高中数学第一章导数及其应用1.7定积分的简单应用(第2课时)预习导航新人教A版选修2-2资料

合集下载

高中数学 第一章 导数及其应用 1.7 定积分的简单应用(第2课时)预习导航 新人教A版选修2-2(

高中数学 第一章 导数及其应用 1.7 定积分的简单应用(第2课时)预习导航 新人教A版选修2-2(

航新人教A版选修2-2
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章导数及其应用1.7 定积分的简单应用(第2课时)预习导航新人教A版选修2-2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章导数及其应用1.7 定积分的简单应用(第2课时)预习导航新人教A版选修2-2的全部内容。

导航新人教A版选修2-2
定积分在物理中的应用
思考
提示:路程是位移的绝对值和,从时刻t=a到时刻t=b所经过的路程:
⎰v(t)d t;
(1)若v(t)≥0,s=b
a
(2)若v(t)≤0,s=b
-⎰v(t)d t;
a
⎰v(t)d t-b c⎰v (3)若在区间[a,c]上v(t)≥0,在区间[c,b]上v(t)<0,则s=c
a
(t)d t。

思考2求变力做功问题的关键是什么?
提示:(1)求变力做功,要根据物理学的实际意义,求出变力F的表达式,这是求功的关键.
(2)由功的物理意义知,物体在变力F(x)的作用下,沿力F(x)的方向做直线运动,使物体从x=a移动到x=b(a<b).因此,求功之前还应求出位移的起始位置与终止位置.
⎰F(x)d x即可求出变力F(x)所做的功.
(3)根据变力做功公式W=b
a。

高中数学 第一章 导数及其应用 1.7 定积分的简单应用(

高中数学 第一章 导数及其应用 1.7 定积分的简单应用(

高中数学 第一章 导数及其应用 1.7 定积分的简单应用(第2课时)课堂探究 新人教A 版选修2-2探究一 求变速直线运动的路程、位移求做变速直线运动物体位移与路程的方法(1)做直线运动物体的位移与路程是两个不同的概念,位移是指物体位置的改变,位移不但有大小,而且有方向,是一个矢量(或向量);路程是物体运动轨迹即质点运动时所经过的实际路径的长度,路程只有大小,没有方向,是个标量(或数量).(2)用定积分计算做直线运动物体的路程,要先判断速度v (t )在时间区间内是否为正值,若v (t )>0,则运动物体的路程为s =b a ⎰v (t )d t ;若v (t )<0,则运动物体的路程为s =ba ⎰|v (t )|d t =ba -⎰v (t )d t .(3)物体做变速直线运动时,经过的位移s ,等于其速度v =v (t )在时间区间[a ,b ]上的积分,即ba ⎰v (t )d t .【典型例题1】有一动点P 沿x 轴运动,在时间t 时的速度为v (t )=8t -2t 2(速度的正方向与x 轴正方向一致).求:(1)点P 从原点出发,当t =6时,求点P 离开原点的路程和位移;(2)点P 从原点出发,经过时间t 后又返回原点时的t 值.思路分析:(1)→确定积分区间→求t =6时的路程以及位移(2)→ 解:(1)由v (t )=8t -2t 2≥0,得0≤t ≤4,即当0≤t ≤4时,P 点向x 轴正方向运动,当t >4时,P 点向x 轴负方向运动.故t =6时,点P 离开原点的路程为s 1=40⎰(8t -2t 2)d t -64⎰(8t -2t 2)d t =⎝ ⎛⎭⎪⎫4t 2-23t 340|-⎝⎛⎭⎪⎫4t 2-23t 364|=1283. 当t =6时,点P 的位移为60⎰(8t -2t 2)d t =⎝⎛⎭⎪⎫4t 2-23t 360|=0. (2)依题意0t⎰(8t -2t 2)d t =0,即4t 2-23t 3=0,解得t =0或t =6, t =0对应于P 点刚开始从原点出发的情况,所以t =6是所求的值.探究二 求变力做功求变力做功的方法步骤(1)首先要明确变力的函数式F (x )=kx ,确定物体在力的方向上的位移.(2)利用变力做功的公式W =ba ⎰F (x )d x 计算.(3)注意必须将力与位移的单位换算为牛顿与米,功的单位才为焦耳.【典型例题2】一物体在力F (x )(单位:N)的作用下沿与力F 相同的方向运动,力——位移曲线如图所示.求该物体从x =0处运动到x =4(单位:m)处,力F (x )做的功.思路分析:先根据图象确定力关于位移的函数关系式,再利用定积分求解.解:由力——位移曲线可知F (x )=⎩⎪⎨⎪⎧ 10,0≤x ≤2,3x +4,2<x ≤4,因此该物体从x =0处运动到x=4处力F (x )做的功为20⎰10d x +42⎰(3x +4)d x =10x 20|+⎝ ⎛⎭⎪⎫32x 2+4x 42|=46(J). 探究三 易错辨析易错点:忽视单位换算导致计算错误【典型例题3】设有一长25 cm 的弹簧,若加以100 N 的力,则弹簧伸长到30 cm ,又已知弹簧伸长所需要的拉力与弹簧的伸长量成正比,求使弹簧由25 cm 伸长到40 cm 所做的功.错解:由题意知F (x )=kx ,由已知x =5时,F (5)=100,∴5k =100,∴k =20,∴F (x )=20x .∴弹簧由25 cm 伸长到40 cm 所做的功W =150⎰20x d x =10x 2150|=10×152=2 250(J).错因分析:没有将位移单位换算成米,导致功的单位不是焦耳.正解:设x表示弹簧伸长的量(单位:m),F(x)表示加在弹簧上的力(单位:N).由题意,得F(x)=kx,且当x=0.05 m时,F(0.05)=100 N,即0.05k=100,∴k=2 000.∴F(x)=2 000x.∴将弹簧由25 cm伸长到40 cm时所做的功为2 000x d x=1 000x20.150|=22.5(J).W=0.15。

高中数学第一章导数及其应用1.7定积分的简单应用学案含解析2_2

高中数学第一章导数及其应用1.7定积分的简单应用学案含解析2_2

1。

7 定积分的简单应用自主预习·探新知情景引入大家都可以想象到天女散花的情景-—左手提着一篮娇艳美丽的鲜花,右手把一朵鲜花散落,一片片花瓣飘荡在空中,随后落在人间,让人产生无尽的遐想.一片花瓣的图形可以看成两条美丽的曲线相交而成.由前面学习的定积分的知识,我们可以计算出该图形的面积,即一片花瓣平铺的面积.新知导学1.求平面图形的面积(1)求由一条曲线y=f(x)和直线x=a、x=b(a〈b)及y=0所围成平面图形的面积S。

图①中,f(x)>0,错误!f(x)d x>0,因此面积S=__错误!f(x)d x__;图②中,f(x)〈0,错误!f(x)d x〈0,因此面积S=|错误!f(x)d x|=__-错误!f(x)d x__;图③中,当a≤x<c时,f(x)〈0,当c〈x≤b时,f(x)〉0,因此面积S=错误!|f(x)|d x=__-错误!f(x)d x+错误!f(x)d x__.(2)求由两条曲线f(x)和g(x),直线x=a、x=b(a<b)所围成平面图形的面积S。

图④中,f(x)>g(x)〉0,面积S=__错误![f(x)-g(x)]d x__;图⑤中,f(x)〉0,g(x)<0,面积S=__错误![f(x)-g(x)]d x__. 2.变速直线运动的路程做变速直线运动的物体所经过的路程s,等于其速度函数v=v (t)(v(t)≥0)在时间区间[a,b]上的定积分,即s=__错误!v(t)d t__。

3.变力做功一物体在恒力F(单位:N)的作用下做直线运动,如果物体沿着与F相同的方向移动了s m,则力F所做的功为W=Fs。

如果物体在变力F(x)的作用下沿着与F(x)相同的方向从x =a移动到x=b.则变力F(x)做的功W=__错误!F(x)d x__.预习自测1.由直线x =0、x =错误!、y =0与曲线y =2sin x 所围成的图形的面积等于( A )A .3B .错误!C .1D .错误! [解析] 所求面积S =错误!2sin x d x =-2cos x 错误!=-2(-错误!-1)=3。

