广东省汕头市2015届高考数学模拟试卷(文科)(12月份)
广东省汕头市南澳中学2015届高考数学二模试卷文(含解析)

广东省汕头市南澳中学2015届高考数学二模试卷(文科)一.选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合M={x|﹣3<x<1,x∈R},N={﹣3,﹣2,﹣1,0,1},则M∩N=()A.{﹣2,﹣1,0,1} B.{﹣3,﹣2,﹣1,0} C.{﹣2,﹣1,0} D.{﹣3,﹣2,﹣1}2.(5分)设z=+i,则|z|=()A.B.C.D.23.(5分)函数的定义域为()A.(﹣∞,2)B.(2,+∞)C.(2,3)∪(3,+∞) D.(2,4)∪(4,+∞)4.(5分)已知α是第二象限角,=()A.B.C.D.5.(5分)执行如图所示的程序框图,若输入n=8,则输出S=()A.B.C.D.6.(5分)已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B. C.3(1﹣3﹣10)D.3(1+3﹣10)7.(5分)设x,y满足约束条件,则z=2x﹣3y的最小值是()A.﹣7 B.﹣6 C.﹣5 D.﹣38.(5分)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3B.100cm3C.92cm3D.84cm39.(5分)设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A.B.C.D.10.(5分)当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是()A.[﹣5,﹣3] B.[﹣6,﹣] C.[﹣6,﹣2] D.[﹣4,﹣3]二.填空题:本大题共3小题,考生作答4小题,每小题5分,满分15分.(一)必做题(11~13题)11.(5分)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100),若低于60分的人数是15人,则该班的学生人数是.12.(5分)已知A(﹣1,1),B(1,2),C(﹣2,﹣1),D(3,4),则向量在方向上的投影为.13.(5分)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()=.(二)选做题(14~15题)考生只能选作一题14.(5分)在平面直角坐标系中,若直线l1:(s为参数)和直线l2:(t为参数)平行,则常数a的值为.15.(几何证明选做题)如图,AB与CD相交于点E,过E作BC的平行线与AD的延长线相交于点P.已知∠A=∠C,PD=2DA=2,则PE=.三、解答题(共6小题,满分80分)16.(13分)在△ABC中,内角A,B,C所对的边分别是a,b,c.已知bsinA=3csinB,a=3,.(Ⅰ)求b的值;(Ⅱ)求的值.17.(13分)有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次,根据年龄将大众评委分为5组,各组的人数如下:组别 A B C D E人数50 100 150 150 50(Ⅰ)为了调查评委对7位歌手的支持状况,现用分层抽样方法从各组中抽取若干评委,其中从B组中抽取了6人.请将其余各组抽取的人数填入下表.组别 A B C D E人数50 100 150 150 50抽取人数 6(Ⅱ)在(Ⅰ)中,若A,B两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,求这2人都支持1号歌手的概率.18.(13分)已知等差数列{a n}的前n项和S n满足S3=0,S5=﹣5,(1)求{a n}的通项公式;(2)求数列{}的前n项和.(13分)如图,四棱锥P﹣ABCD的底面ABCD是边长为2的菱形,∠BAD=60°,已知PB=PD=2,19.PA=.(1)证明:PC⊥BD;(2)若E为PA的中点,求三棱锥E﹣ABC的体积.20.(14分)已知椭圆C:+=1(a>b>0)的左焦点F(﹣1,0),离心率为.(1)求椭圆C的标准方程;(2)设P(1,0),Q(,0),过P的直线l交椭圆C于A,B两点,求的值.21.(14分)已知函数f(x)=x﹣1+(a∈R,e为自然对数的底数).(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(Ⅱ)求函数f(x)的极值;(Ⅲ)当a=1的值时,若直线l:y=kx﹣1与曲线y=f(x)没有公共点,求k的最大值.广东省汕头市南澳中学2015届高考数学二模试卷(文科)参考答案与试题解析一.选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合M={x|﹣3<x<1,x∈R},N={﹣3,﹣2,﹣1,0,1},则M∩N=()A.{﹣2,﹣1,0,1} B.{﹣3,﹣2,﹣1,0} C.{﹣2,﹣1,0} D.{﹣3,﹣2,﹣1}考点:交集及其运算.专题:计算题.分析:找出集合M与N的公共元素,即可求出两集合的交集.解答:解:∵集合M={x|﹣3<x<1,x∈R},N={﹣3,﹣2,﹣1,0,1},∴M∩N={﹣2,﹣1,0}.故选C点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)设z=+i,则|z|=()A.B.C.D.2考点:复数代数形式的乘除运算.专题:计算题;数系的扩充和复数.分析:先求z,再利用求模的公式求出|z|.解答:解:z=+i=+i=.故|z|==.故选B.点评:本题考查复数代数形式的运算,属于容易题.3.(5分)函数的定义域为()A.(﹣∞,2)B.(2,+∞)C.(2,3)∪(3,+∞) D.(2,4)∪(4,+∞)考点:函数的定义域及其求法.专题:函数的性质及应用.分析:根据“让解析式有意义”的原则,对数的真数大于0,分母不等于0,建立不等式,解之即可.解答:解:要使原函数有意义,则,解得:2<x<3,或x>3所以原函数的定义域为(2,3)∪(3,+∞).故选C.点评:本题主要考查了函数的定义域及其求法,求定义域常用的方法就是根据“让解析式有意义”的原则,属于基础题.4.(5分)已知α是第二象限角,=()A.B.C.D.考点:同角三角函数间的基本关系.专题:三角函数的求值.分析:由α为第二象限角,得到cosα小于0,根据sinα的值,利用同角三角函数间的基本关系即可求出cosα的值.解答:解:∵α为第二象限角,且sinα=,∴cosα=﹣=﹣.故选A点评:此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.5.(5分)执行如图所示的程序框图,若输入n=8,则输出S=()A.B.C.D.考点:程序框图.专题:图表型.分析:由已知中的程序框图及已知中输入8,可得:进入循环的条件为i≤8,即i=2,4,6,8,模拟程序的运行结果,即可得到输出的S值.解答:解:当i=2时,S=0+=,i=4;当i=4时,S=+=,i=6;当i=6时,S=+=,i=8;当i=8时,S=+=,i=10;不满足循环的条件i≤8,退出循环,输出S=.故选A.点评:本题考查的知识点是程序框图,在写程序的运行结果时,我们常使用模拟循环的变法,但程序的循环体中变量比较多时,要用表格法对数据进行管理.6.(5分)已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B. C.3(1﹣3﹣10)D.3(1+3﹣10)考点:等比数列的前n项和.专题:计算题;等差数列与等比数列.分析:由已知可知,数列{a n}是以﹣为公比的等比数列,结合已知可求a1,然后代入等比数列的求和公式可求解答:解:∵3a n+1+a n=0∴∴数列{a n}是以﹣为公比的等比数列∵∴a1=4由等比数列的求和公式可得,S10==3(1﹣3﹣10)故选C点评:本题主要考查了等比数列的通项公式及求和公式的简单应用,属于基础试题7.(5分)设x,y满足约束条件,则z=2x﹣3y的最小值是()A.﹣7 B.﹣6 C.﹣5 D.﹣3考点:简单线性规划.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.解答:解:由z=2x﹣3y得y=,作出不等式组对应的平面区域如图(阴影部分ABC):平移直线y=,由图象可知当直线y=,过点C时,直线y=截距最大,此时z最小,由,解得,即C(3,4).代入目标函数z=2x﹣3y,得z=2×3﹣3×4=6﹣12=﹣6.∴目标函数z=2x﹣3y的最小值是﹣6.故选:B.点评:本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.8.(5分)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3B.100cm3C.92cm3D.84cm3考点:由三视图求面积、体积.专题:立体几何.分析:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).据此即可得出体积.解答:解:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).∴该几何体的体积V=6×6×3﹣=100.故选B.点评:由三视图正确恢复原几何体是解题的关键.9.(5分)设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A.B.C.D.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:设|PF2|=x,在直角三角形PF1F2中,依题意可求得|PF1|与|F1F2|,利用椭圆离心率的性质即可求得答案.解答:解:|PF2|=x,∵PF2⊥F1F2,∠PF1F2=30°,∴|PF1|=2x,|F1F2|=x,又|PF1|+|PF2|=2a,|F1F2|=2c∴2a=3x,2c=x,∴C的离心率为:e==.故选D.点评:本题考查椭圆的简单性质,求得|PF1|与|PF2|及|F1F2|是关键,考查理解与应用能力,属于中档题.10.(5分)当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是()A.[﹣5,﹣3] B.[﹣6,﹣] C.[﹣6,﹣2] D.[﹣4,﹣3]考点:函数恒成立问题;其他不等式的解法.专题:综合题;导数的综合应用;不等式的解法及应用.分析:分x=0,0<x≤1,﹣2≤x<0三种情况进行讨论,分离出参数a后转化为函数求最值即可,利用导数即可求得函数最值,注意最后要对a取交集.解答:解:当x=0时,不等式ax3﹣x2+4x+3≥0对任意a∈R恒成立;当0<x≤1时,ax3﹣x2+4x+3≥0可化为a≥,令f(x)=,则f′(x)==﹣(*),当0<x≤1时,f′(x)>0,f(x)在(0,1]上单调递增,f(x)max=f(1)=﹣6,∴a≥﹣6;当﹣2≤x<0时,ax3﹣x2+4x+3≥0可化为a≤,由(*)式可知,当﹣2≤x<﹣1时,f′(x)<0,f(x)单调递减,当﹣1<x<0时,f′(x)>0,f(x)单调递增,f(x)min=f(﹣1)=﹣2,∴a≤﹣2;综上所述,实数a的取值范围是﹣6≤a≤﹣2,即实数a的取值范围是[﹣6,﹣2].故选:C.点评:本题考查利用导数研究函数的最值,考查转化思想、分类与整合思想,按照自变量讨论,最后要对参数范围取交集;若按照参数讨论则取并集.二.填空题:本大题共3小题,考生作答4小题,每小题5分,满分15分.(一)必做题(11~13题)11.(5分)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100),若低于60分的人数是15人,则该班的学生人数是50.考点:频率分布直方图.专题:概率与统计.分析:由已知中的频率分布直方图,我们可以求出成绩低于60分的频率,结合已知中的低于60分的人数是15人,结合频数=频率×总体容量,即可得到总体容量.解答:解:∵成绩低于60分有第一、二组数据,在频率分布直方图中,对应矩形的高分别为0.005,0.01,每组数据的组距为20则成绩低于60分的频率P=(0.005+0.010)×20=0.3,又∵低于60分的人数是15人,则该班的学生人数是=50.故答案为:50点评:本题考查的知识点是频率分布直方图,结合已知中的频率分布直方图,结合频率=矩形的高×组距,求出满足条件的事件发生的频率是解答本题的关键.12.(5分)已知A(﹣1,1),B(1,2),C(﹣2,﹣1),D(3,4),则向量在方向上的投影为.考点:平面向量数量积的含义与物理意义;平面向量数量积的运算.专题:计算题;平面向量及应用.分析:根据点的坐标,分别算出=(5,5)、=(2,1),从而算出=15且||=5.再利用向量投影的公式加以计算,即可得到向量在方向上的投影的值.解答:解:∵C(﹣2,﹣1),D(3,4),∴=﹣=(5,5),同理可得=﹣=(2,1),∴=5×2+5×1=15,==5设、的夹角为α,则向量在方向上的投影为||cosα===故答案为:点评:本题给出A、B、C、D各点的坐标,求向量在方向上的投影.着重考查了平面向量的坐标运算、数量积的公式及其运算性质和向量投影的概念等知识,属于中档题.13.(5分)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()=1.考点:函数的值.专题:计算题.分析:由函数的周期性f(x+2)=f(x),将求f()的值转化成求f()的值.解答:解:∵f(x)是定义在R上的周期为2的函数,∴=1.故答案为:1.点评:本题属于容易题,是考查函数周期性的简单考查,学生在计算时只要计算正确,往往都能把握住,在2015届高考中,属于“送分题”.(二)选做题(14~15题)考生只能选作一题14.(5分)在平面直角坐标系中,若直线l1:(s为参数)和直线l2:(t为参数)平行,则常数a的值为4.考点:直线的参数方程;参数方程化成普通方程.专题:坐标系和参数方程.分析:化两直线的参数方程为普通方程,求出它们的斜率,由斜率相等验证截距不等得答案.解答:解:直线l1的参数方程为(s为参数),消去s得普通方程为x﹣2y﹣1=0,直线l2的参数方程为(t为参数),消去t得普通方程为2x﹣ay﹣a=0,x﹣2y﹣1=0的斜率为k1=,2x﹣ay﹣a=0的斜率k2=,∵l1∥l2,∴,解得:a=4.验证a=4时两直线在y轴上的截距不等.故答案为:4.点评:本题考查了直线的参数方程,考查了两直线平行的条件,是基础题.15.(几何证明选做题)如图,AB与CD相交于点E,过E作BC的平行线与AD的延长线相交于点P.已知∠A=∠C,PD=2DA=2,则PE=.考点:相似三角形的性质.专题:计算题;压轴题;转化思想.分析:利用已知条件判断△EPD∽△APE,列出比例关系,即可求解PE的值.解答:解:因为BC∥PE,∴∠BCD=∠PED,且在圆中∠BCD=∠BAD⇒∠PED=∠BAD,⇒△EPD∽△APE,∵PD=2DA=2⇒⇒PE2=PA•PD=3×2=6,∴PE=.故答案为:.点评:本题考查三角形相似的判断与性质定理的应用,考查计算能力.三、解答题(共6小题,满分80分)16.(13分)在△ABC中,内角A,B,C所对的边分别是a,b,c.已知bsinA=3csinB,a=3,.(Ⅰ)求b的值;(Ⅱ)求的值.考点:余弦定理;同角三角函数间的基本关系;两角和与差的余弦函数;两角和与差的正弦函数;二倍角的正弦;正弦定理.专题:解三角形.分析:(Ⅰ)直接利用正弦定理推出bsinA=asinB,结合已知条件求出c,利用余弦定理直接求b的值;(Ⅱ)利用(Ⅰ)求出B的正弦函数值,然后利用二倍角公式求得正弦、余弦函数值,利用两角差的正弦函数直接求解的值.解答:解:(Ⅰ)在△ABC中,有正弦定理,可得bsinA=asinB,又bsinA=3csinB,可得a=3c,又a=3,所以c=1.由余弦定理可知:b2=a2+c2﹣2accosB,,即b2=32+12﹣2×3×cosB,可得b=.(Ⅱ)由,可得sinB=,所以cos2B=2cos2B﹣1=﹣,sin2B=2sinBcosB=,所以===.点评:本题考查余弦定理,正弦定理以及二倍角的正弦函数与余弦函数,两角和与差的三角函数,同角三角函数的基本关系式的应用,考查计算能力.17.