高考文科必背数学公式
高中数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数。
(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数. 奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+- 4、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥xx e e =')(; ⑦ax x a ln 1)(log '=;⑧x x 1)(ln '=5、导数的运算法则(1)'''()u v u v ±=±。
(2)'''()uv u v uv =+。
(3)'''2()(0)u u v uv v v v -=≠。
大学文科数学全部公式

A B AB A AB
3. 概率的计算方法
直接计算 P(A) A中包含的样本点个数
tan xdx ln cos x C . cot xdx ln sin x C .
不定积分的分部积分法
分部积分法常用于被积函数是两种不同类型函数乘积的积分,
如 x na x dx , x n sin xdx , x n arctan xdx , e x cos xdx 等.
(4)若 lim
x 是 x 的 k 阶无穷小量.
k
L ( L 0, k 0) ,则称 x0 时,
重要结论:
1 x, 当 x 0 时, loga (1 x) ~ lna
ln( 1 x ) ~ x ,
e x 1 ~ x ,
a 1 ~ x lna ,
x
(1 x) 1 ~ x.
(1)齐次方程组(1)只有零解 R( A) n (未知量的个数). (2)齐次方程组(1)有非零解 R( A) n (未知量个数). 有n个未知数n个方程的齐次线性方程组 有非零解的充要条件是它的系数矩阵行列式 A 0.
求解齐次线性方程组的一般步骤:
① 对系数矩阵A施行初等行变换化为行最简矩阵; ② 由行最简矩阵写出对应的同解方程组; ③令同解方程组中的自由未知量分别为 c1 , c2 ,, cnr ,
1 y C ] , 3
1 4 故原方程的通解为 x y Cy . 3
行列式的计算
三种常用方法
三角法 : 根据行列式的特点,利用行列式的性 质,把它逐步化为三角行列式,然后求得其值。
降阶法 : 利用行列式按行(列)展开法则降阶, 把它降为较低阶的行列式,然后求解;通常此法需 结合化简性质运用。 通过降阶法建立起行列式与其同形的 递推法 : 较低阶的行列式的关系式--------递推关系式,然后由 递推关系式求解其值。
高中文科数学公式总结大全

