15.1轴对称图形(第1课时)

合集下载

15.1.1 轴对称图形教案

15.1.1 轴对称图形教案

15.1.1 轴对称图形教案15.1.1轴对称图形课题轴对称图形授课人教学目标知识技能初步认识轴对称图形,理解轴对称图形及对称轴的含义;能找出轴对称图形的对称轴.数学思考通过对生活实物和相应图片的观察、欣赏,使学生充分感受到数学与现实生活的密切联系,陶冶情操,学会感受美和欣赏美.问题解决通过观察、思考、动手操作,提高学生观察、辨析轴对称图形的能力;发展学生的空间思维.情感态度通过自主学习让学生经历获取数学知识的过程;体会轴对称在现实生活中的广泛存在和轴对称丰富的文化价值;感受数学中的美.轴对称图形的概念.能够识别轴对称图形并找出它的对称轴.新授课 课时 1课时多媒体课件 师生活动 设计意图【观察并交流】观察下列图形,你发现这些图片有什么共同特点?并把你的发现与你的同学进行交流.图15-1- 学生活动:学生观察探究并与同学进行交流.通过生活中的图片引导学生观察、感知轴对称图形,使学生在获得对轴对称图形的感性认识的同时,学会从图片中抽象出轴对称图形的共同特征. 教师点拨:这些图形都具有对称性,我们以蝴蝶的图片为例,在它身体的正中间画一条直线l,以直线l为折痕,将图片折叠,我们发现蝴蝶图片中直线l一侧的部分与另一侧的部分能够重合.我们把具有这种对称性的图形称为轴对称图形.师生合作交流:师生通过合作交流活动得到下列知识:如果一个平面图形沿着一条直线折叠,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线就是它的对称轴.教师点拨:显然蝴蝶、雪花、枫叶、铁路标志、中国人民银行标志以及北京天坛公园里的祈年殿等都是轴对称图形.(续表)活动二:实践探究交流新知【思考并交流】生活中有许多轴对称图形,你能再举出一些例子吗?学生活动:学生分组进行交流活动.教师点拨:我们学过的汉字、数字以及英文字母中,也有一些是轴对称图形,你能举出一些例子吗?师生合作交流:师生合作交流得到答案.解:A,C,D,E,H,I,K,M,O,T,U,V,W,X,Y等.例 1 下列各图形是否是轴对称图形,如果是,请找出它的所有的对称轴.学生活动:学生自主探究并与同学进行交流.教师活动:组织引导学生进通过【教师点拨】以及【思考并交流】活动的设计引导学生进行探究活动,从而探究并归纳出轴对称图形的定义.例题的讲解是引导学生学会用新知识解决问题,其目的是巩固所学的新知识.行自主探究与合作交流活动.教师点拨:轴对称图形的对称轴可能不止一条,要防止遗漏.【操作活动】完成教材P119页“操作”活动,并与同学分享你的成果.学生活动:学生分组进行探究活动.教师活动:教师巡视并指导学生进行操作活动.活动三:开放训练体现应用【应用举例】例1 见教材P120练习第1题.变式:指出下列图形中的轴对称图形,并找出它们的对称轴.图15-1-【拓展提升】图15-1-例2 如图15-1-,点A,B,C都在方格纸的格点位置上,请你再找一个格点D,使图中的4点组成一个轴对称图形.学生活动:学生自主探究导【拓展提升】活动设计的目的一是为了巩固所学的知识,二是培养学生运用所学知识解决问题的能力以及提高学生动手操作的能力.出答案并与同学进行交流.教师活动:组织引导学生进行自主探究与合作交流活动.教师点拨:这类题目可采用先确定对称轴,再找点的办法来解决.(续表)活动四:课堂总结反思【课堂小结】1. 学生谈谈本节课的收获.2. 本节课的主要内容有:轴对称图形的定义以及轴对称图形的设计方法.培养学生的归纳能力和合作交流精神,使学生的知识系统化、条理化.【当堂训练】1. 教材P120练习.2. 教材P124习题15.1中的T1,T2.当堂检测,及时反馈学习效果.【板书设计】15.1 轴对称图形第1课时轴对称图形1. 轴对称图形的定义2. 对称轴3. 轴对称图形的设计方法提纲挈领,重点突出.【教学反思】①[授课流程反思]这节课充分利用多媒体教学,给学生以直观指导,让学生主动质疑,促使学生思考与发现,形成认识,独立获取知识和技能,另外,借助多媒体教学给学生创设宽松的学习氛围,使学生在学习中始终保持兴奋、愉悦、渴求思索的心理状态,非常利于学生主体性的发挥,以及创新能力的培养.②[讲授效果反思]本节课由于采用了图片展示、直观操作以及讨论交流反思,更进一步提升.等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生在分组活动时的积极性不高,有滥竽充数的现象,在今后的教学中有待进一步改进和完善学生的分组活动.第 11 页。