推荐高中数学第一章导数及其应用1.7定积分的简单应用学案含解析新人教A版选修2_2

推荐高中数学第一章导数及其应用1.7定积分的简单应用学案含解析新人教A版选修2_2

1.7定积分的简单应用积为S 1.由直线x =a ,x =b ,曲线y =g(x )和x 轴围成的曲边梯形的面积为S 2.问题1:如何求S 1? 提示:S 1=⎠⎛a b f(x)d x.问题2:如何求S 2? 提示:S 2=⎠⎛ab g(x)d x.问题3:如何求阴影部分的面积S? 提示:S =S 1-S 2.平面图形的面积由两条曲线y =f (x ),y =g (x )和直线x =a ,x =b (b >a )所围图形的面积.(1)如图①所示,f (x )>g (x )>0,所以所求面积S =⎠⎛ab d x .(2)如图②所示,f (x )>0,g (x )<0,所以所求面积S =⎠⎛a b f (x )d x +⎪⎪⎪⎪⎠⎛a b=⎠⎛ab d x .相交曲线所围图形的面积求法如下图,在区间上,若曲线y =f (x ),y =g (x )相交,则所求面积S =S 1+S 2=⎠⎛ac d x +⎠⎛c b-=⎠⎛ab |f (x )-g (x )|d x .问题:在《1.5.2 汽车行驶的路程》中,我们学会了利用积分求物理中物体做变速直线运动的路程问题,利用积分还可以解决物理中的哪些问题?提示:变力做功.1.变速直线运动的路程做变速直线运动的物体所经过的路程s ,等于其速度函数v =v (t )(v (t )≥0)在时间区间上的定积分,即s =⎠⎛ab2.变力做功如果物体在变力F(x)的作用下做直线运动,并且物体沿着与F (x )相同的方向从x =a 移动到x =b(a<b),那么变力F(x)所做的功为W =⎠⎛ab F(x )d x.求变速直线运动的路程的注意点对于给出速度-时间曲线的问题,关键是由图象得到速度的解析式及积分的上、下限,需要注意的是分段解析式要分段求路程,然后求和.计算曲线由⎩⎪⎨⎪⎧y =x +3,y =x2-2x +3,解得x =0或x =3.如图.因此所求图形的面积为S =⎠⎛03(x +3)d x -⎠⎛03(x 2-2x +3)d x=⎠⎛03d x =⎠⎛03(-x 2+3x )d x =⎝ ⎛⎭⎪⎫-13x3+32x23=92.求由两条曲线围成的平面图形的面积的解题步骤(1)画出图形;(2)确定图形范围,通过解方程组求出交点的坐标,定出积分上、下限; (3)确定被积函数,特别要注意分清被积函数图象上、下位置; (4)写出平面图形面积的定积分表达式;(5)运用微积分基本定理计算定积分,求出平面图形的面积.求曲线y =e x,y =e -x及x =1所围成的图形面积.解:作图,并由⎩⎪⎨⎪⎧y =ex ,y =e -x ,解得交点(0,1). 所求面积为⎠⎛01(e x-e -x)d x =(e x +e -x)1=e +1e-2.先求抛物线和直线的交点,解方程组⎩⎪⎨⎪⎧y2=2x ,y =-x +4,求出交点坐标为A (2,2)和B (8,-4).法一:选x 为积分变量,变化区间为,将图形分割成两部分(如图),则面积为S =S 1+S 2=2⎠⎛022xd x +⎠⎛28(2x -x +4)d x=423x322+⎝ ⎛⎭⎪⎫223x -12x2+4x 82=18.法二:选y 作积分变量,则y 的变化区间为,如图得所求的面积为 S =⎠⎛-42⎝ ⎛⎭⎪⎫4-y -y22d y =⎝ ⎛⎭⎪⎫4y -12y2-16y324-=18.需分割的图形的面积的求法由两条或两条以上的曲线围成的较为复杂的图形,在不同的区间上位于上方和下方的曲线不同.求出曲线的不同的交点横坐标,将积分区间细化,分别求出相应区间上曲边梯形的面积再求和,注意在每个区间上被积函数均是由上减下.试求由抛物线y =x 2+1与直线y =-x +7以及x 轴、y 轴所围成图形的面积.解:画出图形(如下图).解方程组⎩⎪⎨⎪⎧y =x2+1,y =-x +7,得⎩⎪⎨⎪⎧x =2,y =5或⎩⎪⎨⎪⎧x =-3,y =10(舍去),即抛物线与直线相交于点(2,5).于是所求面积为S =⎠⎛02(x 2+1)d x +⎠⎛27(7-x)d x=⎝ ⎛⎭⎪⎫13x3+x 20+⎝⎛⎭⎪⎫7x -12x272=143+252 =1036.A ,BC 点,这一段的速度为1.2t m/s ,到C 点的速度为24 m/s ,从C 点到B 点前的D 点以等速行驶,从D 点开始刹车,速度为(24-1.2t ) m/s ,经t s 后,在B 点恰好停车.试求:(1)A ,C 间的距离; (2)B ,D 间的距离. (1)设A 到C 的时间为t 1, 则1.2t 1=24,t 1=20 s ,则AC =⎠⎛0201.2t d t =0.6t220=240(m).(2)设D 到B 的时间为t 2, 则24-1.2t 2=0,t 2=20 s , 则DB =⎠⎛020 (24-1.2t )d t求变速直线运动的路程、位移应关注三点(1)分清运动过程中的变化情况;(2)如果速度方程是分段函数,那么要用分段的定积分表示;(3)明确是求位移还是求路程,求位移可以正负抵消,求路程不能正负抵消.一点在直线上从时刻t =0(单位:s )开始以速度v =t 2-4t +3(单位:m /s )运动,求: (1)在t =4 s 时的位置; (2)在t =4 s 时运动的路程. 解:(1)在t =4 s 时该点的位移为⎠⎛04(t 2-4t +3)d t =⎝ ⎛⎭⎪⎫13t3-2t2+3t 40=43(m ), 即在t =4 s 时该点距出发点43m .(2)∵v(t)=t 2-4t +3=(t -1)(t -3), ∴在区间及上v(t)≥0, 在区间上,v(t)≤0. ∴在t =4 s 时的路程为s =⎠⎛01(t 2-4t +3)d t -⎠⎛13(t 2-4t +3)d t +⎠⎛34(t 2-4t +3)d t =⎝ ⎛⎭⎪⎫13t3-2t2+3t 10-⎝ ⎛⎭⎪⎫13t3-2t2+3t 31+13t 3-2t 2+3t43=4(m ), 即在t =4 s 时运动的路程为4 m .一物体在力F (x )(单位:N)的作用下沿与力F 相同的方向运动,力­位移曲线如图所示.求该物体从x =0 m 处运动到x =4 m 处力F (x )做的功.由力­位移曲线可知F (x )=⎩⎪⎨⎪⎧10,0≤x≤2,3x +4,2<x≤4,因此该物体从x =0处运动到x =4处力F (x )做的功为W =⎠⎛0210d x +⎠⎛24(3x +4)d x =10x 2+⎝ ⎛⎭⎪⎫32x2+4x 42=46(J).解决变力做功应关注两点(1)首先将变力用其方向上的位移表示出来,这是关键的一步; (2)根据变力做功的公式将其转化为求定积分的问题.设有一长25 cm 的弹簧,若加以100 N 的力,则弹簧伸长到30 cm ,又已知弹簧伸长所需要的拉力与弹簧的伸长量成正比,求使弹簧由25 cm 伸长到40 cm 所做的功.解:设x 表示弹簧伸长的量(单位:m),F (x )表示加在弹簧上的力(单位:N).由题意F (x )=kx ,且当x =0.05 m 时,F (0.05)=100 N ,解得即0.05k =100,∴k =2 000, ∴F (x )=2 000x .∴将弹簧由25 cm 伸长到40 cm 时所做的功为W =⎠⎛00.152 000x d x =1 000x 2.015=22.5(J).4.利用定积分求面积的策略由抛物线y 2=8x (y >0)与直线x +y -6=0及y =0所围成图形的面积为( ) A .16-3223B .16+3223C.403D.403+3223由题意,作图形如图所示,由⎩⎪⎨⎪⎧y2=>,x +y -6=0,得⎩⎪⎨⎪⎧x =2,y =4,所以抛物线y 2=8x (y >0)与直线x +y -6=0的交点坐标为(2,4).法一:(选y 为积分变量)S =⎠⎛04⎝ ⎛⎭⎪⎫6-y -18y2d y=⎝⎛⎭⎪⎫6y -12y2-124y340=24-8-124×64=403.法二:(选x 为积分变量)S =⎠⎛02(8x)d x +⎠⎛26(6-x )d x=8×23x 322+⎝⎛⎭⎪⎫6x -12x262=163+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫6×6-12×62-⎝ ⎛⎭⎪⎫6×2-12×22=403.C1.本题易搞错被积函数及积分上、下限,误认为S =⎠⎛04-x -8x)d x ,从而得出S =16-3223的错误答案.2.求平面图形面积时,应首先求出交点坐标,确定积分上、下限,然后确定被积函数,判定积分的正负,用公式求解面积.如本例法一中的被积函数为f(y)=6-y -18y 2,y ∈(0,4],法二中的被积函数为f(x)=⎩⎨⎧8x ,,2],6-x ,,6].3.利用定积分求面积时,应根据具体问题选择不同的方法求解,常见类型有以下几种: (1)换元积分:当两区域所围成图形纵坐标一致时,换元变成对y 积分可简化运算.