高中文科数学公式总结大全1500字数学是一门基础性学科,它的理论体系和方法论在科学研究和生产实践中扮演着重要角色。
在高中阶段,学习数学有助于培养学生的逻辑思维、分析问题和解决问题的能力。
而数学公式则是数学知识的核心,它们能够帮助我们快速理解和解决问题。
以下是高中文科数学公式的总结大全:1. 代数- 求根公式:二次方程:$x=\\frac{-b\\pm\\sqrt{b^2-4ac}}{2a}$三次方程:$x=\\sqrt[3]{-d+\\sqrt{d^2-4e^3}}+\\sqrt[3]{-d-\\sqrt{d^2-4e^3}}$四次方程:$x=\\pm\\frac{1}{2a}(b\\pm\\sqrt{b^2-4ac}+2\\sqrt{\\frac{2b^2-4ac}{b\\pm\\sqrt{b^2-4ac}}})$- 平方差公式:$(a-b)^2=a^2-2ab+b^2$$(a+b)^2=a^2+2ab+b^2$- 平方和公式:$a^2+b^2=(a+b)^2-2ab$$a^2-b^2=(a+b)(a-b)$- 二次函数顶点坐标:对于二次函数$y=ax^2+bx+c$,其顶点坐标为$(-\\frac{b}{2a}, -\\frac{D}{4a})$ 其中,$D=b^2-4ac$2. 几何- 勾股定理:$c^2=a^2+b^2$- 正弦定理:$\\frac{a}{\\sin A}=\\frac{b}{\\sin B}=\\frac{c}{\\sin C}$- 余弦定理:$a^2=b^2+c^2-2bc\\cos A$$b^2=a^2+c^2-2ac\\cos B$$c^2=a^2+b^2-2ab\\cos C$- 面积公式:三角形面积:$S=\\frac{1}{2}ab\\sin C$四边形面积:$S=\\frac{1}{2}d_1d_2\\sin\\theta$圆的面积:$S=\\pi r^2$3. 概率与统计- 排列组合:排列:$A_n^m=\\frac{n!}{(n-m)!}$组合:$C_n^m=\\frac{A_n^m}{m!}=\\frac{n!}{m!(n-m)!}$ - 排列公式:重复排列:$P_n=n^n$不重复排列:$P_n^n=n!$- 组合公式:重复组合:$C_{n+m-1}^{m}=\\frac{(n+m-1)!}{m!(n-1)!}$ 不重复组合:$C_n^m=\\frac{n!}{m!(n-m)!}$- 概率公式:概率:$P(A)=\\frac{N(A)}{N(S)}$加法原则:$P(A\\cup B)=P(A)+P(B)-P(A\\cap B)$乘法原则:$P(A\\cap B)=P(A)P(B|A)$4. 三角函数- 弧度与角度的转换:弧度制:$\\theta=\\frac{\\pi}{180}\\times\\text{角度}$角度制:$\\text{角度}=\\frac{180}{\\pi}\\times\\theta$- 三角函数的定义:正弦函数:$\\sin\\theta=\\frac{y}{\\text{半径}}$余弦函数:$\\cos\\theta=\\frac{x}{\\text{半径}}$正切函数:$\\tan\\theta=\\frac{y}{x}$反正弦函数:$\\sin^{-1}(\\frac{y}{\\text{半径}})=\\theta$ 反余弦函数:$\\cos^{-1}(\\frac{x}{\\text{半径}})=\\theta$反正切函数:$\\tan^{-1}(\\frac{y}{x})=\\theta$- 三角函数的平方和与差:$\\sin^2\\theta+\\cos^2\\theta=1$$\\sin(\\theta\\pm\\phi)=\\sin\\theta\\cos\\phi\\pm\\cos\\theta\\sin\\phi$$\\cos(\\theta\\pm\\phi)=\\cos\\theta\\cos\\phi\\mp\\sin\\theta\\sin\\phi$5. 矩阵与行列式- 二阶矩阵的行列式:$\\begin{vmatrix} a & b \\\\ c & d \\end{vmatrix}=ad-bc$- 二元一次方程组的解:设$\\begin{vmatrix} a & b \\\\ c & d \\end{vmatrix}\eq0$,则方程组的解为$x=\\frac{\\begin{vmatrix} e & b \\\\ f & d\\end{vmatrix}}{\\begin{vmatrix} a & b \\\\ c & d \\end{vmatrix}}$,$y=\\frac{\\begin{vmatrix} a & e \\\\ c & f \\end{vmatrix}}{\\begin{vmatrix} a & b \\\\ c & d \\end{vmatrix}}$- 行列式的性质:交换行列式的两行(列):行列式的值不变某行(列)全部乘以常数k:行列式的值乘以k某行(列)的倍加到另一行(列)上去:行列式的值不变以上只是文科数学常见的一些公式总结,各个学校或老师的教学内容可能会有所不同。
高考文科数学河南知识点

高考文科数学河南知识点高考是每个学生都经历的一场考试,数学作为其中一个科目,对于文科生来说,可能是一个挑战。
本文将介绍一些河南高考文科数学的知识点,帮助考生更好地准备这门科目。
一、函数与方程1. 一次函数:y = kx + b,k为斜率,b为截距。
注意在考试中常常会涉及到求解关于一次函数的问题。
2. 二次函数:y = ax^2 + bx + c,a为二次项系数,b为一次项系数,c为常数项。
要能够掌握二次函数的基本性质,如开口方向、顶点坐标等。
3. 不等式:对于不等式,要熟悉解不等式的方法,如图像法、试数法等。
二、数列与数学归纳法1. 数列的概念:数列是按照一定规律排列的数的集合。
要能够分辨等差数列和等比数列,并掌握它们的通项公式。
2. 数学归纳法:数学归纳法是一种证明方法,常用于证明数列的一般性质。
要熟悉数学归纳法的步骤,并能够灵活运用。
三、概率与统计1. 可能性与概率:要理解概率的概念,掌握计算概率的方法,如事件的互斥与独立。
2. 统计与图表分析:了解统计学中的基本概念,如平均数、中位数、众数等,并能够读懂各种图表,如折线图、柱状图等。
四、几何与三角函数1. 平面几何:熟悉平面几何中的基本概念,如线段、角、多边形等,并能够灵活应用几何性质求解相关问题。
2. 三角函数:熟练掌握正弦、余弦和正切等三角函数的定义和性质,能够应用三角函数解决实际问题。
五、解析几何1. 平面直角坐标系:要了解平面直角坐标系的概念,能够在平面直角坐标系中求两点之间的距离、斜率等。
2. 直线和圆的方程:要能够根据直线上的点或直线的特征方程求解直线的方程,同样地,要能够根据圆上的特征点求解圆的方程。
以上是一些涉及高考文科数学河南知识点的简要介绍,考生在备考中应该重点关注这些知识点,多做练习,掌握解题技巧。
只有充分掌握了这些知识,才能在高考数学科目中取得好成绩。
祝愿所有考生都能取得优异的成绩!。
高中数学公式大全(文科)