(13分)有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次,根据年龄将大众评委分为5组,各组的人数如下:组别 A B C D E人数50 100 150 150 50(Ⅰ)为了调查评委对7位歌手的支持状况,现用分层抽样方法从各组中抽取若干评委,其中从B组中抽取了6人.请将其余各组抽取的人数填入下表.组别 A B C D E人数50 100 150 150 50抽取人数 6(Ⅱ)在(Ⅰ)中,若A,B两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,求这2人都支持1号歌手的概率.考点:相互独立事件的概率乘法公式;分层抽样方法.专题:概率与统计.分析:(Ⅰ)利用分层抽样中每层所抽取的比例数相等直接计算各层所抽取的人数;(Ⅱ)利用古典概型概率计算公式求出A,B两组被抽到的评委支持1号歌手的概率,因两组评委是否支持1号歌手相互独立,由相互独立事件同时发生的概率公式计算从这两组被抽到的评委中分别任选1人,2人都支持1号歌手的概率.解答:解:(Ⅰ)按相同的比例从不同的组中抽取人数.从B组100人中抽取6人,即从50人中抽取3人,从150人中抽取6人,填表如下:组别 A B C D E人数50 100 150 150 50抽取人数 3 6 9 9 3(Ⅱ)A组抽取的3人中有2人支持1好歌手,则从3人中任选1人,支持1号歌手的概率为.B组抽取的6人中有2人支持1号歌手,则从6人中任选1人,支持1号歌手的概率为.现从这两组被抽到的评委中分别任选1人,则2人都支持1号歌手的概率p=.点评:本题考查了分层抽样方法,考查了相互独立事件同时发生的概率乘法公式,若事件A,B是否发生相互独立,则p(AB)=p(A)p(B),是中档题.18.(13分)已知等差数列{a n}的前n项和S n满足S3=0,S5=﹣5,(1)求{a n}的通项公式;(2)求数列{}的前n项和.考点:数列的求和.专题:函数的性质及应用.分析:(1)设等差数列{a n}的公差为d,利用等差数列的前n项和公式及其通项公式即可得出;(2)由于=,利用“裂项求和”即可得出.解答:解:(1)设等差数列{a n}的公差为d,∵前n项和S n满足S3=0,S5=﹣5,∴,解得a1=1,d=﹣1.∴a n=1﹣(n﹣1)=2﹣n.(2)==,∴数列{}的前n项和===.点评:本题考查了等差数列的前n项和公式及其通项公式、“裂项求和”,考查了推理能力与计算能力,属于中档题.(13分)如图,四棱锥P﹣ABCD的底面ABCD是边长为2的菱形,∠BAD=60°,已知PB=PD=2,19.PA=.(1)证明:PC⊥BD;(2)若E为PA的中点,求三棱锥E﹣ABC的体积.考点:棱柱、棱锥、棱台的体积;棱锥的结构特征.专题:空间位置关系与距离.分析:(1)连接BD,AC交于O点,由已知得PO⊥BD,BD⊥AC,从而BD⊥面PAC,由此能证明BD⊥PC.(2)由V E﹣ABC=V B﹣AEC,利用等积法能求出三棱锥E﹣ABC的体积.解答:(1)证明:连接BD,AC交于O点,(1分)∵PB=PD,∴PO⊥BD,(2分)又∵ABCD是菱形,∴BD⊥AC,(3分)而AC∩PO=O,∴BD⊥面PAC,(5分)∴BD⊥PC.(6分)(2)解:由(1)知BD⊥面PAC,(7分)==3,(9分)∴V E﹣ABC=V B﹣AEC===.(12分)点评:本题考查异面直线垂直的证明,考查三棱锥的体积的求法,解题时要注意空间思维能力的培养.20.(14分)已知椭圆C:+=1(a>b>0)的左焦点F(﹣1,0),离心率为.(1)求椭圆C的标准方程;(2)设P(1,0),Q(,0),过P的直线l交椭圆C于A,B两点,求的值.考点:椭圆的简单性质;椭圆的标准方程;直线与圆锥曲线的综合问题.专题:向量与圆锥曲线;圆锥曲线的定义、性质与方程.分析:对第(1)问,由左焦点坐标,得c的值,由离心率,得a与c的关系,再根据a2=b2+c2,可得a2与b2;对第(2)问,先求解直线l的斜率不存在时,的值,当l的斜率存在时,设出直线l的方程及A,B的坐标,可得的表达式,联立直线l与椭圆的方程,得到一个关于x的一元二次方程,由韦达定理,得x1+x2,x1x2,代入的表达式中,即可达到目的.解答:解:(1)设椭圆的焦距为2c,由左焦点F(﹣1,0),得c=1,由离心率为,得,又a2=b2+c2,联立此三式,得a2=2,b2=1,故椭圆C的标准方程为.(2)依题意,P(1,0),Q(,0),直线l过点P,若直线l的斜率不存在,则.当l的斜率存在时,设直线l的方程为y=k(x﹣1),点A(x1,y1),B(x2,y2),则,,从而,===.由,得(2k2+1)x2﹣4k2x+2k2﹣2=0,由韦达定理,得,故=.点评:本题主要考查了椭圆标准方程的求解,直线与椭圆相交的位置关系等,求解时应考虑以下几点:①求椭圆方程时,关键是寻找关于a,b,c的三个独立的方程,其中a2=b2+c2是已知的隐含条件.②对于向量问题,常用技巧是:先将向量坐标化,转化为数量问题,再设法利用韦达定理进行整体代入求解.21.(14分)已知函数f(x)=x﹣1+(a∈R,e为自然对数的底数).(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(Ⅱ)求函数f(x)的极值;(Ⅲ)当a=1的值时,若直线l:y=kx﹣1与曲线y=f(x)没有公共点,求k的最大值.考点:利用导数研究函数的极值;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:(Ⅰ)依题意,f′(1)=0,从而可求得a的值;(Ⅱ)f′(x)=1﹣,分①a≤0时②a>0讨论,可知f(x)在∈(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,从而可求其极值;(Ⅲ)令g(x)=f(x)﹣(kx﹣1)=(1﹣k)x+,则直线l:y=kx﹣1与曲线y=f(x)没有公共点⇔方程g(x)=0在R上没有实数解,分k>1与k≤1讨论即可得答案.解答:解:(Ⅰ)由f(x)=x﹣1+,得f′(x)=1﹣,又曲线y=f(x)在点(1,f(1))处的切线平行于x轴,∴f′(1)=0,即1﹣=0,解得a=e.(Ⅱ)f′(x)=1﹣,①当a≤0时,f′(x)>0,f(x)为(﹣∞,+∞)上的增函数,所以f(x)无极值;②当a>0时,令f′(x)=0,得e x=a,x=lna,x∈(﹣∞,lna),f′(x)<0;x∈(lna,+∞),f′(x)>0;∴f(x)在∈(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,故f(x)在x=lna处取到极小值,且极小值为f(lna)=lna,无极大值.综上,当当a≤0时,f(x)无极值;当a>0时,f(x)在x=lna处取到极小值lna,无极大值.(Ⅲ)当a=1时,f(x)=x﹣1+,令g(x)=f(x)﹣(kx﹣1)=(1﹣k)x+,则直线l:y=kx﹣1与曲线y=f(x)没有公共点,等价于方程g(x)=0在R上没有实数解.假设k>1,此时g(0)=1>0,g()=﹣1+<0,又函数g(x)的图象连续不断,由零点存在定理可知g(x)=0在R上至少有一解,与“方程g(x)=0在R上没有实数解”矛盾,故k≤1.又k=1时,g(x)=>0,知方程g(x)=0在R上没有实数解,所以k的最大值为1.点评:本题考查利用导数研究函数的极值,考查利用导数研究曲线上某点切线方程,突出分类讨论思想与等价转化思想的综合运用,属于中档题.。
2015届汕头一模文科数学试题及答案

广东省汕头市2015届普通高中毕业班教学质量监测文科数学试题参考公式:锥体体积公式为1V 3Sh =,其中S 为锥体的底面积、h 为锥体的高;球的表面积公式为24R S π=,其中R 为球的半径;方差公式为()()()2222121n s x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎣⎦.一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、集合{}1,0,1A =-,A 的子集中,含有元素0的子集共有( )A .8个B .4个C .3个D .2个2、复数21i-的实部与虚部之和为( )A .1-B .2C .1D .0 3、如图是某几何体的三视图,其中正视图和侧视图是半径为1的半圆,俯视图是个圆,则该几何体的全面积为( ) A .π B .2π C .3π D .4π4、已知实数x ,y 满足不等式组242x y x y x -≤⎧⎪+≤⎨⎪≤⎩,则2z x y =+的最小值是( )A .2B .4C .6D .7 5、已知平面向量a ,b 满足3a =,2b =,且()a b a -⊥,则a 与b 的夹角为( )A .6πB .3π C .23π D .56π6、设l ,m 是两条不同直线,α,β是两个不同平面,则下列命题中正确的是( )A .若//l α,m αβ=,则//l mB .若//l α,m l ⊥,则m α⊥C .若//l α,//m α,则//l mD .若l α⊥,//l β,则αβ⊥ 7、如图,在程序框图中,若输入3n =,则输出k 的值是( ) A .2 B .3 C .4 D .5 8、下列说法中,正确的是( )A .命题“若22am bm <,则a b <”的逆命题是真命题B .命题“R x ∃∈,20xx ->”的否定是“R x ∀∈,20x x -≤” C .命题“p 或q ”为真命题,则命题“p ”和命题“q ”均为真命题D .已知R x ∈,则“1x >”是“2x >”的充分不必要条件9、设函数()sin 26f x x π⎛⎫=+ ⎪⎝⎭,则下列结论正确的是( )A .()f x 的图象关于直线3x π=对称B .()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称C .()f x 的最小正周期为π,且在0,12π⎡⎤⎢⎥⎣⎦上为增函数D .把()f x 的图象向右平移12π个单位,得到一个偶函数的图象10、设()f x 与()g x 是定义在同一区间[],a b 上的两个函数,若函数()()y f x g x =-在[],x a b ∈上有两个不同的零点,则称()f x 和()g x 在[],a b 上是“关联函数”,区间[],a b 称为“关联区间”.若()234f x x x =-+与()2g x x m =+在[]0,3上是“关联函数”,则m 的取值范围为( )A .9,24⎛⎤-- ⎥⎝⎦B .[]1,0-C .(],2-∞-D .9,4⎛⎫-+∞ ⎪⎝⎭二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.) (一)必做题(11~13题)11、为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁18岁的男生体重(kg ),得到频率分布直方图如右图: 根据右图可得这100名学生中体重在 []60.5,64.5的学生人数是 .12、已知C ∆AB 中,角A ,B ,C 所对的边分别是a ,b ,c ,60∠A =,2c =,且C ∆AB 则a 边的长为 .13、已知函数()22f x mx nx =+-(0m >,0n >)的一个零点是2,则12m n+的最小值为 .(二)选做题(14、15题,考生只能从中选做一题)14、(坐标系与参数方程选做题)在平面直角坐标系中,直线l 的参数方程为33x t y t =+⎧⎨=-⎩(参数R t ∈),圆的参数方程为2cos 2sin 1x y θθ=⎧⎨=+⎩(参数[)0,2θπ∈),则圆心到直线l 的距离为 .15、(几何证明选讲选做题)如图,在C ∆AB 中,D //C E B ,DF//C A , 2AE =,C 1E =,C 4B =,则F B = .三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)16、(本小题满分12分)已知等差数列{}n a 满足23a =,3412a a +=.()1求{}n a 的通项公式;()2设12na nb +=,求数列{}n b 的前n 项和n T .17、(本小题满分12分)以下茎叶图记录了甲组3名同学寒假假期中去图书馆A 学习的次数和乙组4名同学寒假假期中去图书馆B 学习的次数,乙组记录中有一个数据模糊,无法确认,在图中以x 表示.()1如果6x =,求乙组同学去图书馆学习次数的平均数和方差; ()2如果7x =,从学习次数大于7的学生中选两名同学,求选出的两名同学恰好分别在不同组且这两名同学学习的次数之和不小于20的概率.18、(本小题满分14分)已知向量()1,cos2a x =,(sin 2,b x =,函数()f x a b =⋅.()1若3x π=,求a ;()2若26235f απ⎛⎫+= ⎪⎝⎭,求512f πα⎛⎫+ ⎪⎝⎭的值;()3若0,2x π⎡⎤∈⎢⎥⎣⎦,求函数()f x 的值域.19、(本小题满分14分)如图,已知F A ⊥平面CD AB ,四边形F ABE 为矩形,四边形CD AB 为直角梯形,D 90∠AB =,//CD AB ,D F CD 2A =A ==,4AB =. ()1求证:F//A 平面C B E ;()2求证:C A ⊥平面C B E ; ()3求三棱锥CF E -B 的体积.20、(本小题满分14分)设函数()3213g x x ax =+的图象在1x =处的切线平行于直线20x y -=.记()g x 的导函数为()f x .()1求函数()f x 的解析式;()2记正项数列{}n a 的前n 项和为n S ,且n *∀∈N ,()12n n S f a =,求n a ; ()3对于数列{}n b 满足:112b =,()1n n b f b +=,当2n ≥,n *∈N 时,求证:1211112111nb b b <++⋅⋅⋅+<+++.21、(本小题满分14分)已知函数()()12ln 2f x a x ax x=-++(0a ≤). ()1当0a =时,求()f x 的极值;()2当0a <时,讨论()f x 的单调性;()3若()3,2a ∀∈--,1x ,[]21,3x ∈,有()()()12ln 32ln 3m a f x f x +->-,求实数m 的取值范围.汕头市2015届高三教学质量监控测评文科数学参考答案一、选择题:本大题共10小题,每小题5分,共50分. 在每小题的4个选项中,只有一项是符合题目要求的.二、填空题:本大题共5小题, 考生作答4小题,每小题5分,共20分. 11. 24 12.3 13. 8 14.225 15. 34 三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.16.解:【答案】解:(1)设等差数列{}n a 的公差为d .由题意知⎩⎨⎧=+++=+12323111d a d a d a ……2分(每式1分) 解得,2,11==d a …… 4分(每式1分) ∴12-=n a n (n N *∈) ……6分 (2)由题意知, n a n n b 2122==+ (n N *∈), …… 7分n n T 26422222++++=41)41(4--=n …… 10分)14(34-=n…… 12分 17.解(1)当x =6时,由茎叶图可知,乙组同学去图书馆学习次数是:6,7,8,11, …… 1分 所以平均数为8411876_=+++=x …… 2分方差为27])811()88()87()86[(4122222=-+-+-+-=s …… 5分 (列式2分,答案1分)(2)甲组中学习次数大于7的同学有3名,记为A 1,A 2,A 3,他们去图书馆学习次数 依次为9,11,12;乙组中学习次数大于7的同学有2名,记为B 1,B 2,他们去图书馆学习次数依次 为8,11; …… 6分从学习次数大于7的学生中选两名学生,所有可能的结果有10个,它们是:A 1A 2,A 1A 3,A 1B 1,A 1B 2,A 2A 3,A 2B 1,A 2B 2,A 3B 1,A 3B 2,B 1B 2 ……8分 用事件C 表示:“选出的两名同学恰好分别在不同组且这两名同学学习的次数之和不小于20”这一事件,则C 中的结果有4个,它们是:A 1B 2,A 2B 2,A 3B 1,A 3B 2, …… 10分故根据古典概型,选出的两名同学恰好分别在不同组且这两名同学学习的次数之和不小于20的概率为52104)(==C P …… 12分 18. 