如本例中的法一. (2)分割求和:当两曲线处于不同区间时,可分割成几块,分别求出面积再相加,如本节例2的求解法.事实上,本例中的法二就是分割求和.(3)上正下负:若a ≤x ≤c 时,f(x)<0,则⎠⎛a c f(x)d x <0;若c ≤x ≤b 时,f(x)≥0,则⎠⎛cb f(x)d x ≥0.此时曲线y =f(x)和直线x =a ,x =b(a <b)及y =0所围图形的面积是 S =⎪⎪⎪⎪⎠⎛ac +⎠⎛c b f(x)d x =-⎠⎛ac f(x)d x +⎠⎛c bd x.例:求正弦曲线y =sin x ,x ∈⎣⎢⎡⎦⎥⎤0,3π2和直线x =0,x =3π2及y =0所围图形的面积S .解:作出曲线y =sin x 和直线x =0,x =3π2,y =0的草图,如图所示,所求面积为图中阴影部分的面积.由图可知,当x ∈时,曲线y =sin x 位于x 轴的上方; 当x ∈⎣⎢⎡⎦⎥⎤π,3π2时,曲线位于x 轴下方. 因此,所求面积应为两部分的和,即S =π⎰32|sin x |d x =⎠⎛0πsin x d x -ππ⎰32sin x d x =-cos xπ+cos xππ32=3.(4)上下之差:若在区间上f (x )>g (x ),则曲线f (x )与g (x )所围成的图形的面积S =⎠⎛a b d x .例:求由曲线y 2=x ,y =x 3所围图形的面积S .解:作出曲线y 2=x ,y =x 3的草图,如图所示,所求面积为图中阴影部分的面积.解方程组⎩⎪⎨⎪⎧y2=x ,y =x3得交点的横坐标为x =0及x =1.因此,所求图形的面积为S =⎠⎛01xd x -⎠⎛01x 3d x =23x 321-14x 41=512.1.(山东高考)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .22B .4 2 C .2 D .4解析:选D 由4x =x 3,解得x =0或x =2或x =-2(舍去),根据定积分的几何意义可知,直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为⎠⎛02-=⎝⎛⎭⎪⎫2x2-14x42=4.2.一物体沿直线以v =3t +2(t 的单位:s ,v 的单位:m/s)的速度运动,则该物体在3 s ~6 s 间的运动路程为( )A .46 mB .46.5 mC .87 mD .47 m解析:选B s =⎠⎛36 (3t +2)d t =⎝ ⎛⎭⎪⎫32t2+2t 63=(54+12)-⎝ ⎛⎭⎪⎫272+6=46.5(m).3.(天津高考)曲线y =x 2与直线y =x 所围成的封闭图形的面积为________.解析:如图,阴影部分的面积即为所求.由⎩⎪⎨⎪⎧y =x2,y =x 得A(1,1).故所求面积为S =⎠⎛01(x -x 2)d x =⎝ ⎛⎭⎪⎫12x2-13x3⎪⎪⎪10=16. 答案:164.设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________. 解析:由已知得S =⎠⎛0a xd x =23x 32a=23a 32=a 2,所以a 12=23,所以a =49. 答案:495.一物体在变力F (x )=36x2(x 的单位:m ,F 的单位:N)的作用下沿坐标平面内x 轴的正方向由x =8处运动到x =18处,求力F (x )在这一过程中所做的功.解:由题意得力F (x )在这一过程中所做的功为F (x )在上的定积分,从而W =⎠⎛818F (x )d x =-36x -1188=(-36×18-1)-(-36×8-1)=(-2)-⎝ ⎛⎭⎪⎫-92=52(J).从而可得力F (x )在这一过程中所做的功为52 J.一、选择题1.用S 表示下图中阴影部分的面积,则S 的值是( )A .⎠⎛a c f (x )d xB.⎪⎪⎪⎪⎠⎛acC.⎠⎛a b f(x)d x +⎠⎛bc f(x)d x D .⎠⎛b c f (x )d x -⎠⎛ab f (x )d x解析:选D 由图可知,x 轴上方阴影部分的面积为⎠⎛b c ,x 轴下方阴影部分的面积为-⎠⎛ab f (x )d x ,故D 正确. 2.曲线y =x 3与直线y =x 所围图形的面积等于( ) A.⎠⎛-11(x -x 3)d x B.⎠⎛-11(x 3-x )d x C .2⎠⎛01(x -x 3)d xD .2⎠⎛-10(x -x 3)d x解析:选C 由⎩⎪⎨⎪⎧y =x ,y =x3,求得直线y =x 与曲线y =x 3的交点分别为(-1,-1),(1,1),(0,0),由于两函数都是奇函数,根据对称性得S =2⎠⎛01(x -x 3)d x .3.由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为( )A.12 B .1 C.32D. 3 解析:选D 结合函数图象可得所求的面积是定积分∫π3-π3cos x d x =sin x π3-π3= 3. 4.一质点运动的速度与时间的关系为v (t )=t 2-t +2,质点做直线运动,则它在时间内的位移为( )A.176B.143C.136 D.116解析:选A 质点在时间内的位移为⎠⎛12(t 2-t +2)d t =⎝ ⎛⎭⎪⎫13t3-12t2+2t 21=176. 5.由抛物线y =x 2-x ,直线x =-1及x 轴围成的图形的面积为( ) A.23 B .1 C.43 D.53解析:选B S =⎠⎛0-1(x 2-x )d x +⎠⎛01(x -x 2)d x=⎝ ⎛⎭⎪⎫13x3-12x20-1+⎝ ⎛⎭⎪⎫12x2-13x310=1.二、填空题6.曲线y =sin x (0≤x ≤π)与直线y =12围成的封闭图形的面积为________.解析:由于曲线y =sin x (0≤x ≤π)与直线y =12的交点的横坐标分别为x =π6及x =5π6,因此所求图形的面积为∫5π6π6sin x -12d x =-cos x -12x 5π6π6=3-π3.答案:3-π37.物体A 以速度v =3t 2+1(t 的单位:s ;v 的单位:m/s)在一直线上运动,在此直线上,物体A 出发的同时,物体B 在物体A 的正前方5 m 处以v =10t 的速度与A 同向运动,则两物体相遇时物体A 运动的距离为________m.解析:设t =a 时两物体相遇,依题意有⎠⎛0a (3t 2+1)d t -⎠⎛0a 10t d t =(t 3+t )a 0-5t 2a 0=5,即a 3+a -5a 2=5,(a -5)(a 2+1)=0,解得a =5,所以⎠⎛05(3t 2+1)d t =53+5=130.答案:1308.有一横截面面积为4 cm 2的水管控制往外流水,打开水管后t s 末的流速为v (t )=6t -t 2(单位:cm/s)(0≤t ≤6),则t =0到t =6这段时间内流出的水量为________.解析:由题意可得t =0到t =6这段时间内流出的水量V =⎠⎛064(6t -t 2)d t =4⎠⎛6(6t -t 2)d t =4⎝⎛⎭⎪⎫3t2-13t360=144(cm 3).故t =0到t =6这段时间内流出的水量为144 cm 3. 答案:144 cm 3三、解答题9.求由曲线y =x 2和直线y =x 及y =2x 所围图形的面积S .解:由⎩⎪⎨⎪⎧y =x2,y =x 得A (1,1),由⎩⎪⎨⎪⎧y =x2,y =2x 得B (2,4).如图所示,所求面积(即图中阴影部分的面积)为S =⎠⎛01(2x -x )d x +⎠⎛12-x 2)d x =⎠⎛01x d x +⎠⎛12-x 2)d x =12x 210+⎝⎛⎭⎪⎫x2-13x321=76.10.有一动点P 沿x 轴运动,在时间t 时的速度为v (t )=8t -2t 2(速度的正方向与x 轴正方向一致).(1)点P 从原点出发,当t =6时,求点P 离开原点的路程和位移; (2)求点P 从原点出发,经过时间t 后又返回原点时的t 值. 解:(1)由v (t )=8t -2t 2≥0,得0≤t ≤4, 即当0≤t ≤4时,P 点向x 轴正方向运动; 当t >4时,P 点向x 轴负方向运动.最新中小学教案、试题、试卷故t =6时,点P 离开原点的路程为s 1=⎠⎛04(8t -2t 2)d t -⎠⎛46(8t -2t 2)d t=⎝⎛⎭⎪⎫4t2-23t340-⎝ ⎛⎭⎪⎫4t2-23t364=1283. 当t =6时,点P 的位移为⎠⎛06(8t -2t 2)d t =⎝ ⎛⎭⎪⎫4t2-23t360=0. (2)依题意⎠⎛0t (8t -2t 2)d t =0,即4t 2-23t 3=0,解得t =0或t =6,而t =0对应于P 点刚开始从原点出发的情况, ∴t =6是所求的值.。