15.1.1 轴对称图形与轴对称(基础达标提升训练解析答案)

15.1.1 轴对称图形与轴对称(基础达标提升训练解析答案)

沪科版数学八年级上册第15章轴对称图形与等腰三角形15.1轴对称图形第1课时轴对称图形与轴对称基础达标提升训练1. 下面四个手机应用图标中是轴对称图形的是()A B C D2. 以下图形中对称轴的数量小于3的是()A B C D3. 下列选项中,左边的图形和右边的图形形成轴对称的是()A B C D4. 甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A B C D5. 下列图案中,不是轴对称图形的是()A B C D6. 下列四个图形,其中是轴对称图形,且对称轴的条数为2的图形的个数是()A. 1B. 2C. 3D. 47. 我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有()A. 1条B. 2条C. 3条D. 4条8. 将一张长方形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到()A B C D9. 下列四个图形,其中所有轴对称图形的对称轴条数之和为()A. 13B. 11C. 10D. 810. 如图所示,△ABC与△A′B′C′关于直线l对称,则∠B的度数为()A. 50°B. 30°C. 100°D. 90°11. 下列各组图中,其中,左右两个图形能成轴对称的是(填序号).①②③④12. 在宋体汉字中,如“十”,“中”,“日”等都是轴对称图形,请你再写出三个这样的汉字:.13. 如图,某英语单词由四个字母组成,且四个字母都关于直线l对称,则这个英语单词的汉语意思为.14. 如图所示,在△ABC中,点B,点C关于AD所在直线对称,若△ABC的面积为12 cm2,则图中阴影部分的面积是cm2.第14题第15题15. 在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有种.16. 如图所示的图形都是轴对称图形,请你试着画出它们所有的对称轴.17. 请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)图①图②图③拓展探究综合训练18. 轴对称在数学计算中有巧妙的应用,如图①,现要计算长方形中六个数字的和,我们发现,把长方形沿对称轴l1对折,重合的数字和均为4,故六个数字的和为3×4=12,若沿对称轴l2对折,则六个数字的和可表示为4×2+2×2=12,受上面方法的启发,请快速计算长方形(图②)中各数字之和.图①图②。

15.1轴对称图形(1)

15.1轴对称图形(1)

刚才我们研究了一个图形具有轴对称 的特征,再来看看两个图形是否也具有这 样的特征呢?
请 大 家 再 看 看 右 面 两 组 图 形
•请你认真观察哟! •每一组里,左边的图形沿某直线折叠 后与右边的图形完全重合吗?
二、轴对称
把一个图形沿着某一条直线折叠, 如果它能够与另一个图形重合,那么称 这两个图形成轴对称。
2.区别:
(1)轴对称图形是一个图形的形状特征, 轴对称是两个图形的位置关系。 (2)轴对称图形有一条或几条对称轴, 两个图形成轴对称有且只有一条对称轴。
思考
已知:如图,△ABC与△A´B´C´关于直线 L
对称,点A´是A的对称点,连接AA´ ,设AA´与直线L 交 于点O1。 L (1)图中的对称点还有哪些? 点B´是B的对称点 A O1 点C´是C的对称点 (2)直线L 与线段AA´有什么样的位 B B′ 置关系? O2 L⊥ AA´
剪纸艺术
服饰文化
车标设计
国旗欣赏
交通标志
几何图案
Hale Waihona Puke 面对生活中这些美丽的图片, 你是否强烈地感受到美就在我们 身边! 这是一种怎样的美呢? 对称美
自远古以来,对称的形式被认为是和 谐、美丽并且真实的。不论在自然界里还 是在建筑中,不论是在艺术中还是在科学 中,甚至最普通的日常生活用品中,对称 的形式都随处可见。
(3)O1A 与O1A´的长度有何关系? 相等
O3
A′
线段AA´被直线L 垂直且平分
C
C′
垂直平分线 :经过线段的中点并且垂直于这 中垂线 条线段的直线就叫做这条线段的垂直平分线。
从右图可知:△ABC与△A´B´C´关于直线l 对称, 点A´、 B´、C´分别是点A、B、C的对称点是,那么 直线l 是线段AA´、BB´、C C´的垂直平分线。