解:(1))21,1()32cos ,1(-==→πa ,…… 1分 25)21(1||22=-+=→a …… 2分 (2))32sin(22cos 32sin )(π-=-=x x x x f …… 3分)sin(2]3)322(2sin[2)322(παππαπα+=-+=+f ……4分 56sin 2=-=α 53sin -=∴α,…… 5分因此,)22sin(2]3)125(2sin[2)125(παππαπα+=-+=+f ……6分 α2cos 2=……7分 )sin 21(22α-=…… 8分2514])53(21[22=-⨯-=…… 9分(3) ]2,0[π∈x ∴]32,3[32πππ-∈-x …… 10分 ∴ ]1,23[)32sin(-∈-πx …… 12分 ∴]2,3[)(-∈x f ,…… 13分即)(x f 的值域是]2,3[-.…… 14分 19. 解:(1)因为四边形ABEF 为矩形,所以⊂BE BE AF ,//平面BCE ,⊄AF 平面BCE , 所以//AF 平面BCE .…… 3分(2)过C 作AB CM ⊥,垂足为M , 因为,DC AD ⊥所以四边形ADCM 为矩形.所以2==MB AM ,又因为4,2==AB AD 所以22=AC ,2=CM ,22=BC所以222AB BC AC =+,所以BC AC ⊥;…… 5分因为AF ⊥平面ABCD ,,//BE AF 所以BE ⊥平面ABCD ,所以AC BE ⊥,……7分EC又因为⊂BE 平面BCE ,⊂BC 平面BCE ,B BC BE =⋂ 所以⊥AC 平面BCE . ……9分(3)因为AF ⊥平面ABCD ,所以CM AF ⊥,…… 10分又因为AB CM ⊥,⊂AF 平面ABEF ,⊂AB 平面ABEF ,A AB AF =⋂ 所以⊥CM 平面ABEF .…… 12分824261213131=⨯⨯⨯=⨯⨯⨯⨯=⨯==∆--CM EF BE CM S V V BEF BEF C BCF E …13分 3824261213131=⨯⨯⨯=⨯⨯⨯⨯=⨯=∆CM EF BE CM S BEF F…14分 20.解:(1)∵函数321()3g x x ax =+的导函数为2()2f x x ax =+,……1分由于在1x =处的切线平行于20x y -=, ∴122a += 解出:12a =…… 2分 即x x x f +=2)(…… 3分(2))(212n n n a a S +=)(21,112111a a S a n +===,得11=a 或01=a (舍去)…… 4分,2≥n )(211211---+=n n n a a S)]()[(2112121----+-=-n n n n n n a a a a S S ,…… 5分即有)()(21212---+-=n n n n n a a a a a0)1)((11=--+--n n n n a a a a …… 6分 因为0>n a ,故11=--n n a a …… 7分所以数列}{n a 是首项为1,公差为1的等差数列, n n a n =-+=)1(1 ……8分 (3) ∵)1(1+=+n n n b b b∴n n n n n b b b b b +-=+=+111)1(111,…… 9分 即有11111+-=+n n n b b b …10分 ∴,1111211b b b -=+,1111322b b b -=+,1111433b b b -=+...,,11111+-=+n n n b b b ∴113221211211...111111...1111++-=-++-+-=++++++=n n n n n b b b b b b b b b b T …11分 2<…… 12分而当2n ≥时, 2121111111...1111b b b b b T n n+++≥++++++=…13分121267432>=+=∴211...1111121<++++++<nb b b …14分21.解:(1)当0a =时,()()22121212ln ,(0).x f x x f x x x x x x -'=+=-=>……2分 (求导1分、标出定义域1分) 由()2210x f x x -'=>,解得12x >.∴()f x 在10,2⎛⎫ ⎪⎝⎭上是减函数,在1,2⎛⎫+∞⎪⎝⎭上是增函数. ……………………… 3分 ∴()f x 的极小值为122ln 22f ⎛⎫=-⎪⎝⎭,无极大值.………… 4分 (2)()()()()2222221121212(0)ax a x ax x a f x a x x x x x +--+--'=-+==>. …6分①当20a -<<时,()f x 在10,2⎛⎫ ⎪⎝⎭和1,a ⎛⎫-+∞ ⎪⎝⎭上是减函数,在11,2a ⎛⎫- ⎪⎝⎭上是增函数;………7分②当2a =-时,()f x 在()0,+∞上是减函数;………………………8分 ③当2a <-时,()f x 在1,2⎛⎫+∞⎪⎝⎭和10,a ⎛⎫- ⎪⎝⎭上是减函数,在11,2a ⎛⎫- ⎪⎝⎭上是增函数.9分(3)当32a -<<-时,由(2)可知()f x 在[]1,3上是减函数,…10分 ∴()()()()()1221342ln 33f x f x f f a a -≤-=-+-. ……………… 11分 由()()()12ln 32ln 3m a f x f x +->-对任意的()[]123,2,,1,3a x x ∈--∈恒成立, ∴()()()12max ln 32ln 3m a f x f x +->- …………………12分 即()()2ln 32ln 342ln 33m a a a +->-+-对任意32a -<<-恒成立, 即243m a<-+对任意32a -<<-恒成立, …………… 13分 由于当32a -<<-时,132384339a -<-+<-,∴133m ≤-. …………… 14分。
广东省汕头市2015届高三第二次模拟考试数学(文)试题(扫描版)(附答案)

汕头市2015年普通高中毕业班第二次模拟考试数学(文科)答案一、选择题(本大题共10小题,每小题5分,共50分)二、填空题(本大题共做4小题,每小题5分,共20分)11. ()1,1- 12. 54 13. 20 14.2cos 3ρρθ=+2 15. 5 三、解答题:本大题共6题,满分80分.16.(本小题满分12分)解:(1)由函数()f x 的图象经过点(,1)32π,cos 133a 2π2π-=.解得1a =-因此()cos f x x x =+.(2)()cos f x x x =+1cos )2x x =+ 2sin()6x π=+ 6()2sin()2sin 6665f ππαααπ-=-+==∴3s i n 5α=. ()5510()2sin()2sin 2sin 66613f πβπβαπβπ+=++=+=-=-5sin 13β∴=.又,[0,]2παβ∈ 4cos 5α∴=,12cos 13β==. ()63cos cos cos sin sin 65αβαβαβ∴-=+=17.(本小题满分12分)解:(1)设年龄在2039岁之间应抽取x 人,则63612x =,解得2x = 所以年龄在2039岁之间应抽取2人(2)记在缴费100500元之间抽取的6人中,年龄在2039岁的2人为12,a a ;年龄在4059岁的4人为1234,,,b b b b .所以随机抽取2人的所有结果有:()12,a a ,()11,a b ,()12,a b ,()13,a b ,()14,a b ,()21,a b ,()22,a b ,()23,a b ,()24,a b ,()12,b b ,()13,b b ,()14,b b ,()23,b b ,()24,b b ,()34,b b ;共15种.设这2人的年龄都在4059岁之间的事件为A,则事件为A 包含的基本事件有: ()12,b b ,()13,b b ,()14,b b ,()23,b b ,()24,b b ,()34,b b ;共6种.所以()62155P A == 答:这2人的年龄都在4059岁之间的概率为2518.(本小题满分14分) 证明:(1)∵四边形ABCD 是菱形,AC BD O =,∴点O 是BD 的中点; ∵点G 为BC 的中点,∴//OG CD ,又∵OG ⊄平面EFCD ,CD ⊂平面EFCD , ∴直线//OG 平面EFCD .(2)∵BF CF =,点G 为BC 的中点,∴FG BC ⊥;∵平面BCF ⊥平面ABCD ,平面BCF平面ABCD BC =,FG ⊂平面BCF ,FG BC ⊥,∴FG ⊥平面ABCD ;∵AC ⊂平面ABCD ,∴FG AC ⊥; ∵1//, 2OG AB OG AB =,1//, 2EF AB EF AB =,∴//, OG EF OG EF =; ∴四边形EFGO 为平行四边形,∴//FG EO ;∵FG AC ⊥,//FG EO ,∴AC EO ⊥;∵四边形ABCD 是菱形,∴AC DO ⊥;∵AC EO ⊥,AC DO ⊥EO DO O =,EO DO 、在平面ODE 内,∴AC ⊥平面ODE .19.(本小题满分14分)解:(1) ()1141n n a a +=-()11222222121141n n n n n b b a a a ++∴===-=----- 12n n b b +∴-=- 又114a =,112421b a ∴==-- ∴数列{}n b 为等差数列,且首项为4-,公差为2-(2)由(1)知()()41222n b n n =-+--=-- 即22221n n a =---()1122221n n a n n ∴=-=++ 由于()()()()()212111111111222222k k k k a k a k k k k k k k k ++++⎛⎫=⋅==+=+- ⎪++++⎝⎭31212111111123242n n a a a n a a a n n +⎛⎫∴++⋅⋅⋅+=+-+-++- ⎪+⎝⎭ 11113122124n n n n ⎛⎫=++--<+ ⎪++⎝⎭ 20.(本小题满分14分)解:(1)由题意得 222226c a a b a b c⎧=⎪⎪⎪+=⎨⎪-=⎪⎪⎩解得2, a b ==∴椭圆C 的标准方程为:22142x y +=. (2)以MN 为直径的圆过定点( 0)F .设00(, )P x y ,则00(, )Q x y --,且2200142x y +=,即220024x y +=, ∵(2, 0)A -,∴直线PA 方程为:00(2)2y y x x =++,∴002(0, )2y M x +; ∴直线QA 方程为:00(2)2y y x x =+-,∴002(0, )2y N x -;以MN 为直径的圆为:000022(0)(0)()()022y y x x y y x x --+--=+-, 即222000220044044x y y x y y x x +-+=--, ∵220042x y -=-,∴2200220x x y y y ++-=, 令0y =,得220x -=,解得:x =∴以MN为直径的圆过定点:( 0)F .21. (本小题满分14分)解:解:(1)2'()33(1)3f x x a x a =-++,因为函数()f x 在点(2,(2))f 处的切线与直线92y x =-平行, 所以'(2)9f =,2323(1)239a a ⨯-+⨯+=,1a =-,a 的值为1-.(2)2'()33(1)3f x x a x a =-++,令'()0f x =得1,x x a == ①当0a ≤时,()f x 在(0,1)单调递减,在(1,4)单调递增,所以当1x =时,(1)f 是()f x 在()0,4x ∈内的最小值, 则13(1)=122f a =+ 解得13a = 不符合题意舍去 ②当01a <<时,()f x 在(0,)a 和(1,4)单调递增,在(,1)a 单调递减,(1)(0)01f f a ≤⎧∴⎨<<⎩即3(1)1311201a a a +⎧-++≤⎪⎨⎪<<⎩,解得103a <≤ 当103a <≤时,使(1)f 是()f x 在()0,4x ∈内的最小值; 则13(1)=122f a =+ 解得13a = 符合题意 ③当1a =时,2'()3(1)0f x x =-≥,()f x 在(0,4)单调递增,则函数()f x 在()0,4x ∈内不存在最小值;④当14a <<时,()f x 在(0,1)和(,4)a 单调递增,在(1,)a 单调递减,()(0)14f a f a ≤⎧∴⎨<<⎩即3223(1)311214a a a a a +⎧-++≤⎪⎨⎪<<⎩解得314a a ≥⎧⎨<<⎩ 所以34a ≤< 所以当x a =时,函数()f x 在()0,4x ∈内存在最小值 则()1f a =,解得3a =⑤当4a ≥时,()f x 在(0,1)单调递增,在(1,4)单调递减, 则函数()f x 在()0,4x ∈内不存在最小值 综上得,13a =或3a =。
2015年广东省高考文科数学真题及详细解析(解析版,学生版,精校版)

2015年广东省高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(广东卷)数学(文科)1.(5分)若集合M={﹣1,1},N={﹣2,1,0}则M∩N=()A.{0.﹣1}B.{0}C.{1}D.{﹣1,1} 2.(5分)已知i是虚数单位,则复数(1+i)2=()A.2i B.﹣2i C.2D.﹣23.(5分)下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin2x B.y=x2﹣cosx C.y=2x+D.y=x2+sinx4.(5分)若变量x,y满足约束条件,则z=2x+3y的最大值为()A.2B.5C.8D.105.(5分)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cosA=.且b<c,则b=()A.B.2C.2D.36.(5分)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交7.(5分)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()A.0.4B.0.6C.0.8D.18.(5分)已知椭圆+=1(m>0 )的左焦点为F1(﹣4,0),则m=()A.2B.3C.4D.99.(5分)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,﹣2),=(2,1)则•=()A.5B.4C.3D.210.(5分)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表示集合X中的元素个数,则card(E)+card(F)=()A.200B.150C.100D.50二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11~13题)11.(5分)不等式﹣x2﹣3x+4>0的解集为.(用区间表示)12.(5分)已知样本数据x1,x2,…,x n的均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为.13.(5分)若三个正数a,b,c 成等比数列,其中a=5+2,c=5﹣2,则b=.坐标系与参数方程选做题14.(5分)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为.几何证明选讲选做题15.如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4.CE=2,则AD=.三、解答题(共6小题,满分80分)16.(12分)已知tanα=2.(1)求tan(α+)的值;(2)求的值.17.(12分)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?18.(14分)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C 到平面PDA的距离.19.(14分)设数列{a n}的前n项和为S n,n∈N*.已知a1=1,a2=,a3=,且+5S n=8S n+1+S n﹣1.当n≥2时,4S n+2(1)求a4的值;﹣a n}为等比数列;(2)证明:{a n+1(3)求数列{a n}的通项公式.20.(14分)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.21.