高中数学 第一章 导数及其应用 1.7 定积分的简单应用(

高中数学 第一章 导数及其应用 1.7 定积分的简单应用(

高中数学 第一章 导数及其应用 1.7 定积分的简单应用(第1课时)预习导航 新人教A 版选修2-21.利用定积分求曲边多边形的面积(1)在利用定积分求平面图形的面积时,一般要先画出它的草图,再借助图形直观地确定出被积函数及积分的上、下限.(2)若一平面图形是由y =f 1(x ),y =f 2(x )及x =a ,x =b (a <b )所围成,并且在[a ,b ]上f 1(x )≤f 2(x ),则该平面图形的面积S =b a⎰[f 2(x )-f 1(x )]d x .2.曲边梯形的面积和其上、下两个边界所表示的函数的关系 (1)如图①,阴影部分的面积为S =0a-⎰g (x )d x +a ⎰f (x )d x =a ⎰[f (x )-g (x )]d x .(2)如图②,阴影部分的面积为S =b⎰[f (x )-g (x )]d x +a b⎰[f (x )-c (x )]d x .所以,曲边梯形的面积等于曲边梯形上、下两个边界所表示的函数的差的定积分.思考1如图,当x ∈[a ,b ]时,f (x )<0,则f (x )与x 轴所围图形的面积怎样表示?提示:因为曲边梯形上边界函数为g (x )=0,下边界函数为f (x ),所以S =ba⎰(0-f (x ))d x =b a-⎰f (x )d x .3.常见平面图形的面积计算(1)求由一条曲线y =f (x )和直线x =a ,x =b (a <b )及y =0所围成平面图形的面积S .图①中,f (x )>0,b a ⎰f (x )d x >0,因此面积S =b a⎰f (x )d x ;图②中,f (x )<0,b a⎰f (x )d x <0,因此面积S =()|d |b af x x ⎰=b a -⎰f (x )d x ;图③中,当a ≤x ≤c 时,f (x )<0,c ≤x ≤b 时,f (x )>0,因此面积S =ba⎰|f (x )|d x=c a⎰[-f (x )]d x +b c⎰f (x )d x .(2)求由两条曲线f (x )和g (x ),直线x =a ,x =b (a <b )所围成平面图形的面积S .图④中,f (x )>g (x )>0,面积S =b a⎰[f (x )-g (x )]d x ;图⑤中,f (x )>0,g (x )<0,面积S =b a⎰f (x )d x +b a⎰|g (x )|d x =b a⎰[f (x )-g (x )]d x .思考2求曲边多边形的面积的步骤有哪些?提示:(1)画出图形,确定图形范围.即借助几何知识将所求图形的面积问题转化为求两个曲边梯形的面积问题.(2)确定积分上、下限.即通过解方程组求出交点的横坐标,确定积分上、下限. (3)确定被积函数,特别要注意分清被积函数的上、下位置.(4)写出平面图形面积的定积分表达式,运用微积分基本定理计算定积分,从而求出平面图形的面积.。

高中数学第一章导数及其应用1.7定积分的简单应用课件新人教A版选修2-2

高中数学第一章导数及其应用1.7定积分的简单应用课件新人教A版选修2-2
y
A
0a
bX
1
a
b
A2
a
b
曲边形
曲边梯形(三条直边,一条曲边) 面积 A=A1-A2
类型2:由两条曲线y=f(x)和y=g(x),直线x=a,x=b (a<b)所围成平面图形的面积S
y f (x)
y
y f (x)
y g(x)
oa
bx
(1)
y g(x) (2)
总结:当 x∈[a,b]有 f(x)>g(x)时,由直线 x=a,x=b(a≠b)
1.理解定积分的几何意义以及微积分的基本定理. 2.初步掌握利用定积分求曲边梯形的几种常见题型及方法. (重点、难点) 3.理解定积分的几何意义以及微积分的基本定理. 4.体会定积分在物理中的应用(变速直线运动的路程、变力 沿直线做功).(重点、难点)
探究点1 定积分在几何中的应用
类型1:求由一条曲线y=f(x)和直线x=a,x=b(a<b)及 x轴所围成平面图形的面积S

2
2 3
3
x2
|80
( 1 2
x2

4x)
|84

40 3
.
y 2x
S S2
1
y x4
另解2:将所求平面图形的面积看成位于y轴右边 的一个梯形与一个曲边梯形的面积之差,因此取 y为积分变量
还需要把函数y=x-4变形为x=y+4,函数 y 2x
变形为 x y2
2
4
4 y2
S 0 ( y 4)dy 0
导数及其应用 1.7 定积分的简单应用
引入1 求平面图形的面积:
y y f (x)
A

高中数学第一章导数及其应用1.7定积分的简单应用1.7.1定积分在几何中的应用优化练习新人教A版选

高中数学第一章导数及其应用1.7定积分的简单应用1.7.1定积分在几何中的应用优化练习新人教A版选

2017-2018学年高中数学第一章导数及其应用1.7 定积分的简单应用1.7.1 定积分在几何中的应用优化练习新人教A版选修2-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第一章导数及其应用1.7 定积分的简单应用1.7.1 定积分在几何中的应用优化练习新人教A版选修2-2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第一章导数及其应用1.7 定积分的简单应用1.7.1 定积分在几何中的应用优化练习新人教A版选修2-2的全部内容。

1.7.1 定积分在几何中的应用[课时作业][A组基础巩固]1.曲线y=x3与直线y=x所围封闭图形的面积S等于( )A。

错误!(x-x3)d x B. 错误! (x3-x)d xC.2错误!错误!0(x-x3)d x D.2错误!(x-x3)d x解析:如图,阴影部分的面积S=2错误!(x-x3)d x.故选C.答案:C2.已知函数y=x2与y=kx(k〉0)的图象所围成的封闭区域的面积为错误!,则k=()A.3 B.2C.1 D。

错误!解析:由错误!消去y得x2-kx=0,所以x=0或x=k,则所求区域的面积为S=错误!(kx-x2)d x=错误!错误!=错误!=错误!,则k3=27,解得k=3。

