分析处理的,并没有 将两者紧密的结合起来 建立一种新的“图-谱”紧耦合的分 析处理理论框架 建立不同尺度“基元”及其“谱”特 征形成的一种空间紧支结构关系
跑道光谱曲线
分层概率图模型关系图
专题要素谱概 率图模型
目标级
基础要素谱谱 概率图模型
体元级
像元谱概率图 模型
像元级
目标元
目标元
目标元是由构成某种专题要素 的不同体元组成,目标元之间 的连线表达了目标之间的关系
体元
体元
体元 体元
体关系
像元 像元 像元 像元 像元
Probability Distribution(3)
Joint probability distribution
Boltzman distribution
Normalization factor
Conditional Independence
It’s a “reachability” problem in graph theory.
Undirected PGM (MRF)
无向图模型(马儿可夫随机域)
Probability Distribution
Queries
Representation
Implementation Interpretation
Conditional Independence
Probability Distribution(1)
Maximal cliques
– The maximal cliques of a graph are the cliques that cannot be extended to include additional nodes without losing the probability of being fully connected. – We restrict ourselves to maximal cliques without loss of generality, as it captures all possible dependencies.
Potential function (local parameterization)
– : potential function on the possible realizations clique of the maximal
Probability Distribution(2)
Maximal cliques
像元
像元 像元
像元
像元
像元
像元
像元
像元之间的连线表示了像 元之间的关系,这种关系 既包括空间关系,又包括 像元的光谱关系。
不同基元之间关系图
贝叶斯基本框架
问题描述 观测
贝叶斯规则
后验概率
观测
结论
(分类或预测)
似然函数
先验概率
第i类
标准化因子
概率图基本理论
节点表示随机变量/状态 缺失的边代表条件独立假设 –图结构表示分解(The graph structure implies the decomposition)
概率分布
Clique
– A clique of a graph is a fully-connected subset of nodes. – Local functions should not be defined on domains of nodes that extend beyond the boundaries of cliques.
构建不同层次、不同尺度的概率图模 型
草坪光谱曲线
跑道光谱曲线
aviris的Moffett Field高光谱图像光谱 (50,27,17波段)的伪彩合成图
机场目标的主要 构成为水泥地跑 道、航站楼和草 坪。
草坪光谱曲线
aviris的Moffett Field高光谱图像光谱 (50,27,17波段)的伪彩合成图
概率图模型
概率图模型是一类用图形模式表达基于概率相关 关系的模型的总称。目前在图像和视频智能信息处理 领域已有应用,基本的概率图模型包括贝叶斯网络、 马尔科夫网络和隐马儿科夫网络。 遥感多/高光谱图象与视频图象的特点有很大的 区别,我们的研究目标就是建立一套适合遥感图象处 理的概率图模型理论。基本构想是用概率图来描述不 同尺度“基元”(像元、体元、目标元等)及其“谱 ”(包括像元谱、基础要素谱和专题要素谱)特征之 间形成的一种空间结构关系。实现“图-谱”的真正 紧耦合,以便对海量遥感数据的快速、高效、准确的 计算分析和解译。
有向概率图(贝叶斯网) 无向图模型(马儿可夫随机域)
Probability Distribution
概率分布
Definition of Joint Probability Distribution Check:
Representation表示
Graphical models represent joint probability distributions more economically, using a set of “local” relationships among variables. 用图模式来表示联合概率分布是经济的,利用了变量之间一组“局部”关系。
Representation
像元
像元
像元 像元
像元 像元
像元
像元
像元
像元
像元
像元 像元
像元
像元
像元 像元
波段3
像元
波段2 波段1
图象 空间
不同波段序列