15.1.1轴对称图形的教案-沪科版八年级数学上册

15.1.1轴对称图形的教案-沪科版八年级数学上册

15.1.1 轴对称图形的教案-沪科版八年级数学上册一、教学目标1.了解什么是轴对称图形。

2.能够判断一个图形是否具有轴对称性。

3.能够找到图形的对称轴。

4.能够根据对称轴绘制轴对称图形。

二、教学准备1.教师准备:–沪科版八年级数学上册课本。

–沪科版八年级数学上册教师用书。

–相应的课件和教学工具。

2.学生准备:–数学工具(尺子、直尺等)。

–笔记本和铅笔。

–沪科版八年级数学上册练习册。

三、教学过程导入新知1.让学生观察一些日常生活中的图形,让他们描述这些图形是否具有轴对称性。

引导学生思考什么是轴对称图形。

学习轴对称图形的定义1.教师给出轴对称图形的定义:“轴对称图形是指可以通过一个轴进行翻转,使图形重合的图形。

”2.教师通过示例和图示来解释和展示轴对称图形的特征。

判断图形是否具有轴对称性1.教师通过一些实例来让学生自己判断图形是否具有轴对称性。

2.教师提供一些简单的几何图形,让学生观察并试着找出图形的对称轴。

3.学生通过直观观察和推理来判断图形是否具有轴对称性,并找出对称轴。

绘制轴对称图形1.教师给出一个简单的图形,并指导学生根据对称轴绘制该图形的轴对称图形。

2.学生根据对称轴绘制图形的轴对称图形。

3.教师展示学生绘制的轴对称图形,并指导学生进行讨论和比较。

巩固练习1.学生进行练习册上相关的练习题,巩固所学知识。

拓展延伸1.提供更复杂的图形,让学生进行观察、判断和绘制轴对称图形。

四、教学总结通过本节课的学习,我们了解了轴对称图形的概念和特征,学会了判断图形是否具有轴对称性,并能够根据对称轴绘制轴对称图形。

五、课后作业1.完成课堂练习册上相关的练习题。

2.查找一些日常生活中的轴对称图形,并写下你的观察和思考。

注意:这是一个示例教案,教师根据具体情况可以适当调整教学内容和安排。

初中数学八年级上册 轴对称图形(1) 沪科版

初中数学八年级上册    轴对称图形(1)   沪科版

2、下列图形中,是轴对称图形的是【 B 】
3、在艺术字中,有些汉字是轴对称图形,下
列不是轴对称图形的是【 D 】 A、田 B、中 C、王 D、上
4、下列图形中,有且只有三条对称轴的是
【D 】
5、仔细观察下图中的图形,并按规律在横 线上画出合适的图形。
___
6、如图所示的矩形纸片,先沿虚线按箭头方 向向右对折,接着将对折后的纸片沿虚线剪
世界上有一种爱很伟大,那就是母爱!世上有一个人最值得我们去回报,那就是母亲。 母亲像什么,母亲像天使一样把一点一滴汗水与祝福慢慢地撒在我们的心里。
母亲是什么,母亲为我们打开成长的大门,母亲是上帝派下来哺育我们的天使。 在人生崎岖坎坷的旅途上,是谁给予你最真诚、最亲切的关爱,是谁对你嘘寒问暖,时刻给予你无私的奉献;是谁不知疲倦地教导着你为人处世的道理;是谁为了你的琐事而烦恼?
眼光和思维所涉及的面,尽量往大了走、往高了去,则是人人可以努力靠近的。 综上:儒家拿得起、佛家放得下、道家想得开,合起来其实就是一句话:带着佛家的出世心态,凭着道家的超世眼界,去做儒家入世的事业。这也正是南怀瑾所说的人生最高境界:佛为心,道为骨,儒为表,大度看世界。车水马龙的闹市里,双眸里闪烁着都市的霓虹,衣服上沾满着汽车 曾经有一个人,她永远占据在你心最柔软的地方,你愿用自己的一生去爱她,这个人,叫“母亲”;有一种爱,它可以让你随意的索取、享用,却不要你任何的回报,不会向你抱怨,总是自己一个人默默地承受着这一切。这种爱,叫“母爱”!
当你已经承受不住外界所带来的种种压力时,母亲为你顶起一片天空,抵挡所有风雨;当你心无慰籍时,她开导你、教育你,教导你“退一步海阔天空”的哲理;当你遇到困难与挫折或因情绪不好而对她大发脾气时,她默默承受但仍坚强地开导;当你因学习而疲劳、心烦时,她会送上一杯热茶,不需任何语言,一切感情均化为泪水落于掌心,一切尽在不言中…… 当你遇到危险时,她不顾一切地救助你,即使失去生命也毫无怨言;当你感到伤痛绝望时,她比你更加痛心悲伤,却必须要坚强地劝慰你,让你安心;当你欢心愉悦时,她会陪你一起分享心中的喜悦,但是却绝对不会多霸占一点,让你的心变得空虚无物……