答案:A3.由曲线y=x2,y=x3围成的封闭图形面积S为( )A.错误!B.错误!C.错误!D。

错误!解析:作出曲线y=x2,y=x3的草图,所求面积即为图中阴影部分的面积.解方程组错误!得曲线y=x2,y=x3交点的横坐标为x=0及x=1。

高中数学第一章导数及其应用1_7定积分的简单应用教学案新人教A版选修2-2

高中数学第一章导数及其应用1_7定积分的简单应用教学案新人教A版选修2-2

1.7 定积分的简单应用预习课本P56~59,思考并完成下列问题(1)利用定积分求平面图形的面积时,需要知道哪些条件?(2)两条曲线相交围成的平面图形能否用定积分求其面积?[新知初探]1.定积分与平面图形面积的关系(1)已知函数f (x )在[a ,b ]上是连续函数,由直线y =0,x =a ,x =b 与曲线y =f (x )围成的曲边梯形的面积为S .f (x )的符号 平面图形的面积与定积分的关系f (x )≥0 S =⎠⎛a bf (x )d x f (x )<0S =-⎠⎛a bf (x )d x(2)一般地,如图,如果在公共的积分区间[a ,b ]上有f (x )>g (x ),那么直线x =a ,x =b 与曲线y =f (x ),y =g (x )围成的平面图形的面积为S =⎠⎛a b[f (x )-g (x )]d x .[点睛] 对于不规则平面图形面积的处理原则定积分只能用于求曲边梯形的面积,对于非规则的曲边梯形,一般要将其分割或补形为规则的曲边梯形,再利用定积分的和与差求面积.对于分割或补形中的多边形的面积,可直接利用相关面积公式求解.2.变速直线运动的路程做变速直线运动的物体所经过的路程s ,等于其速度函数v =v (t )(v (t )≥0)在时间区间[a ,b ]上的定积分,即s =⎠⎛a bv (t )d t .3.力做功(1)恒力做功:一物体在恒力F (单位:N)的作用下做直线运动,如果物体沿着与F 相同的方向移动了s ,则力F 所做的功为W =Fs .(2)变力做功:如果物体在变力F (x )的作用下做直线运动,并且物体沿着与F (x )相同的方向从x =a 移动到x =b (a <b ),那么变力F (x )所做的功为W =⎠⎛a bF (x )d x .[点睛] 变速直线运动物体的路程、位移与定积分的关系如果做变速直线运动物体的速度-时间函数为v =v (t ),则物体在区间[a ,b ]上的位移为定积分⎠⎛a b v (t )d t ;物体在区间[a ,b ]上的路程为⎠⎛a b|v (t )|d t .[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)曲线y =x 3与直线x +y =2,y =0围成的图形面积为⎠⎛01x 3d x +⎠⎛12(2-x )d x .( )(2)曲线y =3-x 2与直线y =-1围成的图形面积为⎠⎛-2 2(4-x 2)d x .( )(3)速度是路程与时间的函数关系的导数.( )(4)一个物体在2≤t ≤4时,运动速度为v (t )=t 2-4t ,则它在这段时间内行驶的路程为⎠⎛24(t 2-4t )d t .( )答案:(1)√ (2)√ (3)√ (4)×2.曲线y =cos x ⎝ ⎛⎭⎪⎫0≤x ≤3π2与坐标轴所围成的图形面积是( )A .2B .3 C.52 D .4答案:B3.已知做自由落体运动的物体的速度为v =gt ,则物体从t =0到t =t 0所走过的路程为( )A.13gt 20 B. gt 20 C. 12gt 20 D.14gt 20 答案:C4.一列车沿直线轨道前进,刹车后列车速度v (t )=27-0.9t ,则列车从刹车到停车所前进的路程为________.答案:405利用定积分求平面图形的面积[典例] 求抛物线y 2=2x 和直线y =-x +4所围成的图形的面积.[解] 先求抛物线和直线的交点,解方程组⎩⎪⎨⎪⎧y 2=2x ,y =-x +4,求出交点坐标为A (2,2)和B (8,-4).法一:选x 为积分变量,变化区间为[0,8],将图形分割成两部分(如图),则面积为S =S 1+S 2=2⎠⎛022x d x +⎠⎛28()2x -x +4d x=423x 3220+⎝ ⎛⎭⎪⎫223x 32-12x 2+4x 82=18. 法二:选y 作积分变量,则y 的变化区间为[-4,2],如图得所求的面积为S =⎠⎛2-4⎝ ⎛⎭⎪⎫4-y -y 22d y=⎝⎛⎭⎪⎫4y -y 22-y 362-4=18.利用定积分求由两条曲线围成的平面图形的面积的解题步骤 (1)画出图形.(2)确定图形范围,通过方程组求出交点的横坐标,确定积分上限和积分下限. (3)确定被积函数及积分变量,确定时可以综合考察下列因素:①被积函数的原函数易求;②较少的分割区域;③积分上限和积分下限比较简单. (4)写出平面图形的面积的定积分表达式.(5)运用微积分基本定理计算定积分,求出平面图形的面积. [活学活用]求曲线y =e x,y =e -x及直线x =1所围成的图形的面积.解: 如图,由⎩⎪⎨⎪⎧y =e x,y =e -x,解得交点为(0,1),所求面积为S =⎠⎛01(e x -e -x )d x =(e x +e -x )10=e +1e -2.求变速直线运动的路程、位移[典例] 有一动点P 从原点出发沿x 轴运动,在时刻为t 时的速度为v (t )=8t -2t 2(速度的正方向与x 轴正方向一致).求(1)t =6时,点P 离开原点后运动的路程和点P 的位移; (2)经过时间t 后又返回原点时的t 值. [解] (1)由v (t )=8t -2t 2≥0得0≤t ≤4, 即当0≤t ≤4时,P 点沿x 轴正方向运动, 当t >4时,P 点向x 轴负方向运动. 故t =6时,点P 离开原点后运动的路程s 1=⎠⎛04(8t -2t 2)d t -⎠⎛46(8t -2t 2)d t=⎝ ⎛⎭⎪⎫4t 2-23t 3⎪⎪⎪ 4-⎝ ⎛⎭⎪⎫4t 2-23t 3⎪⎪⎪64=1283. 当t =6时,点P 的位移为⎠⎛06(8t -2t 2)d t=⎝⎛⎭⎪⎫4t 2-23t 3⎪⎪⎪60=0.(2)依题意,⎠⎛0t(8t -2t 2)d t =0,即4t 2-23t 3=0,解得t =0或t =6,因为t =0对应于点P 刚开始从原点出发的情况,所以t =6为所求,(1)用定积分解决变速直线运动的位移和路程问题时,将物理问题转化为数学问题是关键.(2)路程是位移的绝对值之和,因此在求路程时,要先判断速度在区间内是否恒正,若符号不定,应求出使速度恒正或恒负的区间,然后分别计算,否则会出现计算失误.[活学活用]一质点在直线上从时刻t =0(s)开始以速度v =t 2-4t +3(m/s)运动,求点在t =4 s 时的位置及经过的路程.解:在t =4 s 时该点的位移为⎠⎛04(t 2-4t +3)d t =⎝ ⎛⎭⎪⎫13t 3-2t 2+3t ⎪⎪⎪4=43(m). 即在t =4 s 时该点距出发点43 m.又因为v (t )=t 2-4t +3=(t -1)(t -3), 所以在区间[0,1]及[3,4]上的v (t )≥0, 在区间[1,3]上,v (t )≤0.所以在t =4 s 时的路程为s =⎠⎛01(t 2-4t +3)d t -⎠⎛13(t 2-4t +3)d t +⎠⎛34(t 2-4t +3)d t =⎝ ⎛⎭⎪⎫t33-2t 2+3t ⎪⎪⎪1-⎝ ⎛⎭⎪⎫t33-2t 2+3t ⎪⎪⎪31+⎝ ⎛⎭⎪⎫t33-2t 2+3t ⎪⎪⎪43=4(m).求变力做功[典例] 一物体在变力F (x )=⎩⎪⎨⎪⎧2x +4,0≤x ≤2,x 2+2x ,2≤x ≤5,(x 的单位:m ,F 的单位:N)的作用下,沿着与力F 相同的方向从x =0运动到x =5处,求变力所做的功.[解] 变力F (x )所做的功为W =⎠⎛02(2x +4)d x +⎠⎛25(x 2+2x )d x =(x 2+4x ) ⎪⎪⎪2+⎝ ⎛⎭⎪⎫13x 3+x 2⎪⎪⎪52=12+60=72(J).求变力做功的方法步骤(1)要明确变力的函数式F (x ),确定物体在力的方向上的位移. (2)利用变力做功的公式W =⎠⎛ab F (x )d x 计算.(3)注意必须将力与位移的单位换算为牛顿与米,功的单位才为焦耳. [活学活用]在弹性限度内,用力把弹簧从平衡位置拉长10 cm 所用的力是200 N ,求变力F 做的功. 解:设弹簧所受到的拉力与弹簧伸长的函数关系式为F (x )=kx (k >0),当x =10 cm =0.1 m 时,F (x )=200 N ,即0.1k =200,得k =2 000,故F (x )=2 000x , 所以力F 把弹簧从平衡位置拉长10 cm 所做的功是W =⎠⎛00.12 000x d x =1 000x 2⎪⎪⎪1=10(J).层级一 学业水平达标1.在下面所给图形的面积S 及相应的表达式中,正确的有( )A .