(14分)设a为实数,函数f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1).(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2 时,讨论f(x)+在区间(0,+∞)内的零点个数.2015年广东省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(广东卷)数学(文科)1.(5分)若集合M={﹣1,1},N={﹣2,1,0}则M∩N=()A.{0.﹣1}B.{0}C.{1}D.{﹣1,1}【考点】1E:交集及其运算.【专题】5J:集合.【分析】进行交集的运算即可.【解答】解:M∩N={﹣1,1}∩{﹣2,1,0}={1}.故选:C.【点评】考查列举法表示集合,交集的概念及运算.2.(5分)已知i是虚数单位,则复数(1+i)2=()A.2i B.﹣2i C.2D.﹣2【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】利用完全平方式展开化简即可.【解答】解:(1+i)2=12+2i+i2=1+2i﹣1=2i;故选:A.【点评】本题考查了复数的运算;注意i2=﹣1.3.(5分)下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin2x B.y=x2﹣cosx C.y=2x+D.y=x2+sinx【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】利用函数奇偶性的判断方法对选项分别分析选择.【解答】解:四个选项中,函数的定义域都是R,对于A,﹣x+sin(﹣2x)=﹣(x+sin2x);是奇函数;对于B,(﹣x)2﹣cos(﹣x)=x2﹣cosx;是偶函数;对于C,,是偶函数;对于D,(﹣x)2+sin(﹣x)=x2﹣sinx≠x2+sinx,x2﹣sinx≠﹣(x2+sinx);所以是非奇非偶的函数;故选:D.【点评】本题考查了函数奇偶性的判断,在定义域关于原点对称的前提下,判断f(﹣x)与f(x)的关系,相等就是偶函数,相反就是奇函数.4.(5分)若变量x,y满足约束条件,则z=2x+3y的最大值为()A.2B.5C.8D.10【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值.【解答】解:作出不等式对应的平面区域(阴影部分),由z=2x+3y,得y=,平移直线y=,由图象可知当直线y=经过点B时,直线y=的截距最大,此时z最大.由,解得,即B(4,﹣1).此时z的最大值为z=2×4+3×(﹣1)=8﹣3=5,故选:B.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.5.(5分)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cosA=.且b<c,则b=()A.B.2C.2D.3【考点】HR:余弦定理.【专题】11:计算题;58:解三角形.【分析】运用余弦定理:a2=b2+c2﹣2bccosA,解关于b的方程,结合b<c,即可得到b=2.【解答】解:a=2,c=2,cosA=.且b<c,由余弦定理可得,a2=b2+c2﹣2bccosA,即有4=b2+12﹣4×b,解得b=2或4,由b<c,可得b=2.故选:B.【点评】本题考查三角形的余弦定理及应用,主要考查运算能力,属于中档题和易错题.6.(5分)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交【考点】LP:空间中直线与平面之间的位置关系.【专题】5F:空间位置关系与距离.【分析】可以画出图形来说明l与l1,l2的位置关系,从而可判断出A,B,C是错误的,而对于D,可假设不正确,这样l便和l1,l2都不相交,这样可推出和l1,l2异面矛盾,这样便说明D正确.【解答】解:A.l与l1,l2可以相交,如图:∴该选项错误;B.l可以和l1,l2中的一个平行,如上图,∴该选项错误;C.l可以和l1,l2都相交,如下图:,∴该选项错误;D.“l至少与l1,l2中的一条相交”正确,假如l和l1,l2都不相交;∵l和l1,l2都共面;∴l和l1,l2都平行;∴l1∥l2,l1和l2共面,这样便不符合已知的l1和l2异面;∴该选项正确.故选:D.【点评】考查异面直线的概念,在直接说明一个命题正确困难的时候,可说明它的反面不正确.7.(5分)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()A.0.4B.0.6C.0.8D.1【考点】CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】首先判断这是一个古典概型,而基本事件总数就是从5件产品任取2件的取法,取到恰有一件次品的取法可利用分步计数原理求解,最后带入古典概型的概率公式即可.【解答】解:这是一个古典概型,从5件产品中任取2件的取法为;∴基本事件总数为10;设“选的2件产品中恰有一件次品”为事件A,则A包含的基本事件个数为=6;∴P(A)==0.6.故选:B.【点评】考查古典概型的概念,以及古典概型的概率求法,明白基本事件和基本事件总数的概念,掌握组合数公式,分步计数原理.8.(5分)已知椭圆+=1(m>0 )的左焦点为F1(﹣4,0),则m=()A.2B.3C.4D.9【考点】K4:椭圆的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】利用椭圆+=1(m>0 )的左焦点为F1(﹣4,0),可得25﹣m2=16,即可求出m.【解答】解:∵椭圆+=1(m>0 )的左焦点为F1(﹣4,0),∴25﹣m2=16,∵m>0,∴m=3,故选:B.【点评】本题考查椭圆的性质,考查学生的计算能力,比较基础.9.(5分)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,﹣2),=(2,1)则•=()A.5B.4C.3D.2【考点】9O:平面向量数量积的性质及其运算.【专题】11:计算题;5A:平面向量及应用.【分析】由向量加法的平行四边形法则可求=的坐标,然后代入向量数量积的坐标表示可求【解答】解:由向量加法的平行四边形法则可得,==(3,﹣1).∴=3×2+(﹣1)×1=5.故选:A.【点评】本题主要考查了向量加法的平行四边形法则及向量数量积的坐标表示,属于基础试题.10.(5分)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表示集合X中的元素个数,则card(E)+card(F)=()A.200B.150C.100D.50【考点】1I:子集与交集、并集运算的转换;1J:Venn图表达集合的关系及运算;D9:排列、组合及简单计数问题.【专题】26:开放型;5J:集合;5O:排列组合.【分析】对于集合E,s=4时,p,q,r从0,1,2,3任取一数都有4种取法,从而构成的元素(p,q,r,s)有4×4×4=64个,再讨论s=3,2,1的情况,求法一样,把每种情况下元素个数相加即可得到集合E的元素个数,而对于集合F,需讨论两个数:u,w,方法类似,最后把求得的集合E,F元素个数相加即可.【解答】解:(1)s=4时,p,q,r的取值的排列情况有4×4×4=64种;s=3时,p,q,r的取值的排列情况有3×3×3=27种;s=2时,有2×2×2=8种;s=1时,有1×1×1=1种;∴card(E)=64+27+8+1=100;(2)u=4时:若w=4,t,v的取值的排列情况有4×4=16种;若w=3,t,v的取值的排列情况有4×3=12种;若w=2,有4×2=8种;若w=1,有4×1=4种;u=3时:若w=4,t,v的取值的排列情况有3×4=12种;若w=3,t,v的取值的排列情况有3×3=9种;若w=2,有3×2=6种;若w=1,有3×1=3种;u=2时:若w=4,t,v的取值的排列情况有2×4=8种;若w=3,有2×3=6种;若w=2,有2×2=4种;若w=1,有2×1=2种;u=1时:若w=4,t,v的取值的排列情况有1×4=4种;若w=3,有1×3=3种;若w=2,有1×2=2种;若w=1,有1×1=1种;∴card(F)=100;∴card(E)+card(F)=200.故选:A.【点评】考查描述法表示集合,分布计数原理的应用,注意要弄清讨论谁,做到不重不漏.二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11~13题)11.(5分)不等式﹣x2﹣3x+4>0的解集为(﹣4,1).(用区间表示)【考点】73:一元二次不等式及其应用.【专题】59:不等式的解法及应用.【分析】首先将二次项系数化为正数,然后利用因式分解法解之.【解答】解:原不等式等价于x2+3x﹣4<0,所以(x+4)(x﹣1)<0,所以﹣4<x<1;所以不等式的解集为(﹣4,1);故答案为:(﹣4,1).【点评】本题考查了一元二次不等式的解法;一般的首先将二次项系数化为正数,然后选择适当的方法解之;属于基础题.12.(5分)已知样本数据x1,x2,…,x n的均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为11.【考点】BB:众数、中位数、平均数.【专题】5I:概率与统计.【分析】利用平均数计算公式求解【解答】解:∵数据x1,x2,…,x n的平均数为均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为:=5×2+1=11;故答案为:11.【点评】本题考查数据的平均数的求法,是基础题.13.(5分)若三个正数a,b,c 成等比数列,其中a=5+2,c=5﹣2,则b= 1.【考点】88:等比数列的通项公式.【专题】11:计算题;54:等差数列与等比数列.【分析】由已知可得,b2=ac,代入已知条件即可求解b【解答】解:∵三个正数a,b,c 成等比数列,∴b2=ac,∵a=5+2,c=5﹣2,∴=1,故答案为:1.【点评】本题主要考查了等比数列的性质,属于基础试题坐标系与参数方程选做题14.(5分)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为(2,﹣4).【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,把代入可得直角坐标方程.曲线C2的参数方程为(t为参数),化为普通方程:y2=8x.联立解出即可.【解答】解:曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,化为直角坐标方程:x+y+2=0.曲线C2的参数方程为(t为参数),化为普通方程:y2=8x.联立,解得,则C1与C2交点的直角坐标为(2,﹣4).故答案为:(2,﹣4).【点评】本题考查了极坐标化为直角坐标方程、参数方程化为普通方程、曲线的交点,考查了推理能力与计算能力,属于中档题.几何证明选讲选做题15.如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4.CE=2,则AD=3.【考点】N9:圆的切线的判定定理的证明;NC:与圆有关的比例线段.【专题】17:选作题;26:开放型;5M:推理和证明.【分析】连接OC,则OC⊥DE,可得,由切割线定理可得CE2=BE•AE,求出BE,即可得出结论.【解答】解:连接OC,则OC⊥DE,∵AD⊥DE,∴AD∥OC,∴由切割线定理可得CE2=BE•AE,∴12=BE•(BE+4),∴BE=2,∴OE=4,∴,∴AD=3故答案为:3.【点评】本题考查切割线定理,考查学生分析解决问题的能力,比较基础.三、解答题(共6小题,满分80分)16.(12分)已知tanα=2.(1)求tan(α+)的值;(2)求的值.【考点】GF:三角函数的恒等变换及化简求值;GP:两角和与差的三角函数.【专题】56:三角函数的求值.【分析】(1)直接利用两角和的正切函数求值即可.(2)利用二倍角公式化简求解即可.【解答】解:tanα=2.(1)tan(α+)===﹣3;(2)====1.【点评】本题考查两角和的正切函数的应用,三角函数的化简求值,二倍角公式的应用,考查计算能力.17.(12分)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?【考点】B8:频率分布直方图.【专题】5I:概率与统计.【分析】(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得;(2)由直方图中众数为最高矩形上端的中点可得,可得中位数在[220,240)内,设中位数为a,解方程(0.002+0.0095++0.011)×20+0.0125×(a﹣220)=0.5可得;(3)可得各段的用户分别为25,15,10,5,可得抽取比例,可得要抽取的户数.【解答】解:(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得x=0.0075,∴直方图中x的值为0.0075;(2)月平均用电量的众数是=230,∵(0.002+0.0095+0.011)×20=0.45<0.5,∴月平均用电量的中位数在[220,240)内,设中位数为a,由(0.002+0.0095+0.011)×20+0.0125×(a﹣220)=0.5可得a=224,∴月平均用电量的中位数为224;(3)月平均用电量为[220,240)的用户有0.0125×20×100=25,月平均用电量为[240,260)的用户有0.0075×20×100=15,月平均用电量为[260,280)的用户有0.005×20×100=10,月平均用电量为[280,300)的用户有0.0025×20×100=5,∴抽取比例为=,∴月平均用电量在[220,240)的用户中应抽取25×=5户.【点评】本题考查频率分布直方图,涉及众数和中位数以及分层抽样,属基础题.18.(14分)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C 到平面PDA的距离.【考点】LS:直线与平面平行;LW:直线与平面垂直;MK:点、线、面间的距离计算.【专题】15:综合题;5F:空间位置关系与距离.【分析】(1)利用四边形ABCD是长方形,可得BC∥AD,根据线面平行的判定定理,即可得出结论;(2)利用平面与平面垂直的性质定理得出BC⊥平面PDC,即可证明BC⊥PD;(3)利用等体积法,求点C到平面PDA的距离.【解答】(1)证明:因为四边形ABCD是长方形,所以BC∥AD,因为BC⊄平面PDA,AD⊂平面PDA,所以BC∥平面PDA;(2)证明:因为四边形ABCD是长方形,所以BC⊥CD,因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,BC⊂面ABCD,所以BC⊥平面PDC,因为PD⊂平面PDC,所以BC⊥PD;(3)解:取CD的中点E,连接AE和PE,因为PD=PC,所以PE⊥CD,在Rt△PED中,PE===.因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,PE⊂平面PDC,所以PE⊥平面ABCD.由(2)知:BC⊥平面PDC,由(1)知:BC∥AD,所以AD⊥平面PDC,因为PD⊂平面PDC,所以AD⊥PD.设点C到平面PDA的距离为h.=V P﹣ACD,因为V C﹣PDA所以,所以h==,所以点C到平面PDA的距离是.【点评】本题考查平面与平面垂直的性质,线面垂直与线线垂直的判定,考查三棱锥体积等知识,注意解题方法的积累,属于中档题.19.(14分)设数列{a n}的前n项和为S n,n∈N*.已知a1=1,a2=,a3=,且+5S n=8S n+1+S n﹣1.当n≥2时,4S n+2(1)求a4的值;(2)证明:{a n﹣a n}为等比数列;+1(3)求数列{a n}的通项公式.【考点】8H:数列递推式.【专题】54:等差数列与等比数列.【分析】(1)直接在数列递推式中取n=2,求得;+5S n=8S n+1+S n﹣1(n≥2),变形得到4a n+2+a n=4a n+1(n≥2),进一步得(2)由4S n+2到,由此可得数列{}是以为首项,公比为的等比数列;(3)由{}是以为首项,公比为的等比数列,可得.