第1课时 认识轴对称图形(1)ppt课件

第1课时  认识轴对称图形(1)ppt课件

精心整理
夯实基础
1.哪些图形是轴对称图形?在下面画“√”。
( ) ( ) ( ) ( )( ) ( )
精心整理
2.下面的数字、字母、汉字哪些是轴对称图形?把它 们圈出来。
0265ACDF木同山平
精心整理
3.下面图形的对称轴有几种画法?
2条
4条
无数条
精心整理
易错辨析
4.下面的图形分别是从哪张纸上剪下来的?连一连。
精心整理
归纳总结:
认识对称现象及轴对称现象: 把一个图形沿一条直线对折,对折后直线两边
的部分能够完全重合,这样的图形就是轴对称图 形,折痕所在的直线就是图形的对称轴。
精心整理
小试牛刀
1.下面这些图形中,哪些是轴对称图形?
第1幅和第3幅图是轴对称图形。
精心整理
2. 哪些是轴对称图形,在是的下面的( )里画“对称现象
这些图形有什么特点? 说一说生活 中还有这样 的图形吗。
图形两边一样。 剪纸

两边也一样。
精心整理
剪一剪。
利把和用剪老这好像师种的这一方图样起法形画动我打一手们开画剪能。,一剪看再剪,。 出中先很间把多有沿一漂一画张亮道的纸的折线对图痕剪折形。一。。剪。
精心整理
两边一样,中 间都有折痕。
轴对称图形
请 形 它像 都 是你 ,们这 是 轴仔 它有样 对 对细 们什剪 称 称观 形么出 的 图我 痕察 状共来 , 形叫们这不同的 它 。作把些同点图 们对这对,呀形都称条称但?轴折图是。
对称轴
对称轴 对称轴 对称轴
提示:有的图形不止一条对称轴,而且有的
图形 是左右对称,有的是上下对称。
精心整理
辨析:剪纸时,不能根据对称图形的特点想象出 剪下的图形。

图形的轴对称(1)课件全面版

图形的轴对称(1)课件全面版
光不会因你而停留,你却会随着光阴而老去。
有些事情注定会发生,有的结局早已就预见,那么就改变你可以改变的,适应你必须去适应的。面对幸与不幸,换一个角度,改变一种思维,也许心空就不再布满阴霾,头上就 是一片蔚蓝的天。一生能有多少属于我们的时光,很多事情,很多人已经渐渐模糊。而能随着岁月积淀下来,在心中无法忘却的,一定是触动心灵,甚至是刻骨铭心的,无论是 伤痛是欢愉。人生无论是得意还是失意,都不要错过了清早的晨曦,正午的骄阳,夕阳的绚烂,暮色中的朦胧。经历过很多世态炎凉之后,你终于能懂得:谁会在乎你?你又何 必要别人去在乎?生于斯世,赤条条的来,也将身无长物的离开,你在世上得到的,失去的,最终都会化作尘埃。原本就不曾带来什么,所以也谈不到失去什么,因此,对自己 经历的幸与不幸都应怀有一颗平常心有一颗平常心,面对人生小小的不如意或是飞来横祸就能坦然接受,知道人有旦夕祸福,这和命运没什么关系;有一颗平常心,面对台下的 鲜花掌声和头上的光环,身上的浮名都能清醒看待。花不常开,人不常在。再热闹华美的舞台也有谢幕的时候;再奢华的宴席,悠扬的乐曲,总有曲终人散的时刻。春去秋来, 我们无法让季节停留;同样如同季节一样无法挽留的还有我们匆匆的人生。谁会在乎你?生养我们的父母。纵使我们有千般不是,纵使我们变成了穷光蛋,唯有父母会依然在乎! 为你愁,为你笑,为你牵挂,为你满足。这风云变幻的世界,除了父母,不敢在断言还会有谁会永远的在乎你!看惯太多海誓山盟的感情最后星流云散;看过太多翻云覆雨的友 情灰飞烟灭。你春风得意时前呼后拥的都来锦上添花;你落寞孤寂时,曾见几人焦急赶来为你雪中送炭。其实,谁会在乎你?除了父母,只有你自己。父母待你再好,总要有离 开的时日;再恩爱夫妻,有时也会劳燕分飞,孩子之于你,就如同你和父母;管鲍贫交,俞伯牙和钟子期,这样的肝胆相照,从古至今有几人?不是把世界想的太悲观,世事白 云苍狗,要在纷纷扰扰的生活中,懂得爱惜自己。不羡慕如昙花一现的的流星,虽然灿烂,却是惊鸿一瞥;宁愿做一颗小小的暗淡的星子,即使不能同日月争辉,也有自己无可 取代的位置其实,也不该让每个人都来在乎自己,每个人的人生都是单行道,世上绝没有两片完全相同的树叶。大家生活得都不容易,都有自己方向。相识就是缘分吧,在一起 的时候,要多想着能为身边的人做点什么,而不是想着去得到和索取。与人为善,以直报怨,我们就会内心多一份宁静,生活多一份和谐没有谁会在乎你的时候,要学会每时每 刻的在乎自己。在不知不觉间,已经走到了人生的分水岭,回望过去生活的点滴,路也茫茫,心也茫茫。少�

最新沪科版八年级数学上册《轴对称图形》全课时教学设计

最新沪科版八年级数学上册《轴对称图形》全课时教学设计

第15章轴对称图形与等腰三角形15.1 轴对称图形第1课时轴对称图形(一)教学目标【知识与技能】1.在生活实例中认识轴对称,能画出简单轴对称图形的对称轴.2.使学生了解轴对称图形和关于直线成轴对称的概念.3.了解轴对称图形和轴对称的联系与区别.【过程与方法】1.通过实例认识轴对称,能够识别生活中的轴对称图形及其对称轴.2.培养学生的观察能力、思维能力、动手能力、总结能力.【情感、态度与价值观】1.让学生体验到数学与生活的密切联系,发展学生的空间观念和审美观.2.通过对对称的理解和轴对称性质的把握,发展学生发现美和鉴赏美的能力.重点难点【重点】理解并掌握轴对称图形、轴对称的概念、画对称图形的对称轴.【难点】理解并掌握轴对称图形和两个图形成轴对称之间的关系.教学过程一、创设情境、导入新知教师多媒体课件出示:师:同学们认识这些图形吗?生:认识.师:你能说出它们的共同点吗?学生观察后,思考并讨论交流.生:它们的左右两边是一样的.师:对,实际上它们的左右两边是对称的.自然界中,许多物体的平面图形都具有对称性.今天我们就来研究轴对称图形.二、共同探究,获取新知学生实验一师:把一张纸对折,然后从折叠处剪出一个图形,想一想:展开后会是什么样的图形?位于折痕两侧的图案有什么关系?学生分组活动,合作交流后选代表回答实验结果.生甲:我们得到了一个美丽的图形:飞鸟,它有对称美.生乙:我们得到的是大树和五角星,它们是对称的.生丙:我们得到的是轴对称图形,位于折痕两部分的图案能够完全重合.师:你们的发现真是了不起啊!那么你们能说说什么样的图形是轴对称图形吗?生甲:能够完全重合的图形是轴对称图形.生乙:不对!应该是沿着一条直线折叠后能完全重合的图形才是轴对称图形.师:很好,如果一个图形沿着一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.请同学们尽可能多地从你周围的环境中找出轴对称的物体.学生畅所欲言.教师提示:天上飞的、地上跑的、水里游的,还有已经学过的那些简单的图形、数字、字母等都可以.生:我们组将这个平行四边形对折后,发现无论怎么对折,两边都无法重合,所以它不是一个轴对称图形.师:有道理,其他同学有没有不同的想法?生:我们组将这个平等四边形剪拼成一个长方形,而长方形对折后两边完全重合,所以我们认为它是一个轴对称图形.师:听起来好像也有道理.生甲:我们反对.因为在刚才的学习中,我们知道判断一个图形是不是轴对称图形关键是看对折后两边能否完全重合,而这个图形对折后显然无法重合.生乙:(补充)而且你们将这个图形剪拼后,已经改变了这个图形的形状和性质,所以我们认为它原本不是一个轴对称图形.师:(回到赞成“是的”一方)听了对方的阐述,再结合我们一开始探讨轴对称图形时的要求,你现在的观点是什么?生:(沉默一会儿后)现在我也同意这个平行四边形不是轴对称图形了.师:对,平行四边形不是轴对称图形.学生实验二:折纸印墨迹学生分组完成实验教师提出问题1:你发现折痕两边的墨迹形状一样吗?为什么?问题2:两边墨迹的位置与折痕有什么关系?(让学生充分观察、讨论和交流,并指名汇报):生甲:我们组发现两边的墨迹形状一样,因为它们折过去能完全重合.生乙:我们组的发现和他们一样.生丙:两边的墨迹关于折痕对称.生丁:我想补充的是两边的墨迹是关于折痕成轴对称的.师:同学们观察得真仔细啊!那你们能说说究竟什么样的两个图形成轴对称吗?生甲:一个图形和另一个图形能完全重合,这两个图形成轴对称.生乙:我不同意他的观点,应该是一个图形沿着某条直线折叠,如果它能和另一个图形重合,那么称这两个图形关于这条直线对称.师:你真是太聪明了!动画演示,师生共同总结出轴对称、对称轴及对称点的概念.教师用多媒体展示练习,学生独立思考后回答.三、深入探究师:通过刚才的学习,你们能说说轴对称与轴对称图形是否是一回事吗?生齐答:不是.师:那谁能说说它们的关系呢?(见学生面有难色,让学生先思考交流)生甲:轴对称是两个图形,轴对称图形是一个图形.师:说得好,谁还想说?生乙:它们都是沿着一条地线对折的,并且能重合.生丙:如果把成轴对称的两个图形看成一个整体,就是一个轴对称图形;如果把一个轴对称图形看成两个图形就是成轴对称.师:怎样将一个轴对称图形看成两个图形呢?生:哦,是将位于对称轴两旁的部分看成两个图形.师:你可以当小老师了!各位同学的发现合起来就是轴对称与轴对称图形的区别与联系.四、课堂小结师:生活中处处有数学,我们只有学好了数学,才能更好地运用所学的知识去解决生活中的实际问题,谁想说说你今天收获得了什么?生甲:我今天最大的收获是认识了轴对称图形和轴对称.生乙:我通过观察发现了轴对称图形和轴对称的区别和联系.生丙:通过欣赏图片,我感受到了对称图形的美.生丁:通过找生活中的轴对称物体,我体会到数学就在我们身边,生活中处处有数学知识.教学反思在学习轴对称与轴对称图形的时候,充分让学生通过实验去感知、思考、探索知识,从更深层次上理解概念.在本节课中轴对称和轴对称图形是两个重要要概念且易混淆.在教学中充分地进行比较,这样不仅能帮助学生建立、理解概念,而且有利于学生在头脑中建立起事物与概念间的内在联系,达到事半功位的效果.第2课时轴对称图形(二)教学目标【知识与技能】1.知道线段垂直平分线的概念.2.知道成轴对称的两个图形全等,对称轴是对称点连线的垂直平分线.【过程与方法】1.探索并了解线段垂直平分线的有关性质,通过作对称轴提高学生的作图能力.2.经历探索轴对称性质的活动,积累数学活动经验,进一步发展空间观念和表达能力.【情感、态度与价值观】1.让学生体验到数学与生活的密切联系,发展学生的空间观念和审美观.2.通过对对称的理解和轴对称性质的把握,发展学生发现美和鉴赏美的能力.重点难点【重点】会利用轴对称性质作对称点、轴对称图形等.【难点】根据题目要求画出轴对称图形.教学过程一、创设情境,导入新知师:上节课我们探讨了轴对称图形,知道现实生活中由于轴对称图形,而显得异常美丽,那么什么样的图形是轴对称图形呢?学生思考回答:如果一个图形沿着一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.师:大家想一想,我们以前学过的哪些几何图形是轴对称图形呢?生甲:正方形、矩形.生乙:圆、等腰三角形.生丙:角、线段.