①③B .②③C .①④D .③④解析:选D ①应是S =⎠⎛a b[f (x )-g (x )]d x ,②应是S =⎠⎛0822x d x -⎠⎛48(2x -8)d x ,③和④正确.故选D.2.一物体以速度v =(3t 2+2t )m/s 做直线运动,则它在t =0 s 到t =3 s 时间段内的位移是( )A .31 mB .36 mC .38 mD .40 m解析:选B S =⎠⎛03(3t 2+2t )d t =(t 3+t 2)30=33+32=36(m),故应选B.3.如图所示,阴影部分的面积是( ) A .2 3 B .2- 3 C.323D.353解析:选C S =⎠⎛-31(3-x 2-2x )d x ,即F (x )=3x -13x 3-x 2,则F (1)=3-13-1=53,F (-3)=-9+9-9=-9.∴S =F (1)-F (-3)=53+9=323.故应选C.4.由y =x 2,y =14x 2及x =1围成的图形的面积S =( )A.14B.12 C.13D .1解:选A 图形如图所示,S =⎠⎛01x 2d x -⎠⎛0114x 2d x=⎠⎛0134x 2d x=14x 310=14. 5.曲线y =x 3-3x 和y =x 围成的图形面积为( ) A .4 B .8 C .10D .9解析:选B 由⎩⎪⎨⎪⎧y =x 3-3x ,y =x ,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =2,y =2或⎩⎪⎨⎪⎧x =-2,y =-2.∵两函数y =x 3-3x 与y =x 均为奇函数,∴S =2⎠⎛02[x -(x 3-3x )]d x =2·⎠⎛02(4x -x 3)d x=2⎝⎛⎭⎪⎫2x 2-14x 4⎪⎪⎪20=8,故选B.6.若某质点的初速度v (0)=1,其加速度a (t )=6t ,做直线运动,则质点在t =2 s 时的瞬时速度为________.解析:v (2)-v (0)=⎠⎛02a (t )d t =⎠⎛026t d t =3t 2⎪⎪⎪2=12,所以v (2)=v (0)+3×22=1+12=13. 答案:137.一物体沿直线以速度v =1+t m/s 运动,该物体运动开始后10 s 内所经过的路程是______.解析:S =⎠⎛0101+t d t =23(1+t )32 ⎪⎪⎪10=23⎝ ⎛⎭⎪⎫1132-1. 答案:23⎝ ⎛⎭⎪⎫1132-18.由y =1x,x =1,x =2,y =0所围成的平面图形的面积为________.解析:画出曲线y =1x(x >0)及直线x =1,x =2,y =0,则所求面积S 为如图所示的阴影部分面积.∴S =⎠⎛121xd x =ln x ⎪⎪⎪21=ln 2-ln 1=ln 2.答案:ln 29.计算曲线y =x 2-2x +3与直线y =x +3所围图形的面积.解:由⎩⎪⎨⎪⎧y =x +3,y =x 2-2x +3,解得x =0及x =3.从而所求图形的面积S =⎠⎛03[(x +3)-(x 2-2x +3)]d x =⎠⎛03(-x 2+3x )d x=⎝ ⎛⎭⎪⎫-13x 3+32x 2⎪⎪⎪30=92. 10. 设y =f (x )是二次函数,方程f (x )=0有两个相等的实根,且f ′(x )=2x +2. (1)求y =f (x )的表达式;(2)求y =f (x )的图象与两坐标轴所围成图形的面积. 解:(1)∵y =f (x )是二次函数且f ′(x )=2x +2, ∴设f (x )=x 2+2x +c . 又f (x )=0有两个等根,∴4-4c =0,∴c =1,∴f (x )=x 2+2x +1.(2)y =f (x )的图象与两坐标所围成的图形的面积S =⎠⎛-10(x 2+2x +1)d x =13x 3+x 2+x ⎪⎪⎪-1=13. 层级二 应试能力达标1.一物体在力F (x )=4x -1(单位:N)的作用下,沿着与力F 相同的方向,从x =1运动到x =3处(单位:m),则力F (x )所做的功为( )A .8 JB .10 JC .12 JD .14 J解析:选 D 由变力做功公式有:W =⎠⎛13(4x -1)d x =(2x 2-x ) ⎪⎪⎪31=14(J),故应选D.2.若某产品一天内的产量(单位:百件)是时间t 的函数,若已知产量的变化率为a =36t,那么从3小时到6小时期间内的产量为( ) A.12 B .3-32 2C .6+3 2D .6-3 2解析:选D ⎠⎛3636td t =6t ⎪⎪⎪63=6-32,故应选D.3.以初速40 m/s 竖直向上抛一物体,t s 时刻的速度v =40-10t 2,则此物体达到最高时的高度为( )A.1603 m B.803 m C.403m D.203m 解析:选A 由v =40-10t 2=0,得t 2=4,t =2.∴h =⎠⎛02(40-10t 2)d t =⎝ ⎛⎭⎪⎫40t -103t 3⎪⎪⎪2=80-803=1603(m).故选A.4.(山东高考)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .2 2 B .4 2 C .2D .4解析:选D 由4x =x 3,解得x =0或x =2或x =-2(舍去),根据定积分的几何意义可知,直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为⎠⎛024x -x 3d x =⎝ ⎛⎭⎪⎫2x 2-14x 4⎪⎪⎪2=4.5.椭圆x 216+y29=1所围区域的面积为________.解析:由x 216+y 29=1,得y =±3416-x 2. 又由椭圆的对称性知,椭圆的面积为S =4⎠⎛043416-x 2d x =3⎠⎛0416-x 2d x.由y = 16-x 2,得x 2+y 2=16(y≥0).由定积分的几何意义知⎠⎛0416-x 2d x 表示由直线x =0,x =4和曲线x 2+y 2=16(y≥0)及x 轴所围成图形的面积,∴⎠⎛0416-x 2d x =14×π×16=4π,∴S=3×4π=12π.答案:12π6.如图,在边长为e (e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为____________.解析:∵S 阴=2⎠⎛01(e -e x)d x =2(e x -e x) ⎪⎪⎪1=2,S 正方形=e 2,∴P=2e2.答案:2e27.求由曲线xy =1及直线x =y ,y =3所围成平面图形的面积.解:作出曲线xy =1,直线x =y ,y =3的草图,所求面积为图中阴影部分的面积.求交点坐标:由⎩⎪⎨⎪⎧xy =1,y =3,得⎩⎪⎨⎪⎧x =13,y =3,故A ⎝ ⎛⎭⎪⎫13,3;由⎩⎪⎨⎪⎧xy =1,y =x , 得⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧ x =-1,y =-1(舍去),故B(1,1);由⎩⎪⎨⎪⎧y =x ,y =3得⎩⎪⎨⎪⎧x =3,y =3,故C(3,3),8.函数f(x)=ax 3+bx 2-3x ,若f(x)为实数集R 上的单调函数,且a ≥-1,设点P 的坐标为(b ,a ),试求出点P 的轨迹所形成的图形的面积S .解:当a =0时,由f (x )在R 上单调,知b =0.当a ≠0时,f (x )在R 上单调⇔f ′(x )≥0恒成立或f ′(x )≤0恒成立.∵f ′(x )=3ax 2+2bx -3,∴⎩⎪⎨⎪⎧Δ=4b 2+36a ≤0,a ≥-1.∴a ≤-19b 2且a ≥-1.因此满足条件的点P (b ,a )在直角坐标平面xOy 的轨迹所围成的图形是由曲线y =-19x 2与直线y =-1所围成的封闭图形.联立⎩⎪⎨⎪⎧y =-19x 2,y =-1,解得⎩⎪⎨⎪⎧x =-3,y =-1或⎩⎪⎨⎪⎧x =3,y =-1,如图,其面积S =⎠⎛3-3⎝ ⎛⎭⎪⎫1-19x 2d x =⎝ ⎛⎭⎪⎫x -x 327⎪⎪⎪3-3=(3-1)-(-3+1)=4.(时间: 120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若f (x )=sin α-cos x ,则f ′(x )等于( ) A .sin x B .cos xC .cos α+sin xD .2sin α+cos x解析:选A 函数是关于x 的函数,因此sin α是一个常数.2.以正弦曲线y =sin x 上一点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( )A.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π B .[0,π)C.