进一步得到,说明{}是以为首项,4为公差的等差数列,由此可得数列{a n}的通项公式.【解答】(1)解:当n=2时,4S4+5S2=8S3+S1,即,解得:;(2)证明:∵4S n+5S n=8S n+1+S n﹣1(n≥2),∴4S n+2﹣4S n+1+S n﹣S n﹣1=4S n+1﹣4S n+2(n≥2),+a n=4a n+1(n≥2),即4a n+2∵,∴4a n+a n=4a n+1.+2∵=.∴数列{}是以=1为首项,公比为的等比数列;(3)解:由(2)知,{}是以为首项,公比为的等比数列,∴.即,∴{}是以为首项,4为公差的等差数列,∴,即,∴数列{a n}的通项公式是.【点评】本题考查了数列递推式,考查了等比关系的确定,考查了等比数列的通项公式,关键是灵活变形能力,是中档题.20.(14分)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.【考点】J3:轨迹方程;J9:直线与圆的位置关系.【专题】2:创新题型;26:开放型;5D:圆锥曲线的定义、性质与方程.【分析】(1)通过将圆C1的一般式方程化为标准方程即得结论;(2)设当直线l的方程为y=kx,通过联立直线l与圆C1的方程,利用根的判别式大于0、韦达定理、中点坐标公式及参数方程与普通方程的相互转化,计算即得结论;(3)通过联立直线L与圆C1的方程,利用根的判别式△=0及轨迹C的端点与点(4,0)决定的直线斜率,即得结论.【解答】解:(1)∵圆C1:x2+y2﹣6x+5=0,整理,得其标准方程为:(x﹣3)2+y2=4,∴圆C1的圆心坐标为(3,0);(2)设当直线l的方程为y=kx、A(x1,y1)、B(x2,y2),联立方程组,消去y可得:(1+k2)x2﹣6x+5=0,由△=36﹣4(1+k2)×5>0,可得k2<由韦达定理,可得x1+x2=,∴线段AB的中点M的轨迹C的参数方程为,其中﹣<k<,∴线段AB的中点M的轨迹C的方程为:(x﹣)2+y2=,其中<x≤3;(3)结论:当k∈(﹣,)∪{﹣,}时,直线L:y=k(x﹣4)与曲线C只有一个交点.理由如下:联立方程组,消去y,可得:(1+k2)x2﹣(3+8k2)x+16k2=0,令△=(3+8k2)2﹣4(1+k2)•16k2=0,解得k=±,又∵轨迹C的端点(,±)与点(4,0)决定的直线斜率为±,∴当直线L:y=k(x﹣4)与曲线C只有一个交点时,k的取值范围为[﹣,]∪{﹣,}.【点评】本题考查求轨迹方程、直线与曲线的位置关系问题,注意解题方法的积累,属于难题.21.(14分)设a为实数,函数f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1).(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2 时,讨论f(x)+在区间(0,+∞)内的零点个数.【考点】3E:函数单调性的性质与判断;53:函数的零点与方程根的关系;6B:利用导数研究函数的单调性.【专题】26:开放型;51:函数的性质及应用;53:导数的综合应用.【分析】(1)利用f(0)≤1,得到|a|+a﹣1≤0,对a分类讨论求解不等式的解集即可.(2)化简函数f(x)的解析式,通过当x<a时,当x≥a时,利用二次函数f (x)的对称轴求解函数的单调区间即可.(3)化简F(x)=f(x)+,求出函数的导数,利用导函数的符号,通过a的讨论判断函数的单调性,然后讨论函数的零点的个数.【解答】解:(1)若f(0)≤1,即:a2+|a|﹣a(a﹣1)≤1.可得|a|+a﹣1≤0,当a≥0时,a,可得a∈[0,].当a<0时,|a|+a﹣1≤0,恒成立.综上a.∴a的取值范围:;(2)函数f(x)==,当x<a时,函数f(x)的对称轴为:x==a+>a,y=f(x)在(﹣∞,a)时是减函数,当x≥a时,函数f(x)的对称轴为:x==a﹣<a,y=f(x)在(a,+∞)时是增函数,(3)F(x)=f(x)+=,,当x<a时,=,所以,函数F(x)在(0,a)上是减函数.当x≥a时,因为a≥2,所以,F′(x)=═,所以,函数F(x)在(a,+∞)上是增函数.F(a)=a﹣a2+.当a=2时,F(2)=0,此时F(x)有一个零点,当a>2时,F(a)=a﹣a2+,F′(a)=1﹣2a==.所以F(ah)在(2,+∞)上是减函数,所以F(a)<,即F(a)<0,当x>0且x→0时,F(x)→+∞;当x→+∞时,F(x)→+∞,所以函数F(x)有两个零点.综上所述,当a=2时,F(x)有一个零点,a>2时F(x)有两个零点.【点评】本题考查的知识点比较多,包括绝对值不等式的解法,函数的零点,函数的导数以及导数与函数的单调性的关系,考查分类讨论思想的应用,函数与方程的思想,转化思想的应用,也考查化归思想的应用.。
广东省汕头市潮阳区2015年高考练习(一)数学文试卷

潮阳区2015年高考(文数)模拟试卷(一)一、选择题:本大题共10小题,每小题5分,共50分.1.已知已知集合}5,3,2,0{},4,3,2{==N M ,则=⋂N MA.{0,2}B.{2,3}C. {3,4}D. {3,5} 2.已知i 为虚数单位,则复数()1i i ⋅-的虚部为 A .i B .i -C .1D .1- 3.命题“,x x e x ∀∈>R ”的否定是A .,x x e x ∃∈<RB .,x x e x ∀∈<RC .,x x e x ∀∈≤RD .,x x e x ∃∈≤R4. 下列函数为奇函数的是A .x x y 212-= B .x x y sin 3= C .1cos 2+=x y D .x x y 22+=5.已知函数sin()(0,||)2y x πωϕωϕ=+><的部分图像如图所示,则,ωϕ的值分别为 A .2,3π- B .2,6π-C .4,6π-D .4,3π6.已知变量,x y 满足约束条件11,10x y x y x +≤⎧⎪-≤⎨⎪+≥⎩则2z x y =+的最小值为A .3B .1C .5-D .6- 7.在等差数列{}n a 中,首项10,a =公差0d ≠,若1237k a a a a a =++++,则k =A .21B .22C .23D .248.已知下列三个命题: ①若一个球的半径缩小到原来的12,则其体积缩小到原来的18。
②若两组数据的平均数相等,则它们的标准差也相等。
③直线x+y+1=0与圆x 2+y 2=12相切.图2(度)150140110100其中真命题的序号是( )A.①②③B.①②C.①③D.②③9.m n ,是不同的直线,αβ、是不重合的平面,下列结论正确的是( ) A .若m m ,,αβαβ⊂⊥则⊥ B .若m n ,αβ⊥⊥,则n m ⊥ C .若,,m m n n αα∥∥则∥ D .若m m ,,αβαβ⊥∥则⊥10.设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意的x ∈[a,b],都有1()()1f x g x -≤-≤,则称()f x 和()g x 在[a,b]上 是“密切函数”,[a,b]称为“密切区间”,设2()34f x x x =-+与()23g x x =-在[a,b]上是“密切函数”,则它的“密切区间”可以是 ( )A .[1,4]B .[2,4]C .[3,4]D .[2,3]二、填空题:共4小题,每小题5分,满分20分.(一)必做题:11.为了了解某地居民每户 月均用电的基本情况, 抽 取出该地区若干户居民的 用电数据, 得到频率分布 直方图如图2所示, 若月 均用电量在区间[)110,120 上共有150户,则月均用电 量在区间[)120,140上的居 民共有户.12.曲线53x y e =-+在点()0,2-处的切线方程为_______.13.设函数x x x f 2s in )(+=,若0)2()1(<+-a f a f ,则实数a 的取值范围为______.(二)选做题(14—15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,直线l 的方程为sin 3ρθ=,则点(2,)6π到直线l 的距离为.15.(几何证明选讲选做题)如图,已知⊙O 的割线PAB 交⊙O 于A ,B 两点,割线PCD 经过圆心,若PA=3,AB=4,PO=5,则⊙O 的半径为_____________. 三、解答题:共6小题,满分80分. 16.(本小题满分12分)已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的最小正周期为π,且函数()f x 的图象过点,12π⎛⎫- ⎪⎝⎭.(1)求ω和ϕ的值;(2)设()()()4g x f x f x π=+-,求函数()g x 的单调递增区间.17.(本小题满分12分)某地区对12岁儿童瞬时记忆能力进行调查.瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人.由于部分数据丢失,只知道从这40位学生中随机抽取一个,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的概率为25. (1)试确定a 、b 的值;(2)从40人中任意抽取1人,求此人听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上的概率. 18.(本小题满分14分)一个几何体是由圆柱11ADD A 和三棱锥E ABC -组合而成,点A 、B 、C 在圆O 的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图2所示,其中EA ABC ⊥平面, AB AC ⊥,AB AC =,2AE =. (1)求证:AC BD ⊥;(2)求三棱锥E BCD -的体积.AODEE AA 1D 1A D 1A 1E BCO D19.(本小题满分14分)已知等差数列{a n }的前n 项和为n S ,且1055S =,20210S =. (1)求数列{}n a 的通项公式; (2)设1nn n a b a +=,是否存在m 、k ()2,,k m k m >≥∈*N ,使得1b 、m b 、k b 成等比数列.若存在,求出所有符合条件的m 、k 的值;若不存在,请说明理由.20.(本题满分14分)已知椭圆的一个顶点为()0,1A -,焦点在x 轴上,若右焦点到直线0x y -+=的距离为3.(1)求椭圆的标准方程;(2)设直线()0y kx m k =+≠与椭圆相交于不同的两点M 、N ,当A M A N =时,求m 的取值范围.21.(本题满分14分)已知))(()(),()(),()(,)(*'1'12'010N n x f x f x f x f x f x f xe x f n n x ∈====-(1)请写出)(x f n )(*N n ∈的表达式(不需要证明);(2)记)(x f n )(*N n ∈的最小值为)(n g ,求函数)(n g y =)(*N n ∈的最小值。
汕头市2015届普通高考第二次模拟考试(文数)

汕头市2015届普通高考第二次模拟考试数 学(文 科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁.考试结束后,将答题卡一并交回。
参考公式:1.柱体体积公式为Sh V =,其中S 为柱体的底面积、h 为柱体的高.2.锥体体积公式为Sh V 31=,其中S 为锥体的底面积、h 为锥体的高.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、设集合{}U 1,2,3,4=,{}1,2A =,{}2,4B =,则=⋂A C B u ( )A .{}2B .{}4C .{}1,2,4D .{}1,4 2、已知i 是虚数单位,若31ii z+=-,则复数z 的共轭复数是( )A .12i -B .24i -CD .12i + 3、若a ,b 是两个非零的平面向量,则“a b =”是“()()0a b a b +⋅-=”的( ) A .充分且不必要条件 B .必要且不充分条件 C .充要条件 D .既不充分也不必要条件 4、为了得到函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象,只需把函数sin 2y x =的图象( ) A .向左平移3π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度 D .向右平移6π个单位长度5、设{}n a 是首项为12-,公差为d (0d ≠)的等差数列,n S 为其前n 项和,若1S ,2S ,4S 成等比数列,则d =( ) A .1- B .12-C .18D .126、已知直线1:l ()120m x y -++=,2:l ()()8110x m y m +++-=,且12//l l ,则m =( ) A .79B .3±C .3D .3- 7、设不等式组22042x y x y -+≥⎧⎪≤⎨⎪≥-⎩表示的平面区域为D .在区域D 内随机取一个点,则此点到直线20y +=的距离大于2的概率是( ) A .413 B .513 C .825 D .9258、程序框图如图1所示,若其输出结果是30,则判断框中填写的是( ) A .7?i < B .5?i < C .7?i > D .5?i >9、已知双曲线2214x y a -=的渐近线方程为y x =,则此双曲线的离心率是( ) A.2 B.3 C .53D.3 图110、设集合()(){},F ,0x y x y M ==为平面直角坐标系x y O 内的点集,若对于任意()11,x y ∈M ,存在()22,x y ∈M ,使得12120x x y y +<,则称点集M 满足性质P .给出下列四个点集: ①(){}R ,sin 10x y x y =-+= ②(){},ln 0S x y x y =-=③(){}22,10x y xy T =+-=④(){}W ,10x y xy =-=其中所有满足性质P 的点集的序号是( )A .①②B .③④C .①③D .②④二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.) (一)必做题(11~13题) 11、函数()log 1x f x +=的定义域是 .12、图2是甲、乙两名篮球运动员2014年赛季每场比赛得分的茎叶图,则甲、乙两人比赛得分的中位数之和是 .图2图313、若某几何体的三视图如图3所示,则该几何体的体积是 .(二)选做题(14、15题,考生只能从中选做一题,两题全答的,只计算前一题的得分。
2015年广东省高考数学试卷(文科),附答案,最详尽答案