师:刚才有人提出“线段是轴对称图形”,今天我们就来研究这个简单的轴对称图形(板书课题).二、共同探究,获取新知教师画出一条线段.师:你能找出它的一条对称轴吗?生甲:它的对称轴是与线段垂直的,且垂足是线段中点的直线.教师画出一条线段AB,对折AB使点A、B重合,折痕与AB的交点为O.师:OA=OB吗?折痕与直线所成的两个角是多少度?学生观察.生:OA=OB,折痕与直线所成的两个解都是90°师;折痕(即线段的对称轴)与线段有什么关系?学生讨论交流.教师小结:经过线段的中点并且垂直这条线段的直线叫做这条线段的垂直平分线,又叫做线段的中垂线.线段是轴对称图形,它的对称图形就是线段的垂直平分线.教师让学生任意画一条线段,然后用带有刻度的直角三角板画出线段的垂直平分线.学生讨论做法,教师巡视指导.三、合作交流,深化理解教师多媒体出示:如图,△ABC与△A'B'C'关于直线l对称,点A'B'C'分别是点A、B、C的对称点,连接AA',设AA'与直线l交于点O1.师:直线l与线段AA'有怎样的位置关系?生:垂直.师:OA1与O1A'的长度有什么关系?学生观察后回答:相等.师:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;反过来,如果两个图形各对对应点的连线被同一条直线平分,那么这两个图形关于这条直线对称.四、练习新知师:请同学们完成课本练习的第3题.教师找三名学生板演,其余同学在下面做,教师巡视指导,然后集体订正.师:请同学们完成练习第4题.教师找两名学生板演,其余同学在下面做,然后集体订证.五、课堂小结师:今天你有什么收获你又学到了什么?学生回答,教师补充完整.教学反思对称是一种最基本的图形变换,是学生学习空间与图形的必要基础,了解对称图形,对于帮助学生建立空间观念,培养学生的空间想象力都有着不可忽视的作用,这节课鼓励每个学生动手、动口、动脑,积极参与到数学的学习过程中来,注意发挥学生的主体性,给学生留下充分的时间与空间进行活动.上述的自主活动是整堂课的重点所在,通过活动既可充分发挥学生的理解能力、创造能力,又能在整个活动中对轴对称的概念从感性认识升华到理性认识.第3课时轴对称图形(三)教学目标【知识与技能】1.理解并掌握平面直角坐标系中,与已知点关于x轴或y轴对称的点的坐标的规律.2.能作出与一个图形关于x轴或y轴对称的图形.【过程与方法】1.通过作图提高学生的实践能力.2.通过现实情境的创设使学生体验到数学就在我们身边,从而培养审美感以及数学应用意识.【情感、态度与价值观】1.通过贴近生活的素材和问题情境,激发学生学习数学的热情和兴趣,培养学生勇于创新的意识及多方位审视问题的创造技巧.2.在作图过程中使学生体验数形结合思想,体验学习的乐趣,增强解决问题的信心,获得解决问题的成功体验,逐步培养学生的理性精神.重点难点【重点】用坐标表示点关于坐标轴对称的点的坐标.【难点】找对称点的坐标之间的关系、规律.教学过程一、创设情境,导入新知师:什么是轴对称图形?生:如果一个图形沿着某条直线折叠,直线两旁的部分能够完全重合,这个图形就叫做轴对称图形.师:什么是轴对称?生:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么称这两个图形成轴对称.师:什么是线段的垂直平分线生;经过线段的中点并且垂直于这条线段的直线叫做这条线段的垂直平分线.师:很好!这节课我们继续学习轴对称的有关知识.老师板书课题.二、共同探究,获取新知师:已知点A和一条直线,你能画出这个点关于已知直线的对称点吗?教师多媒体出示:学生作图,教师巡视指导,然后集体纠正.教师边操作边讲解:我们过A点作MN的垂线并延长,记垂线与MN的交点为O,然后在上面截取一段使OA'=AO,则A'点就是A点关于MN的对称点.教师强调:不是题中要求作出的,比如我们作的这条垂线,它相当于辅助线,用虚线表示.三、深入探究,层层推进师:在平面直角坐标系里,如何作出图形的轴对称图形呢?下面只介绍以特殊直线(坐标轴)为对称轴的情形.教师多媒体出示:如图所示,在平面直角坐标系中,正方形ABCD四个顶点的坐标分别为A(1,1),B(3,1),C(3,3),D(1,3).师:我请两名同学分别作出点A、B、C、D关于x轴和y轴对称的点,并写出它们的坐标.学生思考.教师找两名学生板演,其余同学在下面做.教师出示表格.已知点的A(1,1)B(3,1)C(3,3)D(1,3)坐标关于x轴对A1(1,-1)B1(3,-1)C1(3,-3)D1(1,-3)应点的坐标关于y轴对A2(1,-1)B2(-3,1)C2(-3,3)D2(-1,3)应点的坐标师:观察上表,已知点与它关于x轴对称的点的坐标有什么关系?已知点与它关于y轴对称点的坐标呢?学生观察表格,思考后回答.生:关于x轴对称的点横坐标不变,纵坐标互为相反数;关于y轴对称的点纵坐标不变,横坐标互为相反数师:很好!我们得到:一般地,已知点P(x,y),它关于x轴对应的点的坐标为P1(x,-y),它关于y轴对应的点的坐标P2(-x,y).四、练习新知,加深理解教师找一名学生完成课本练习第1题,然后集体订正.点关于x轴对称的点关于y轴对称的点A(-2,0)(-2,0)(2,0)B(2,-3)(2,3)(-2,-3)C(-4,-2)(-4,2)(4,-2)D(-3,2)(-3,-2)(3,2)E(0,-1)(0,1)(0,-1)F(2,3)(2,-3)(-2,3)教师找一名学生板演练习2,其余同学在下面做,老师巡视指导,然后集体订正.五、课堂小结师:今天我们学习了什么知识?你有哪些收获?生甲:我学习了一点关于x轴或y轴对称的点的坐标的求法.生乙:我知道了一个图形关于x轴或y轴对称的图形的画法.师:你还有哪些疑问?学生提问,教师解答.教学反思上节课我们只是根据对称轴是两个图形对应点所连线段的垂直平分线作出一个图形关于一条对称轴对称的图形,在这节课上我们把图形放在坐标系里,来讨论这个图形上点的坐标和与它对应的点的坐标的关系,先让学生作出对应点,然后让他们自己分析关于两条坐标轴对称的两点坐标之间的关系.比较一个点和它的对应点和对称轴之间的关系,发挥了学生的主动性,让他们自己去发现规律,总结规律,提高他们的分析、归纳能力,同时也给他们提供表达自己观点的机会,提高他们表达问题的能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