高中数学常用公式及结论1 元素与集合的关系:U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.A A ∅⇔≠∅2 集合12{,,,}n a a a 的子集个数共有2n 个;真子集有21n -个;非空子集有21n -个;非空的真子集有22n-个.3 二次函数的解析式的三种形式:(1) 一般式2()(0)f x ax bx c a =++≠;(2) 顶点式2()()(0)h f x a a k x =-+≠;(当已知抛物线的顶点坐标(,)h k 时,设为此式) (3) 零点式12()()()(0)f x a x x x a x =--≠;(当已知抛物线与x 轴的交点坐标为12(,0),(,0)x x 时,设为此式)(4)切线式:02()()(()),0x kx d f x a x a =-+≠+。
(当已知抛物线与直线y kx d =+相切且切点的横坐标为0x 时,设为此式)4 真值表: 同真且真,同假或假5 四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.)原命题 互逆 逆命题 若p则q 若q则p 互 互互 为 为 互 否 否 逆 逆 否 否否命题 逆否命题 若非p则非q 互逆 若非q则非p充要条件: (1)、p q ⇒,则P 是q 的充分条件,反之,q 是p 的必要条件;(2)、p q ⇒,且q ≠> p ,则P 是q 的充分不必要条件; (3)、p ≠> p ,且q p ⇒,则P 是q 的必要不充分条件;4、p ≠> p ,且q ≠> p ,则P 是q 的既不充分又不必要条件。
6 函数单调性:增函数:(1)、文字描述是:y 随x 的增大而增大。
(2)、数学符号表述是:设f (x )在x ∈D 上有定义,若对任意的1212,,x x D x x ∈<且,都有12()()f x f x <成立,则就叫f (x )在x ∈D 上是增函数。
(完整版)文科高中数学公式大全(超全完美)

高中文科数学公式总结一、函数、导数1.元素与集合的关系:U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.A A ∅⇔≠∅Ø集合12{,,,}n a a a L 的子集个数共有2n 个;真子集有21n -个;非空子集有21n -个;非空的真子集有22n -个.2. 真值表 常四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.)3. 充要条件(记p 表示条件,q 表示结论) (1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 4. 全称量词∀表示任意,∃表示存在;∀的否定是∃,∃的否定是∀。
例:2,10x R x x ∀∈++> 的否定是 2,10x R x x ∃∈++≤ 5. 函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数;],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.6. 复合函数)]([x g f y =单调性判断步骤:(1)先求定义域 (2)把原函数拆分成两个简单函数)(u f y =和)(x g u = (3)判断法则是同增异减(4)所求区间与定义域做交集 7. 函数的奇偶性(1)前提是定义域关于原点对称。
(2)对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。
文科数学高考知识点公式

文科数学高考知识点公式在文科数学高考中,知识点很多,其中公式是我们必须牢记的重要内容。
这些公式不仅能够帮助我们解决各类数学问题,还能提高解题效率。
本文将介绍一些常见的文科数学高考知识点公式,并探讨其应用。
1. 几何平均数公式几何平均数是一组数的乘积开方。
在高考中,我们经常需要用到平均数解题,而几何平均数公式是计算几何平均数的重要工具。
公式如下:对于正数a_1、a_2、...、a_n,它们的几何平均数G满足以下公式:G = (a_1 * a_2 * ... * a_n)^(1/n)例如,求1、2、3、4、5的几何平均数,可以应用该公式:G = (1 * 2 * 3 * 4 * 5)^(1/5) = 2.6052. 排列组合公式在高考中,排列组合是一个常见的考点。
排列组合公式可以帮助我们快速计算排列和组合的数量。
(1)排列公式:对于n个元素中取出r个元素进行排列,排列数用P表示,计算公式为:P(n,r) = n!/(n-r)!例如,从5个数中取出3个数进行排列,可以应用该公式:P(5,3) = 5!/(5-3)! = 60(2)组合公式:对于n个元素中取出r个元素进行组合,组合数用C表示,计算公式为:C(n,r) = n!/((n-r)! * r!)例如,从5个数中取出3个数进行组合,可以应用该公式:C(5,3) = 5!/((5-3)! * 3!) = 103. 相似三角形的比例公式在几何学中,相似三角形的比例是非常重要的。
相似三角形的比例公式可以帮助我们求解未知边长的三角形问题。
设两个相似三角形的对应边长比为m: n,那么这两个相似三角形的面积比为m²: n²。
例如,已知两个相似三角形的一个边长比为2:3,求其面积比,可以应用该公式:面积比 = 2²:3² = 4:94. 等差数列求和公式在高考中,等差数列是一个常见的数列类型。
等差数列求和公式可以帮助我们快速计算等差数列的和。
高中数学公式大全文科