2015年广东省高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(广东卷)数学(文科)1.(5分)(2015•广东)若集合M={﹣1,1},N={﹣2,1,0}则M∩N=()A.{0.﹣1} B.{0} C.{1} D.{﹣1,1}2.(5分)(2015•广东)已知i是虚数单位,则复数(1+i)2=()A.2i B.﹣2i C.2 D.﹣23.(5分)(2015•广东)下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin2x B.y=x2﹣cosx C.y=2x+D.y=x2+sinx4.(5分)(2015•广东)若变量x,y满足约束条件,则z=2x+3y的最大值为()A.2 B.5 C.8 D.105.(5分)(2015•广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cosA=.且b<c,则b=()A.3 B.2C.2 D.6.(5分)(2015•广东)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交7.(5分)(2015•广东)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()A.0.4 B.0.6 C.0.8 D.18.(5分)(2015•广东)已知椭圆+=1(m>0 )的左焦点为F1(﹣4,0),则m=()A.2 B.3 C.4 D.99.(5分)(2015•广东)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,﹣2),=(2,1)则•=()A.5 B.4 C.3 D.210.(5分)(2015•广东)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表示集合X中的元素个数,则card(E)+card(F)=()A.200 B.150 C.100 D.50二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11~13题)11.(5分)(2015•广东)不等式﹣x2﹣3x+4>0的解集为.(用区间表示)12.(5分)(2015•广东)已知样本数据x1,x2,…,x n的均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为.13.(5分)(2015•广东)若三个正数a,b,c 成等比数列,其中a=5+2,c=5﹣2,则b=.坐标系与参数方程选做题14.(5分)(2015•广东)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为.几何证明选讲选做题15.(2015•广东)如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4.CE=2,则AD=.三、解答题(共6小题,满分80分)16.(12分)(2015•广东)已知tanα=2.(1)求tan(α+)的值;(2)求的值.17.(12分)(2015•广东)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220.240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220.240)的用户中应抽取多少户?18.(14分)(2015•广东)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C 到平面PDA的距离.19.(14分)(2015•广东)设数列{a n}的前n项和为S n,n∈N*.已知a1=1,a2=,a3=,且当n≥2时,4S n+2+5S n=8S n+1+S n.﹣1(1)求a4的值;(2)证明:{a n+1﹣a n}为等比数列;(3)求数列{a n}的通项公式.20.(14分)(2015•广东)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.21.(14分)(2015•广东)设a为实数,函数f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1).(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2 时,讨论f(x)+在区间(0,+∞)内的零点个数.2015年广东省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(广东卷)数学(文科)1.(5分)(2015•广东)若集合M={﹣1,1},N={﹣2,1,0}则M∩N=()A.{0.﹣1} B.{0} C.{1} D.{﹣1,1}【分析】进行交集的运算即可.【解答】解:M∩N={﹣1,1}∩{﹣2,1,0}={1}.故选:C.2.(5分)(2015•广东)已知i是虚数单位,则复数(1+i)2=()A.2i B.﹣2i C.2 D.﹣2【分析】利用完全平方式展开化简即可.【解答】解:(1+i)2=12+2i+i2=1+2i﹣1=2i;故选:A.3.(5分)(2015•广东)下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin2x B.y=x2﹣cosx C.y=2x+D.y=x2+sinx【分析】利用函数奇偶性的判断方法对选项分别分析选择.【解答】解:四个选项中,函数的定义域都是R,对于A,﹣x+sin(﹣2x)=﹣(x+sin2x);是奇函数;对于B,(﹣x)2﹣cos(﹣x)=x2﹣cosx;是偶函数;对于C,,是偶函数;对于D,(﹣x)2+sin(﹣x)=x2﹣sinx≠x2+sinx,x2﹣sinx≠﹣(x2+sinx);所以是非奇非偶的函数;故选:D.4.(5分)(2015•广东)若变量x,y满足约束条件,则z=2x+3y的最大值为()A.2 B.5 C.8 D.10【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【解答】解:作出不等式对应的平面区域(阴影部分),由z=2x+3y,得y=,平移直线y=,由图象可知当直线y=经过点B时,直线y=的截距最大,此时z最大.由,解得,即B(4,﹣1).此时z的最大值为z=2×4+3×(﹣1)=8﹣3=5,故选:B.5.(5分)(2015•广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cosA=.且b<c,则b=()A.3 B.2C.2 D.【分析】运用余弦定理:a2=b2+c2﹣2bccosA,解关于b的方程,结合b<c,即可得到b=2.【解答】解:a=2,c=2,cosA=.且b<c,由余弦定理可得,a2=b2+c2﹣2bccosA,即有4=b2+12﹣4×b,解得b=2或4,由b<c,可得b=2.故选:C.6.(5分)(2015•广东)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交【分析】可以画出图形来说明l与l1,l2的位置关系,从而可判断出A,B,C是错误的,而对于D,可假设不正确,这样l便和l1,l2都不相交,这样可退出和l1,l2异面矛盾,这样便说明D正确.【解答】解:A.l与l1,l2可以相交,如图:∴该选项错误;B.l可以和l1,l2中的一个平行,如上图,∴该选项错误;C.l可以和l1,l2都相交,如下图:,∴该选项错误;D.“l至少与l1,l2中的一条相交”正确,假如l和l1,l2都不相交;∵l和l1,l2都共面;∴l和l1,l2都平行;∴l1∥l2,l1和l2共面,这样便不符合已知的l1和l2异面;∴该选项正确.故选D.7.(5分)(2015•广东)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()A.0.4 B.0.6 C.0.8 D.1【分析】首先判断这是一个古典概型,而基本事件总数就是从5件产品任取2件的取法,取到恰有一件次品的取法可利用分步计数原理求解,最后带入古典概型的概率公式即可.【解答】解:这是一个古典概型,从5件产品中任取2件的取法为;∴基本事件总数为10;设“选的2件产品中恰有一件次品”为事件A,则A包含的基本事件个数为=6;∴P(A)==0.6.故选:B.8.(5分)(2015•广东)已知椭圆+=1(m>0 )的左焦点为F1(﹣4,0),则m=()A.2 B.3 C.4 D.9【分析】利用椭圆+=1(m>0 )的左焦点为F1(﹣4,0),可得25﹣m2=16,即可求出m.【解答】解:∵椭圆+=1(m>0 )的左焦点为F1(﹣4,0),∴25﹣m2=16,∵m>0,∴m=3,故选:B.9.(5分)(2015•广东)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,﹣2),=(2,1)则•=()A.5 B.4 C.3 D.2【分析】由向量加法的平行四边形法则可求=的坐标,然后代入向量数量积的坐标表示可求【解答】解:由向量加法的平行四边形法则可得,==(3,﹣1).∴=3×2+(﹣1)×1=5.故选:A.10.(5分)(2015•广东)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表示集合X中的元素个数,则card(E)+card(F)=()A.200 B.150 C.100 D.50【分析】对于集合E,s=4时,p,q,r从0,1,2,3任取一数都有4种取法,从而构成的元素(p,q,r,s)有4×4×4=64个,再讨论s=3,2,1的情况,求法一样,把每种情况下元素个数相加即可得到集合E的元素个数,而对于集合F,需讨论两个数:u,w,方法类似,最后把求得的集合E,F元素个数相加即可.【解答】解:(1)s=4时,p,q,r的取值的排列情况有4×4×4=64种;s=3时,p,q,r的取值的排列情况有3×3×3=27种;s=2时,有2×2×2=8种;s=1时,有1×1×1=1种;∴card(E)=64+27+8+1=100;(2)u=4时:若w=4,t,v的取值的排列情况有4×4=16种;若w=3,t,v的取值的排列情况有4×3=12种;若w=2,有4×2=8种;若w=1,有4×1=4种;u=3时:若w=4,t,v的取值的排列情况有3×4=12种;若w=3,t,v的取值的排列情况有3×3=9种;若w=2,有3×2=6种;若w=1,有3×1=3种;u=2时:若w=4,t,v的取值的排列情况有2×4=8种;若w=3,有2×3=6种;若w=2,有2×2=4种;若w=1,有2×1=2种;u=1时:若w=4,t,v的取值的排列情况有1×4=4种;若w=3,有1×3=3种;若w=2,有1×2=2种;若w=1,有1×1=1种;∴card(F)=100;∴card(E)+card(F)=200.故选A.二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11~13题)11.(5分)(2015•广东)不等式﹣x2﹣3x+4>0的解集为(﹣4,1).(用区间表示)【分析】首先将二次项系数化为正数,然后利用因式分解法解之.【解答】解:原不等式等价于x2+3x﹣4<0,所以(x+4)(x﹣1)<0,所以﹣4<x<1;所以不等式的解集为(﹣4,1);故答案为:(﹣4,1).12.(5分)(2015•广东)已知样本数据x1,x2,…,x n的均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为11.【分析】利用平均数计算公式求解【解答】解:∵数据x1,x2,…,x n的平均数为均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为:=5×2+1=11;故答案为:11.13.(5分)(2015•广东)若三个正数a,b,c 成等比数列,其中a=5+2,c=5﹣2,则b=1.【分析】由已知可得,b2=ac,代入已知条件即可求解b【解答】解:∵三个正数a,b,c 成等比数列,∴b2=ac,∵a=5+2,c=5﹣2,∴=1,故答案为:1.坐标系与参数方程选做题14.(5分)(2015•广东)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为(2,﹣4).【分析】曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,把代入可得直角坐标方程.曲线C2的参数方程为(t为参数),化为普通方程:y2=8x.联立解出即可.【解答】解:曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,化为直角坐标方程:x+y+2=0.曲线C2的参数方程为(t为参数),化为普通方程:y2=8x.联立,解得,则C1与C2交点的直角坐标为(2﹣,4).故答案为:(2,﹣4).几何证明选讲选做题15.(2015•广东)如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4.CE=2,则AD=3.【分析】连接OC,则OC⊥DE,可得,由切割线定理可得CE2=BE•AE,求出BE,即可得出结论.【解答】解:连接OC,则OC⊥DE,∵AD⊥DE,∴AD∥OC,∴由切割线定理可得CE2=BE•AE,∴12=BE•(BE+4),∴BE=2,∴OE=4,∴,∴AD=3故答案为:3.三、解答题(共6小题,满分80分)16.(12分)(2015•广东)已知tanα=2.(1)求tan(α+)的值;(2)求的值.【分析】(1)直接利用两角和的正切函数求值即可.(2)利用二倍角公式化简求解即可.【解答】解:tanα=2.(1)tan(α+)===﹣3;(2)====1.17.(12分)(2015•广东)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220.240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220.240)的用户中应抽取多少户?【分析】(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得;(2)由直方图中众数为最高矩形上端的中点可得,可得中位数在[220,240)内,设中位数为a,解方程(0.002+0.0095++0.011)×20+0.0125×(a﹣220)=0.5可得;(3)可得各段的用户分别为25,15,10,5,可得抽取比例,可得要抽取的户数.【解答】解:(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得x=0.0075,∴直方图中x的值为0.0075;(2)月平均用电量的众数是=230,∵(0.002+0.0095+0.011)×20=0.45<0.5,∴月平均用电量的中位数在[220,240)内,设中位数为a,由(0.002+0.0095+0.011)×20+0.0125×(a﹣220)=0.5可得a=224,∴月平均用电量的中位数为224;(3)月平均用电量为[220,240)的用户有0.0125×20×100=25,月平均用电量为[240,260)的用户有0.0075×20×100=15,月平均用电量为[260,280)的用户有0.005×20×100=10,月平均用电量为[280,300)的用户有0.0025×20×100=5,∴抽取比例为=,∴月平均用电量在[220,240)的用户中应抽取25×=5户18.(14分)(2015•广东)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C 到平面PDA的距离.【分析】(1)利用四边形ABCD是长方形,可得BC∥AD,根据线面平行的判定定理,即可得出结论;(2)利用平面与平面垂直的性质定理得出BC⊥平面PDC,即可证明BC⊥PD;(3)利用等体积法,求点C到平面PDA的距离.【解答】(1)证明:因为四边形ABCD是长方形,所以BC∥AD,因为BC⊄平面PDA,AD⊂平面PDA,所以BC∥平面PDA;(2)证明:因为四边形ABCD是长方形,所以BC⊥CD,因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,BC⊂面ABCD,所以BC⊥平面PDC,因为PD⊂平面PDC,所以BC⊥PD;(3)解:取CD的中点E,连接AE和PE,因为PD=PC,所以PE⊥CD,在Rt△PED中,PE===.因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,PE⊂平面PDC,所以PE⊥平面ABCD.由(2)知:BC⊥平面PDC,由(1)知:BC∥AD,所以AD⊥平面PDC,因为PD⊂平面PDC,所以AD⊥PD.设点C到平面PDA的距离为h.因为V C﹣PDA=V P﹣ACD,所以,所以h==,所以点C到平面PDA的距离是.19.(14分)(2015•广东)设数列{a n}的前n项和为S n,n∈N*.已知a1=1,a2=,a3=,且当n≥2时,4S n+2+5S n=8S n+1+S n.﹣1(1)求a4的值;(2)证明:{a n+1﹣a n}为等比数列;(3)求数列{a n}的通项公式.【分析】(1)直接在数列递推式中取n=2,求得;(2)由4S n+2+5S n=8S n+1+S n﹣1(n≥2),变形得到4a n+2+a n=4a n+1(n≥2),进一步得到,由此可得数列{}是以为首项,公比为的等比数列;(3)由{}是以为首项,公比为的等比数列,可得.进一步得到,说明{}是以为首项,4为公差的等差数列,由此可得数列{a n}的通项公式.【解答】(1)解:当n=2时,4S4+5S2=8S3+S1,即,解得:;(2)证明:∵4S n+2+5S n=8S n+1+S n﹣1(n≥2),∴4S n+2﹣4S n+1+S n﹣S n﹣1=4S n+1﹣4S n(n≥2),即4a n+2+a n=4a n+1(n≥2),∵,∴4a n+2+a n=4a n+1.