剪纸艺术
吉祥物
交通标志
脸谱艺术
给我最大快乐的, 不是已懂的知识,
而是不断的学 ----高斯
F G H
猜字游戏
在艺术字中,有些汉字是轴对称的,你能猜一猜 下列是哪些字的一半吗?
下面的每 对图形有什么共同 特点?
A A′
观察
B C C′
B′
定义
一个图形 沿着某一条直线折叠,如果 1.把_______ 重合 那么就说这 它能够与另一个 _____图形____, 关于这条直线对称 或者说这两 两个图形______________ 个图形成轴对称。 对称轴 2.同样,我们把这条直线叫做______. 对称点 3.折叠后重合的点是对应点,叫做______.
比较归纳:
区别 联系 轴对称图形 _个图形 一 两个图形成轴对称 _个图形 两
1.沿一条直线折叠,直线两旁的部分能够 互相重合 ____. 对称轴 2.都有____. 3.如果把一个轴对称图形沿对称轴分成 两个图形,那么这两个图形关于这条直线 对称 ___;如果把两个成轴对称的图形看成 轴对称图形 一个图形,那么这个图形就是____.
图形 长方形 形状 是否轴对称 图形 对称轴的 数量(条)
是 是 不是 是 是
2 4 ------1 无数
正方形 平行四 边形
等腰三 角形 圆形
对称轴问题
(1)有些轴对称图形的对称轴只有一条, 但有的轴对称图形的对称轴却不止一条,有的 轴对称图形的对称轴甚至有无数条。 (2)对称轴通常画成虚线,是直线,不 能.下面的图形是轴对称图形吗?如果是,你能
指出它的对称轴吗?