高中数学公式大全文科1.代数运算公式:(1) 二项式公式:(a + b)^2 = a^2 + 2ab + b^2,(a - b)^2 = a^2 - 2ab + b^2,(a + b)(a - b) = a^2 - b^2(2) 平方差公式:(a + b)^2 - (a - b)^2 = 4ab(3) 证明等式:(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3,(a -b)^3 = a^3 - 3a^2b + 3ab^2 - b^3(4)等比数列求和:S_n=a(1-q^n)/(1-q),其中a为首项,q为公比,n为项数(5) 二次根式相加:√a + √b = √(a + b + 2√ab)(6)三次方程和四次方程的求根公式2.几何公式:(1) 三角形面积公式:S = 1/2 * a * b * sinC,其中a,b为两边的长度,C为两边夹角的度数(2) 三角形边长关系:a/sinA = b/sinB = c/sinC = 2R,其中R为外接圆半径(3) 三角函数的和与差的公式:sin(A ± B) = sinAcosB ± cosAsinB,cos(A ± B) = cosAcosB ∓ sinAsinB,tan(A ± B) = (tanA ± tanB)/(1 ∓ tanAtanB)(4) 三角函数的倍角公式:sin2A = 2sinAcosA,cos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2A,tan2A = (2tanA)/(1 - tan^2A)(5)圆的面积公式:S=πr^2,其中r为半径(6)圆的周长公式:C=2πr,其中r为半径3.概率与统计公式:(1)加法原理:P(A∪B)=P(A)+P(B)-P(A∩B),其中P(A)为事件A发生的概率,P(B)为事件B发生的概率,P(A∩B)为事件A与事件B同时发生的概率(2)乘法原理:P(A∩B)=P(A)×P(B,A),其中P(A)为事件A发生的概率,P(B,A)为在事件A发生的条件下事件B发生的概率(3)期望:E(X)=μ=∑(xP(x)),其中X为随机变量,x为随机变量X 的取值,P(x)为X取值为x的概率(4) 方差:Var(X) = σ^2 = E((X - μ)^2),其中E为期望,σ^2为方差,(X - μ)^2为随机变量X与其期望之差的平方以上是高中数学文科相关的一些公式,但由于篇幅有限,可能并未包含所有相关的公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考文科必背数学公式
无论你是理科生还是文科生,数学公式,你必须掌握。
提醒广大高考考生,越到接近考试的时候,越需要回顾一些重要的基础知识。
数学公式就是其中之一。
下面汇总整理《高考文科必背数学公式》,供高考考生参考。
函数、导数1、函数的单调性
(1)设x1、x2[a,b],x1x2那么
f(x1)f(x2)0f(x)在[a,b]上是增函数;
f(x1)f(x2)0f(x)在[a,b]上是减函数.
(2)设函数yf(x)在某个区间内可导,若f(x)0,则f(x)为增函数;若f(x)0,则f(x)为减函数.
2、函数的奇偶性
对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数; 对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
解三角形公式:正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径
余弦定理:a2=b2+c2-2bc*cosA
sin(A+B)=sinC
sin(A+B)=sinAcosB+sinBcosA
sin(A-B)=sinAcosB+sinBcosA
sin2A=2sinAcosA
cos2A=2(cosA)2-1=(cosA)2-(sinA)2=1-2(sinA)2
tan2A=2tanA/[1-(tanA)2]
(sinA)2+(cosA)2=1
常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot( 2kπ+α)=cotα(k∈Z)
公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα
公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα
公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα
公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα
公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)
=-cosαcos(3π/2+α)=sinα
以上就是“高考文科必背数学公式”全部内容,编辑整理。
为您提供更多高考提分技巧等文章,欢迎广大考生访问,获取更多关于高考的信息。