∵=.∴数列{}是以=1为首项,公比为的等比数列;(3)解:由(2)知,{}是以为首项,公比为的等比数列,∴.即,∴{}是以为首项,4为公差的等差数列,∴,即,∴数列{a n}的通项公式是.20.(14分)(2015•广东)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.【分析】(1)通过将圆C1的一般式方程化为标准方程即得结论;(2)设当直线l的方程为y=kx,通过联立直线l与圆C1的方程,利用根的判别式大于0、韦达定理、中点坐标公式及参数方程与普通方程的相互转化,计算即得结论;(3)通过联立直线L与圆C1的方程,利用根的判别式△=0及轨迹C的端点与点(4,0)决定的直线斜率,即得结论.【解答】解:(1)∵圆C1:x2+y2﹣6x+5=0,整理,得其标准方程为:(x﹣3)2+y2=4,∴圆C1的圆心坐标为(3,0);(2)设当直线l的方程为y=kx、A(x1,y1)、B(x2,y2),联立方程组,消去y可得:(1+k2)x2﹣6x+5=0,由△=36﹣4(1+k2)×5>0,可得k2<由韦达定理,可得x1+x2=,∴线段AB的中点M的轨迹C的参数方程为,其中﹣<k<,∴线段AB的中点M的轨迹C的方程为:(x﹣)2+y2=,其中<x≤3;(3)结论:当k∈[﹣,]∪{﹣,}时,直线L:y=k(x﹣4)与曲线C只有一个交点.理由如下:联立方程组,消去y,可得:(1+k2)x2﹣(3+8k2)x+16k2=0,令△=(3+8k2)2﹣4(1+k2)•16k2=0,解得k=±,又∵轨迹C的端点(,±)与点(4,0)决定的直线斜率为±,∴当直线L:y=k(x﹣4)与曲线C只有一个交点时,k的取值范围为[﹣,]∪{﹣,}.21.(14分)(2015•广东)设a为实数,函数f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1).(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2 时,讨论f(x)+在区间(0,+∞)内的零点个数.【分析】(1)利用f(0)≤1,得到|a|+a﹣1≤0,对a分类讨论求解不等式的解集即可.(2)化简函数f(x)的解析式,通过当x<a时,当x≥a时,利用二次函数f(x)的对称轴求解函数的单调区间即可.(3)化简F(x)=f(x)+,求出函数的导数,利用导函数的符号,通过a的讨论判断函数的单调性,然后讨论函数的零点的个数.【解答】解:(1)若f(0)≤1,即:a2+|a|﹣a(a﹣1)≤1.可得|a|+a﹣1≤0,当a≥0时,a,可得a∈[0,].当a<0时,|a|+a﹣1≤0,恒成立.综上a.∴a的取值范围:;(2)函数f(x)==,当x<a时,函数f(x)的对称轴为:x==a+>a,y=f(x)在(﹣∞,a)时是减函数,当x≥a时,函数f(x)的对称轴为:x==a﹣<a,y=f(x)在(a,+∞)时是增函数,(3)F(x)=f(x)+=,,当x<a时,=,所以,函数F(x)在(0,a)上是减函数.当x≥a时,因为a≥2,所以,F′(x)=═,所以,函数F(x)在(a,+∞)上是增函数.F(a)=a﹣a2+.当a=2时,F(2)=0,此时F(x)有一个零点,当a>2时,F(a)=a﹣a2+,F′(a)=1﹣2a==.所以F(ah)在(2,+∞)上是减函数,所以F(a)<,即F(a)<0,当x>0且x→0时,F(x)→+∞;当x→+∞时,F(x)→+∞,所以函数F(x)有两个零点.综上所述,当a=2时,F(x)有一个零点,a>2时F(x)有两个零点.。
2015年广东省高考数学试卷(文科)附详细解析

2015年广东省高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(广东卷)数学(文科)24.(5分)(2015•广东)若变量x,y满足约束条件,则z=2x+3y的最大值为()5.(5分)(2015•广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cosA=.且b<c,则b=()6.(5分)(2015•广东)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是7.(5分)(2015•广东)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任8.(5分)(2015•广东)已知椭圆+=1(m>0 )的左焦点为F1(﹣4,0),则m=()9.(5分)(2015•广东)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,﹣2),=(2,1)则•=()10.(5分)(2015•广东)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11~13题)11.(5分)(2015•广东)不等式﹣x2﹣3x+4>0的解集为.(用区间表示)12.(5分)(2015•广东)已知样本数据x1,x2,…,x n的均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为.13.(5分)(2015•广东)若三个正数a,b,c 成等比数列,其中a=5+2,c=5﹣2,则b=.坐标系与参数方程选做题14.(5分)(2015•广东)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为.几何证明选讲选做题15.(2015•广东)如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4.CE=2,则AD=.三、解答题(共6小题,满分80分)16.(12分)(2015•广东)已知tanα=2.(1)求tan(α+)的值;(2)求的值.17.(12分)(2015•广东)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,200),[220.240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220.240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220.240)的用户中应抽取多少户?18.(14分)(2015•广东)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C 到平面PDA的距离.19.(14分)(2015•广东)设数列{a n}的前n项和为S n,n∈N*.已知a1=1,a2=,a3=,且当a≥2时,4S n+2+5S n=8S n+1+S n﹣1.(1)求a4的值;(2)证明:{a n+1﹣a n}为等比数列;(3)求数列{a n}的通项公式.20.(14分)(2015•广东)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.21.(14分)(2015•广东)设a为实数,函数f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1).(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2 时,讨论f(x)+在区间(0,+∞)内的零点个数.2015年广东省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(广东卷)数学(文科)2,是偶函数;4.(5分)(2015•广东)若变量x,y满足约束条件,则z=2x+3y的最大值为()y=y=,解得,5.(5分)(2015•广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cosA=.且b<c,则b=(),cosA=×6.(5分)(2015•广东)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是7.(5分)(2015•广东)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任件的取法为8.(5分)(2015•广东)已知椭圆+=1(m>0 )的左焦点为F1(﹣4,0),则m=()利用椭圆+椭圆=19.(5分)(2015•广东)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,﹣2),=(2,1)则•=()==∴10.(5分)(2015•广东)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11~13题)11.(5分)(2015•广东)不等式﹣x2﹣3x+4>0的解集为(﹣4,1).(用区间表示)12.(5分)(2015•广东)已知样本数据x1,x2,…,x n的均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为11.的平均数为均值的均值为:13.(5分)(2015•广东)若三个正数a,b,c 成等比数列,其中a=5+2,c=5﹣2,则b=1.,2∴坐标系与参数方程选做题14.(5分)(2015•广东)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为(2,﹣4).,把的参数方程为,解得,几何证明选讲选做题15.(2015•广东)如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4.CE=2,则AD=3.,可得∴∴三、解答题(共6小题,满分80分)16.(12分)(2015•广东)已知tanα=2.(1)求tan(α+)的值;(2)求的值.+===117.(12分)(2015•广东)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,200),[220.240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220.240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220.240)的用户中应抽取多少户?)月平均用电量的众数是=×18.(14分)(2015•广东)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C 到平面PDA的距离.PE==.h==的距离是.19.(14分)(2015•广东)设数列{a n}的前n项和为S n,n∈N*.已知a1=1,a2=,a3=,且当a≥2时,4S n+2+5S n=8S n+1+S n﹣1.(1)求a4的值;(2)证明:{a n+1﹣a n}为等比数列;(3)求数列{a n}的通项公式.,求得,由此可得数列{}是以为首项,公比为的{为首项,公比为{为首项,∵∵{是以为首项,公比为的等比数列;{是以为首项,公比为的等比数列,∴为首项,∴,即的通项公式是20.(14分)(2015•广东)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.联立方程组,,其中﹣<)=,其中<,﹣,联立方程组,±,的端点(,±±的取值范围为(﹣,}21.(14分)(2015•广东)设a为实数,函数f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1).(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2 时,讨论f(x)+在区间(0,+∞)内的零点个数.+a,a.,x==a+=a﹣=时,=═,.当,=.,即参与本试卷答题和审题的老师有:wkl197822;changq;maths;双曲线;刘长柏;吕静;孙佑中;qiss;lincy;sxs123;cst(排名不分先后)菁优网2015年7月20日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省汕头市2015届高考数学模拟试卷(文科)(12月份)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)集合A={﹣1,0,1},A的子集中,含有元素0的子集共有()A.2个B.4个C.6个D.8个2.(5分)复数的实部与虚部之和为()A.﹣1 B.2C.1D.03.(5分)如图是某几何体的三视图,其中俯视图和侧视图是半径为1的半圆,主视图是个圆,则该几何体的全面积是()A.πB.2πC.3πD.4π4.(5分)已知实数x,y满足不等式组,则z=2x+y的最小值是()A.2B.4C.6D.75.(5分)已知平面向量,满足||=,||=2,且(﹣)⊥,则与的夹角为()A.B.C.D.6.(5分)设l,m是两条不同直线,α,β是两个不同平面,则下列命题中正确的是()A.若l∥α,α∩β=m,则l∥m B.若l⊥α,l∥β,则α⊥βC.若l∥α,m∥α,则l∥m D.若l∥α,m⊥l,则m⊥α7.(5分)如图,在程序框图中,若输入n=3,则输出k的值是()A.2B.3C.4D.58.(5分)下列说法中,正确的是()A.命题“若am2<bm2,则a<b”的逆命题是真命题B.命题“∃x∈R,x2﹣x>0”的否定是“∀x∈R,x2﹣x≤0”C.命题“p∨q”为真命题,则命题“p”和命题“q”均为真命题D.已知x∈R,则“x>1”是“x>2”的充分不必要条件9.(5分)设函数f(x)=sin(2x+),则下列结论正确的是()A.f(x)的图象关于直线x=对称B.f(x)的图象关于点(,0)对称C.f(x)的最小正周期为π,且在上为增函数D.把f(x)的图象向右平移个单位,得到一个偶函数的图象10.(5分)设f(x)与g(x)是定义在同一区间上的两个函数,若函数y=f(x)﹣g(x)在x∈上有两个不同的零点,则称f(x)和g(x)在上是“关联函数”,区间称为“关联区间”.若f(x)=x2﹣3x+4与g(x)=2x+m在上是“关联函数”,则m的取值范围为()A.(﹣,﹣2]B.C.(﹣∞,﹣2]D.(﹣,+∞)二、填空题(本大题共5小题,考生作答4小题,每小题4分,满分20分.)(一)必做题(11~13题)11.(4分)为了了解某地区2015届高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁~18岁的男生体重(kg),得到频率分布直方图如图:根据如图可得这100名学生中体重在的学生人数是.12.(4分)已知△ABC中,角A,B,C所对的边分别是a,b,c,∠A=60°,c=2,且△ABC的面积为,则a边的长为.13.(4分)已知函数f(x)=mx2+nx﹣2(m>0,n>0)的一个零点是2,则+的最小值为.14.(4分)(坐标系与参数方程选做题)在平面直角坐标系中,直线l的参数方程为(参数t∈R),圆的参数方程为(参数θ∈,求函数f(x)的值域.19.(14分)如图,已知AF⊥平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,∠DAB=90°,AB∥CD,AD=AF=CD=2,AB=4.(1)求证:AF∥平面BCE;(2)求证:AC⊥平面BCE;(3)求三棱锥E﹣BCF的体积.20.(14分)设函数g(x)=x3+ax2的图象在x=1处的切线平行于直线2x﹣y=0.记g(x)的导函数为f(x).(1)求函数f(x)的解析式;(2)记正项数列{a n}的前n项和为S n,且∀n∈N+,S n=f(a n),求a n;(3)对于数列{b n}满足:b1=,b n+1=f(b n),当n≥2,n∈N+时,求证:1<++…+<2.21.(14分)已知函数f(x)=(2﹣a)lnx++2ax(a≤0).(Ⅰ)当a=0时,求f(x)的极值;(Ⅱ)当a<0时,讨论f(x)的单调性;(Ⅲ)若对任意的a∈(﹣3,﹣2),x1,x2∈,恒有(m+ln3)a﹣2ln3>|f(x1)﹣f(x2)|成立,求实数m的取值范围.广东省汕头市2015届高考数学模拟试卷(文科)(12月份)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)集合A={﹣1,0,1},A的子集中,含有元素0的子集共有()A.2个B.4个C.6个D.8个考点:子集与真子集.