不是
不是

1、动手画一画
返回
返回
返回
返回
几何中常见的轴对称图形:
线段、角、正方形、长方形、等腰三角形、等 腰梯形和圆都是轴对称图形。 有的轴对称图形有不止一条对称轴。
2.动手操作并填表(剪一剪,折一折)
做一做:
如图,△ABC与△DEF关于直线a对称,
若AB=2cm,∠C=55°,则DE= 2cm,∠F= 55° 。 a D A C F B E
a
2、试一试
把一圆形纸片两次对折后,得到 右图,然后沿虚线剪开,得到两 部分,其中一部分展开后的平面 图形是( B )
A
B
C
D
1、轴对称图形和两个图形关于某直线对称 的概念。 2、能识别简单的轴对称图形及其对称轴 (直线),能找出两个图形关于某直线对 称的对称点 3、了解轴对称图形与两个图形关于某直 线对称的区别和联系.
试一试
你能举出日常生活中常见的 轴对称图形的例子吗?
国旗是国家的一个象征,观察下面的国旗, 哪些是轴对称图形?试找出它们的对称轴。
加拿大
以色列
英国
瑞典
摩洛哥
想一想:0-9十个数字中,哪
些是轴对称图形?(抢答)
0 1 2 3 4 5 6 7 8 9
例2:下面的字母哪些是轴对称图形?
A
E
B C
D
欣赏:生活中的轴对称
想一想:一辆汽车的车牌在水中的倒影如 图所示,你能确定该车车牌的号码吗?
练习:下面给出的每幅图形中的两个图案是轴对称
吗?如果是,试着找出它们的对称轴,并找出一对对应 点.
喜喜
四.
(分组讨论)
1.成轴对称的两个图形全等吗?( 全等 ) 2.如果把一个轴对称图形沿对称轴分成两 个图形,那么这两个图形全等吗?( 全等 ) 这两个图形对称吗?( 对称 )
15.1 轴对称(1)
中国古代的建筑举世闻名,我们看看以下建 筑有什么共同特征 ?
在我们的生活中,对称现象无处不在
你发现下列窗花有什么特点?
要 仔 细 观 察 哦!
要 仔 细 观 察 哦!
定义
一个图形 沿一条直线折叠,直线两旁的部分 如果________ 互相重合 这个图形叫做____________. 轴对称图形 能够_________, 这条直 对称轴 线就是它的__________.
相关文档
最新文档