⎣⎢⎡⎦⎥⎤π4,3π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎦⎥⎤π2,3π4解析:选A y ′=cos x ,∵cos x ∈[-1,1],∴切线的斜率范围是[-1,1],∴倾斜角的范围是⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.3.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )A .1个B .2个C .3个D .4个解析:选A 设极值点依次为x 1,x 2,x 3且a <x 1<x 2<x 3<b ,则f (x )在(a ,x 1),(x 2,x 3)上递增,在(x 1,x 2),(x 3,b )上递减,因此,x 1,x 3是极大值点,只有x 2是极小值点.4.函数f (x )=x 2-ln x 的单调递减区间是( ) A. ⎝ ⎛⎦⎥⎤0, 22 B.⎣⎢⎡⎭⎪⎫22,+∞ C. ⎝⎛⎦⎥⎤-∞,-22,⎝ ⎛⎭⎪⎫0, 22 D.⎣⎢⎡⎭⎪⎫-22, 0,⎝⎛⎦⎥⎤0, 22 解析:选A ∵f ′(x )=2x -1x =2x 2-1x ,当0<x ≤22时,f ′(x )≤0,故f (x )的单调递减区间为⎝ ⎛⎦⎥⎤0,22. 5.函数f (x )=3x -4x 3(x ∈[0,1])的最大值是( ) A .1 B.12 C .0D .-1解析:选A f ′(x )=3-12x 2,令f ′(x )=0, 则x =-12(舍去)或x =12,f (0)=0,f (1)=-1,f ⎝ ⎛⎭⎪⎫12=32-12=1,∴f (x )在[0,1]上的最大值为1.6.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3处取得极值,则a =( ) A .2 B .3 C .4D .5解析:选D f ′(x )=3x 2+2ax +3,∵f ′(-3)=0. ∴3×(-3)2+2a ×(-3)+3=0,∴a =5.7.函数f (x )=13ax 3+12ax 2-2ax +1的图象经过四个象限,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-310,67B.⎝ ⎛⎭⎪⎫-85,-316C.⎝ ⎛⎭⎪⎫-83,-116D.⎝ ⎛⎭⎪⎫-∞,-310∪⎝ ⎛⎭⎪⎫67,+∞ 解析:选D f ′(x )=ax 2+ax -2a =a (x +2)(x -1),要使函数f (x )的图象经过四个象限,则f (-2)f (1)<0,即⎝ ⎛⎭⎪⎫103a +1⎝ ⎛⎭⎪⎫-76a +1<0,解得a <-310或a >67.故选D.8.已知函数f (x )的导函数f ′(x )=a (x -b )2+c 的图象如图所示,则函数f (x )的图象可能是( )解析:选D 由导函数图象可知,当x <0时,函数f (x )递减,排除A 、B ;当0<x <x 1时,f ′(x )>0,函数f (x )递增.因此,当x =0时,f (x )取得极小值,故选D.9.定义域为R 的函数f (x )满足f (1)=1,且f (x )的导函数f ′(x )>12,则满足2f (x )<x+1的x 的集合为( )A .{x |-1<x <1}B .{x |x <1}C .{x |x <-1或x >1}D .{x |x >1}解析:选B 令g (x )=2f (x )-x -1,∵f ′(x )>12,∴g ′(x )=2f ′(x )-1>0,∴g (x )为单调增函数, ∵f (1)=1,∴g (1)=2f (1)-1-1=0,∴当x <1时,g (x )<0,即2f (x )<x +1,故选B.10.某产品的销售收入y 1(万元)是产量x (千台)的函数:y 1=17x 2,生产成本y 2(万元)是产量x (千台)的函数:y 2=2x 3-x 2(x >0),为使利润最大,应生产( )A .6千台B .7千台C .8千台D .9千台解析:选A 设利润为y ,则y =y 1-y 2=17x 2-(2x 3-x 2)=18x 2-2x 3,y ′=36x -6x 2,令y ′=0得x =6或x =0(舍),f (x )在(0,6)上是增函数,在(6,+∞)上是减函数,∴x =6时y 取得最大值.11.已知定义在R 上的函数f (x ),f (x )+x ·f ′(x )<0,若a <b ,则一定有( ) A .af (a )<bf (b ) B .af (b )<bf (a ) C .af (a )>bf (b )D .af (b )>bf (a )解析:选C [x ·f (x )]′=x ′f (x )+x ·f ′(x )=f (x )+x ·f ′(x )<0, ∴函数x ·f (x )是R 上的减函数, ∵a <b ,∴af (a )>bf (b ).12.若函数f (x )=sin x x ,且0<x 1<x 2<1,设a =sin x 1x 1,b =sin x 2x 2,则a ,b 的大小关系是( )A .a >bB .a <bC .a =bD .a ,b 的大小不能确定解析:选A f ′(x )=x cos x -sin xx 2,令g (x )=x cos x -sin x ,则g ′(x )=-x sin x+cos x -cos x =-x sin x .∵0<x <1,∴g ′(x )<0,即函数g (x )在(0,1)上是减函数,得g (x )<g (0)=0,故f ′(x )<0,函数f (x )在(0,1)上是减函数,得a >b ,故选A.二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中的横线上) 13.若f (x )=13x 3-f ′(1)x 2+x +5,则f ′(1)=________.解析:f ′(x )=x 2-2f ′(1)x +1,令x =1,得f ′(1)=23.答案:2314.设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =__________.解析:S =⎠⎛0ax d x =23x 32a 0=23a 32=a 2,∴a =49. 答案:4915.已知函数f (x )满足f (x )=f (π-x ),且当x ∈⎝ ⎛⎭⎪⎫-π2,π2时,f (x )=x +sin x ,设a =f (1),b =f (2),c =f (3),则a ,b ,c 的大小关系是________.解析:f (2)=f (π-2),f (3)=f (π-3), 因为f ′(x )=1+cos x ≥0,故f (x )在⎝ ⎛⎭⎪⎫-π2,π2上是增函数, ∵π2>π-2>1>π-3>0, ∴f (π-2)>f (1)>f (π-3),即c <a <b . 答案:c <a <b 16.若函数f (x )=4xx 2+1在区间(m,2m +1)上单调递增,则实数m 的取值范围是__________.解析:f ′(x )=4-4x2x 2+12,令f ′(x )>0,得-1<x <1,即函数f (x )的增区间为(-1,1). 又f (x )在(m,2m +1)上单调递增,所以⎩⎪⎨⎪⎧m ≥-1,m <2m +1,2m +1≤1.解得-1<m ≤0.答案:(-1,0]三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)若函数y =f (x )在x =x 0处取得极大值或极小值,则称x 0为函数y =f (x )的极值点.已知a ,b 是实数,1和-1是函数f (x )=x 3+ax 2+bx 的两个极值点.(1)求a 和b 的值;(2)设函数g (x )的导函数g ′(x )=f (x )+2,求g (x )的极值点. 解:(1)由题设知f ′(x )=3x 2+2ax +b ,且f ′(-1)=3-2a +b =0,f ′(1)=3+2a +b =0, 解得a =0,b =-3. (2)由(1)知f (x )=x 3-3x .因为f (x )+2=(x -1)2(x +2),所以g ′(x )=0的根为x 1=x 2=1,x 3=-2, 于是函数g (x )的极值点只可能是1或-2. 当x <-2时,g ′(x )<0;当-2<x <1时,g ′(x )>0,故-2是g (x )的极值点.当-2<x <1或x >1时,g ′(x )>0, 故1不是g (x )的极值点. 所以g (x )的极值点为-2.18. (本小题满分12分)(北京高考)设函数f (x )=x e a -x+bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e -1)x +4.(1)求a ,b 的值; (2)求f (x )的单调区间. 解:(1)因为f (x )=x e a -x+bx , 所以f ′(x )=(1-x )ea -x+b .