分析:根据题意,列举出A的子集中,含有元素0的子集,进而可得答案.解答:解:根据题意,在集合A的子集中,含有元素0的子集有{0}、{0,1}、{0,﹣1}、{﹣1,0,1},四个;故选B.点评:元素数目较少时,宜用列举法,当元素数目较多时,可以使用并集的思想.2.(5分)复数的实部与虚部之和为()A.﹣1 B.2C.1D.0考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:直接利用复数代数形式的乘除运算化简,求得实部和虚部后求和得答案.解答:解:∵=,∴复数的实部与虚部之和为1+1=2.故选:B.点评:本题考查了复数代数形式的乘除运算,是基础题.3.(5分)如图是某几何体的三视图,其中俯视图和侧视图是半径为1的半圆,主视图是个圆,则该几何体的全面积是()A.πB.2πC.3πD.4π考点:由三视图求面积、体积.专题:计算题.分析:由三视图知几何体的直观图是半个球,其半径为1,则该几何体的全面积由半个球的表面积和一个大圆面积组成,分别代入球的表面积和圆面积公式,即可求出答案.解答:解:由三视图知几何体的直观图是半个球,全面积为,故选C.点评:本题考查简单几何体的三视图和球的面积计算,属中等题.其中根据三视图判断出几何体的形状是解答的关键.4.(5分)已知实数x,y满足不等式组,则z=2x+y的最小值是()A.2B.4C.6D.7考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用z的几何意义,即可得到结论.解答:试题分析:做出可行域,解:作出不等式组对应的平面区域如图:由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线的截距最小,此时z最小,由,解得,即A(2,0),此时z=2×2+0=4,故选:B点评:本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.5.(5分)已知平面向量,满足||=,||=2,且(﹣)⊥,则与的夹角为()A.B.C.D.考点:平面向量数量积的运算.专题:计算题;平面向量及应用.分析:运用向量垂直的条件即为数量积为0,再由向量夹角公式和范围,即可得到夹角.解答:解:由于||=,||=2,且(﹣)⊥,则()=0,即有==3,cos<>===,由于<>∈,则与的夹角为.故选A.点评:本题考查平面向量的数量积的定义和性质,考查夹角公式及运用,考查运算能力,属于基础题.6.(5分)设l,m是两条不同直线,α,β是两个不同平面,则下列命题中正确的是()A.若l∥α,α∩β=m,则l∥m B.若l⊥α,l∥β,则α⊥βC.若l∥α,m∥α,则l∥m D.若l∥α,m⊥l,则m⊥α考点:空间中直线与平面之间的位置关系.专题:阅读型;空间位置关系与距离.分析:由线面平行的性质定理可判断A;又线面平行的性质定理和面面垂直的判定定理即可判断B;由线面平行的性质定理可判断C;由线面平行的性质定理可判断D.解答:解:A.若l∥α,α∩β=m,.则l,m平行或异面,只有l⊂β,才有l∥m.故A错;B.若l⊥α,l∥β,则由线面平行的性质定理,l⊂γ,γ∩β=m,则l∥m,又l⊥α,故m⊥α,由面面垂直的判定定理得,α⊥β,故B正确;C.若l∥α,m∥α,则由线面平行的性质可得l,m平行、相交、异面,故C错;D.若l∥α,m⊥l,则m与α平行、相交或在平面内,故D错.故选B.点评:本题主要考查直线与平面平行、垂直的判定与性质定理的应用,考查空间想象能力,注意定理的条件的全面性,以及直线与平面的位置关系,是一道基础题.7.(5分)如图,在程序框图中,若输入n=3,则输出k的值是()A.2B.3C.4D.5考点:程序框图.专题:算法和程序框图.分析:执行程序框图,依次写出每次循环得到的n,k的值,当n=127,满足条件n>100,输出k的值为4.解答:解:执行程序框图,有n=3,k=0n=7,不满足条件n>100,有k=1n=15,不满足条件n>100,有k=2n=31,不满足条件n>100,有k=3n=63,不满足条件n>100,有k=4n=127,满足条件n>100,输出k的值为4.故选:C.点评:本题主要考察了程序算法和框图,属于基本知识的考查.8.(5分)下列说法中,正确的是()A.命题“若am2<bm2,则a<b”的逆命题是真命题B.命题“∃x∈R,x2﹣x>0”的否定是“∀x∈R,x2﹣x≤0”C.命题“p∨q”为真命题,则命题“p”和命题“q”均为真命题D.已知x∈R,则“x>1”是“x>2”的充分不必要条件考点:命题的真假判断与应用.分析:A先写出逆命题再利用不等式性质判断;B中“∃x∈R,x2﹣x>0”为特称命题,否定时为全称命题;C命题“p∨q”为真命题指命题“p”或命题“q”为真命题,只要有一个为真即可;D应为必要不充分条件.解答:A“若am2<bm2,则a<b”的逆命题是“若a<b,则am2<bm2”,m=0时不正确;B中“∃x∈R,x2﹣x>0”为特称命题,否定时为全称命题,结论正确;C命题“p∨q”为真命题指命题“p”或命题“q”为真命题,只要有一个为真即可,错误;D应为必要不充分条件.故选B.点评:本题考查命题真假的判断,问题涉及不等式性质、复合命题真假判断、全称命题及特称命题、命题的否定、充要条件等,考查面较广.9.(5分)设函数f(x)=sin(2x+),则下列结论正确的是()A.f(x)的图象关于直线x=对称B.f(x)的图象关于点(,0)对称C.f(x)的最小正周期为π,且在上为增函数D.把f(x)的图象向右平移个单位,得到一个偶函数的图象考点:命题的真假判断与应用;函数y=Asin(ωx+φ)的图象变换.专题:计算题;三角函数的图像与性质.分析:通过x=函数是否取得最值判断A的正误;通过x=,函数值是否为0,判断B 的正误;利用函数的周期与单调性判断C的正误;利用函数的图象的平移判断D的正误.解答:解:对于A,当x=时,函数f(x)=sin(2×+)=,不是函数的最值,判断A的错误;对于B,当x=,函数f(x)=sin(2×+)=1≠0,判断B的错误;对于C,f(x)的最小正周期为π,由,可得,k∈Z,在上为增函数,∴选项C的正确;对于D,把f(x)的图象向右平移个单位,得到函数f(x)=sin(2x+),函数不是偶函数,∴选项D不正确.故选:C.点评:本题考查三角函数的基本性质的应用,函数的单调性、奇偶性、周期性,基本知识的考查.10.(5分)设f(x)与g(x)是定义在同一区间上的两个函数,若函数y=f(x)﹣g(x)在x∈上有两个不同的零点,则称f(x)和g(x)在上是“关联函数”,区间称为“关联区间”.若f(x)=x2﹣3x+4与g(x)=2x+m在上是“关联函数”,则m的取值范围为()A.(﹣,﹣2]B.C.(﹣∞,﹣2]D.(﹣,+∞)考点:函数零点的判定定理.专题:压轴题;新定义.分析:由题意可得h(x)=f(x)﹣g(x)=x2﹣5x+4﹣m 在上有两个不同的零点,故有,由此求得m的取值范围.解答:解:∵f(x)=x2﹣3x+4与g(x)=2x+m在上是“关联函数”,故函数y=h(x)=f(x)﹣g(x)=x2﹣5x+4﹣m在上有两个不同的零点,故有,即,解得﹣<m≤﹣2,故选A.点评:本题考查函数零点的判定定理,“关联函数”的定义,二次函数的性质,体现了转化的数学思想,属于基础题.二、填空题(本大题共5小题,考生作答4小题,每小题4分,满分20分.)(一)必做题(11~13题)11.(4分)为了了解某地区2015届高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁~18岁的男生体重(kg),得到频率分布直方图如图:根据如图可得这100名学生中体重在的学生人数是24.考点:频率分布直方图.专题:概率与统计.分析:根据频率分布直方图,求出体重在的频率与频数即可.解答:解:根据频率分布直方图,得;体重在的频率是(0.05+0.07)×2=0.24,∴对应的学生人数是100×0.24=24.故答案为:24.点评:本题考查了频率分布直方图的应用问题,解题时应根据频率、频数与样本容量的关系进行解答,是基础题.12.(4分)已知△ABC中,角A,B,C所对的边分别是a,b,c,∠A=60°,c=2,且△ABC 的面积为,则a边的长为.考点:正弦定理.专题:解三角形.分析:利用三角形面积公式列出关系式,把已知面积,c,sinA的值代入求出b的值,再利用余弦定理求出a的值即可.解答:解:∵△ABC中,∠A=60°,c=2,且△ABC的面积为,∴bcsinA=,即b=1,由余弦定理得:a2=b2+c2﹣2bccosA=1+4﹣2=3,则a=,故答案为:点评:此题考查了余弦定理,三角形面积公式,熟练掌握余弦定理是解本题的关键.13.(4分)已知函数f(x)=mx2+nx﹣2(m>0,n>0)的一个零点是2,则+的最小值为8.考点:函数零点的判定定理.专题:计算题;函数的性质及应用;不等式的解法及应用.分析:由题意得,4m+2n=2,从而化简得2m+n=1;化(+)(2m+n)=2+2++,利用基本不等式求解.解答:解:由题意得,4m+2n=2;故2m+n=1;(+)(2m+n)=2+2++≥4+4=8;(当且仅当=,即n=,m=时,等号成立)故答案为:8.点评:本题考查了函数零点的定义及基本不等式的应用,属于基础题.14.(4分)(坐标系与参数方程选做题)在平面直角坐标系中,直线l的参数方程为(参数t∈R),圆的参数方程为(参数θ∈,求函数f(x)的值域.考点:平面向量数量积的运算;三角函数中的恒等变换应用.专题:计算题;三角函数的求值;三角函数的图像与性质;平面向量及应用.分析:(1)运用模的公式,即可得到;(2)运用平面向量的数量积的坐标表示和两角差的正弦公式及二倍角的余弦公式,即可得到;(3)由x∈,则2x﹣∈,运用正弦函数的图象和性质,即可得到值域.解答:解:(1)=(1,cos2x)=(1,﹣),则||==;(2)向量=(1,cos2x),=(sin2x,﹣),则函数f(x)=•=sin2x﹣cos2x=2sin(2x﹣),f(+)=2sin(α)=﹣2sinα=,则sinα=﹣,f(α+)=2sin(2﹣)=2cos2α=2(1﹣2sin2α)=2(1﹣2×)=;(3)由x∈,则2x﹣∈,sin(2x﹣)∈,则f(x)∈.则f(x)的值域为.点评:本题考查平面向量的数量积的坐标公式和性质,考查两角和差的正弦公式,及二倍角的余弦公式的运用,考查正弦函数的图象和性质,考查运算能力,属于中档题.19.(14分)如图,已知AF⊥平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,∠DAB=90°,AB∥CD,AD=AF=CD=2,AB=4.(1)求证:AF∥平面BCE;(2)求证:AC⊥平面BCE;(3)求三棱锥E﹣BCF的体积.考点:棱柱、棱锥、棱台的体积;直线与平面平行的判定;直线与平面垂直的判定.专题:空间位置关系与距离.分析:(1)AF∥BE,BE⊂平面BCE,AF⊄平面BCE,运用判定定理可判断.(2)运用勾股定理可判断AC⊥BC,再根据线面的转化,AF⊥平面ABCD,AF∥BE,BE⊥平面ABCD,BE⊥AC,得出AC⊥平面BCE,(3)CM⊥平面ABEF,V E﹣BCF=V C﹣BEF得出体积即可判断.解答:解:(1)∵四边形ABEF为矩形,∴AF∥BE,BE⊂平面BCE,AF⊄平面BCE,∴AF∥平面BCE.(2)过C作CM⊥AB,垂足为M,∵AD⊥DC,∴四边形ADCM为矩形,∴AM=MB=2∵AD=2,AB=4.∴AC=2,CM=2,BC=2,∴AC2+BC2=AB2,∴AC⊥BC,∵AF⊥平面ABCD,AF∥BE,∴BE⊥平面ABCD,∴BE⊥AC,∵BE⊂平面BCE,BC⊂平面BCE,BC∩BE=B,∴AC⊥平面BCE.(3)∵AF⊥平面ABCD,AF⊥CM,∵CM⊥AB,AF⊂平面ABEF,AB⊂平面ABEF,AF∩AB=A,∴CM⊥平面ABEF,∴V E﹣BCF=V C﹣BEF==×2×4×2.点评:本题综合考查了空间直线,几何体的平行,垂直问题,求解体积,属于中档题.20.(14分)设函数g(x)=x3+ax2的图象在x=1处的切线平行于直线2x﹣y=0.记g(x)的导函数为f(x).(1)求函数f(x)的解析式;(2)记正项数列{a n}的前n项和为S n,且∀n∈N+,S n=f(a n),求a n;(3)对于数列{b n}满足:b1=,b n+1=f(b n),当n≥2,n∈N+时,求证:1<++…+<2.考点:利用导数研究曲线上某点切线方程;数列与不等式的综合.专题:导数的综合应用;等差数列与等比数列;不等式的解法及应用.分析:(1)求出原函数的导函数,得到函数在x=1时的导数,由在x=1处的切线平行于直线2x﹣y=0列式求得a的值,则函数解析式可求;(2)由S n=f(a n)得到数列递推式,求出首项,取n=n﹣1得另一递推式,作差后可判断数列{a n}是以1为首项,以1为公差的等差数列,则其通项公式可求;(3)由b n+1=f(b n)得b n+1=b n(b n+1),取倒数后变形,然后利用裂项相消法求++…+,放缩证得不等式右边,直接缩小证明不等式左边.解答:(1)解:函数g(x)=x3+ax2的导函数为f(x)=x2+2ax,由于在x=1处的切线平行于2x﹣y=0,∴1+2a=2,解得:a=,即f(x)=x2+x;(2)解:S n=f(a n)=,当n=1时,,解得:a1=1或a1=0(舍去),当n≥2时,,,即有(a n+a n﹣1)(a n﹣a n﹣1﹣1)=0,∵a n>0,∴a n﹣a n﹣1=1.∴数列{a n}是以1为首项,以1为公差的等差数列,则a n=1+(n﹣1)=n;(3)证明:∵b n+1=b n(b n+1),∴,即有.∴T n=++…+==.而当n≥2时,T n=++…+≥.∴1<++…+<2.点评:本题考查了利用导数研究过去线上某点处的切线方程,考查了等差关系的求得,训练了裂项相消法求数列的前n项和,训练了利用放缩法证明数列不等式,属难题.21.(14分)已知函数f(x)=(2﹣a)lnx++2ax(a≤0).(Ⅰ)当a=0时,求f(x)的极值;(Ⅱ)当a<0时,讨论f(x)的单调性;(Ⅲ)若对任意的a∈(﹣3,﹣2),x1,x2∈,恒有(m+ln3)a﹣2ln3>|f(x1)﹣f(x2)|成立,求实数m的取值范围.考点:利用导数研究函数的极值;利用导数研究函数的单调性.专题:导数的综合应用.分析:(Ⅰ)当a=0时,f(x)=2lnx+,求导,令f′(x)=0,解方程,分析导数的变化情况,确定函数的极值;(Ⅱ)当a<0时,求导,对导数因式分解,比较两根的大小,确定函数f(x)单调区间;(Ⅲ)若对任意a∈(﹣3,﹣2)及x1,x2∈,恒有(m+ln3)a﹣2ln3>|f(x1)﹣f(x2)|成立,求函数f(x)的最大值和最小值,解不等式,可求实数m的取值范围.解答:解:(Ⅰ)依题意知f(x)的定义域为(0,+∞),当a=0时,f(x)=2lnx+,f′(x)=﹣=,令f′(x)=0,解得x=,当0<x<时,f′(x)<0;当x≥时,f′(x)>0又∵f()=2ln=2﹣2ln2∴f(x)的极小值为2﹣2ln2,无极大值.(Ⅱ)f′(x)=﹣+2a=,当a<﹣2时,﹣<,令f′(x)<0 得0<x<﹣或x>,令f′(x)>0 得﹣<x<;当﹣2<a<0时,得﹣>,令f′(x)<0 得0<x<或x>﹣,令f′(x)>0 得<x<﹣;当a=﹣2时,f′(x)=﹣≤0,综上所述,当a<﹣2时f(x),的递减区间为(0,﹣)和(,+∞),递增区间为(﹣,);当a=﹣2时,f(x)在(0,+∞)单调递减;当﹣2<a<0时,f(x)的递减区间为(0,)和(﹣,+∞),递增区间为(,﹣).(Ⅲ)由(Ⅱ)可知,当a∈(﹣3,﹣2)时,f(x)在区间上单调递减,当x=1时,f(x)取最大值;当x=3时,f(x)取最小值;|f(x1)﹣f(x2)|≤f(1)﹣f(3)=(1+2a)﹣=﹣4a+(a﹣2)ln3,∵(m+ln3)a﹣ln3>|f(x1)﹣f(x2)|恒成立,∴(m+ln3)a﹣2ln3>﹣4a+(a﹣2)ln3整理得ma>﹣4a,∵a<0,∴m<﹣4恒成立,∵﹣3<a<﹣2,∴﹣<﹣4<﹣,∴m≤﹣.点评:考查利用导数研究函数的极值、单调性和最值问题,在求函数的单调区间时,体现了分类讨论的思想方法;恒成立问题,转化为函数的最值问题,体现了转化的思想.属难题.。