依题设有⎩⎪⎨⎪⎧f 2=2e +2,f ′2=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得⎩⎪⎨⎪⎧a =2,b =e.(2)由(1)知f (x )=x e 2-x+e x .由f ′(x )=e2-x(1-x +e x -1)及e2-x>0知,f ′(x )与1-x +e x -1同号.令g (x )=1-x +ex -1,则g ′(x )=-1+ex -1.所以当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减;当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增.故g (1)=1是g (x )在区间(-∞,+∞)上的最小值, 从而g (x )>0,x ∈(-∞,+∞). 综上可知,f ′(x )>0,x ∈(-∞,+∞), 故f (x )的单调递增区间为(-∞,+∞).19.(本小题满分12分)某个体户计划经销A ,B 两种商品,据调查统计,当投资额为x (x ≥0)万元时,在经销A ,B 商品中所获得的收益分别为f (x )万元与g (x )万元,其中f (x )=a (x -1)+2,g (x )=6ln(x +b )(a >0,b >0).已知投资额为零时收益为零.(1)求a ,b 的值;(2)如果该个体户准备投入5万元经销这两种商品,请你帮他制定一个资金投入方案,使他能获得最大利润.解:(1)由投资额为零时收益为零, 可知f (0)=-a +2=0,g (0)=6ln b =0, 解得a =2,b =1.(2)由(1)可得f (x )=2x ,g (x )=6ln(x +1). 设投入经销B 商品的资金为x 万元(0<x ≤5), 则投入经销A 商品的资金为(5-x )万元, 设所获得的收益为S (x )万元, 则S (x )=2(5-x )+6ln(x +1) =6ln(x +1)-2x +10(0<x ≤5).S ′(x )=6x +1-2,令S ′(x )=0,得x =2.当0<x <2时,S ′(x )>0,函数S (x )单调递增; 当2<x ≤5时,S ′(x )<0,函数S (x )单调递减. 所以当x =2时,函数S (x )取得最大值,S (x )max =S (2)=6ln 3+6≈12.6万元.所以,当投入经销A 商品3万元,B 商品2万元时, 他可获得最大收益,收益的最大值约为12.6万元.20.(本小题满分12分)已知函数f (x )=ax 2+2ln(1-x )(a 为常数).(1)若f (x )在x =-1处有极值,求a 的值并判断x =-1是极大值点还是极小值点; (2)若f (x )在[-3,-2]上是增函数,求a 的取值范围. 解:(1)f ′(x )=2ax -21-x,x ∈(-∞,1),f ′(-1)=-2a -1=0,所以a =-12.f ′(x )=-x -21-x =x +1x -21-x. ∵x <1,∴1-x >0,x -2<0, 因此,当x <-1时f ′(x )>0, 当-1<x <1时f ′(x )<0, ∴x =-1是f (x )的极大值点.(2)由题意f ′(x )≥0在x ∈[-3,-2]上恒成立,即2ax -21-x ≥0在x ∈[-3,-2]上恒成立∴a ≤1-x 2+x在x ∈[-3,-2]上恒成立,∵-x 2+x =-⎝ ⎛⎭⎪⎫x -122+14∈[-12,-6],∴1-x 2+x ∈⎣⎢⎡⎦⎥⎤-16,-112, ∴⎝⎛⎭⎪⎫1-x 2+ x min=-16,a ≤-16.即a 的取值范围为⎝⎛⎦⎥⎤-∞,-16.21.(本小题满分12分)已知函数f (x )=x 2-m ln x ,h (x )=x 2-x +a . (1)当a =0时,f (x )≥h (x )在(1,+∞)上恒成立,求实数m 的取值范围;(2)当m =2时,若函数k (x )=f (x )-h (x )在区间(1,3)上恰有两个不同零点,求实数a 的取值范围.解:(1)由f (x )≥h (x ), 得m ≤xln x在(1,+∞)上恒成立.令g (x )=x ln x ,则g ′(x )=ln x -1ln x2,当x ∈(1,e)时,g ′(x )<0; 当x ∈(e ,+∞)时,g ′(x )>0,所以g (x )在(1,e)上递减,在(e ,+∞)上递增. 故当x =e 时,g (x )的最小值为g (e)=e. 所以m ≤e.即m 的取值范围是(-∞,e]. (2)由已知可得k (x )=x -2ln x -a . 函数k (x )在(1,3)上恰有两个不同零点,相当于函数φ(x )=x -2ln x 与直线y =a 有两个不同的交点. φ′(x )=1-2x =x -2x,当x ∈(1,2)时,φ′(x )<0,φ(x )递减, 当x ∈(2,3)时,φ′(x )>0,φ(x )递增.又φ(1)=1,φ(2)=2-2ln 2,φ(3)=3-2ln 3, 要使直线y =a 与函数φ(x )=x -2ln x 有两个交点, 则2-2ln 2<a <3-2ln 3.即实数a 的取值范围是(2-2ln 2,3-2ln 3).22.(本小题满分12分)已知函数f (x )=(x -2)e x+a (x -1)2有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2. 解:(1)f ′(x )=(x -1)e x+2a (x -1)=(x -1)(e x +2a ). ①设a =0,则f (x )=(x -2)e x,f (x )只有一个零点. ②设a >0,则当x ∈(-∞,1)时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,1)内单调递减,在(1,+∞)内单调递增. 又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a2,则f (b )>a 2(b -2)+a (b -1)2=a ⎝⎛⎭⎪⎫b 2-32b >0,故f (x )存在两个零点.③设a <0,由f ′(x )=0得x =1或x =ln(-2a ). 若a ≥-e2,则l n(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)内单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 若a <-e2,则ln(-2a )>1,故当x ∈(1,ln(-2a ))时,f ′(x )<0; 当x ∈(ln(-2a ),+∞)时,f ′(x )>0.因此f (x )在(1,ln(-2a ))内单调递减,在(ln(-2a ),+∞)内单调递增. 又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 综上,a 的取值范围为(0,+∞).(2)证明:不妨设x 1<x 2,由(1)知,x 1∈(-∞,1),x 2∈(1,+∞),2-x 2∈(-∞,1),又f (x )在(-∞,1)内单调递减,所以x 1+x 2<2等价于f (x 1)>f (2-x 2),即f (2-x 2)<0. 由于f (2-x 2)=-x 2e2-x 2+a (x 2-1)2, 而f (x 2)=(x 2-2)e x 2+a (x 2-1)2=0, 所以f (2-x 2)=-x 2e2-x 2-(x 2-2)e x 2. 设g (x )=-x e2-x-(x -2)e x ,则g ′(x )=(x -1)(e 2-x-e x).所以当x >1时,g ′(x )<0,而g (1)=0,故当x>1时,g(x)<0.从而g(x2)=f(2-x2)<0,故x1+x2<2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学第一章导数及其应用 1.7 定积分的简单应用(第2课时)
预习导航新人教A版选修2-2
定积分在物理中的应用
提示:路程是位移的绝对值和,从时刻t=a到时刻t=b所经过的路程:
⎰v(t)d t;
(1)若v(t)≥0,s=b
a
-⎰v(t)d t;
(2)若v(t)≤0,s=b
a
⎰v(t)d t-b c⎰v(t)d t.
(3)若在区间[a,c]上v(t)≥0,在区间[c,b]上v(t)<0,则s=c
a
思考2求变力做功问题的关键是什么?
提示:(1)求变力做功,要根据物理学的实际意义,求出变力F的表达式,这是求功的关键.
(2)由功的物理意义知,物体在变力F(x)的作用下,沿力F(x)的方向做直线运动,使物体从x=a移动到x=b(a<b).因此,求功之前还应求出位移的起始位置与终止位置.
⎰F(x)d x即可求出变力F(x)所做的功.
(3)根据变力做功公式W=b
a
1。

相关文档
最新文档