【精品】2020年中考数学典例精做专题19 新定义型问题 (教师版)
2019-2020年中考数学专题复习新定义问题

2019-2020年中考数学专题复习新定义问题【专题点拨】新定义运算、新概念问题一般是介绍新定义、新概念,然后利用新定义、新概念解题,其解题步骤一般都可分为以下几步:1.阅读定义或概念,并理解;2.总结信息,建立数模;3.解决数模,回顾检查.“新概念”试题,其设计新颖,构思独特,思维容量大,既能考查学生的阅读、分析、推理、概括等能力,又能考查学生知识迁移的能力和数学素养,同时还兼具了区分选拔的功能 .【解题策略】具体分析新颖问题→弄清问题题意→向已知知识点转化→利用相关联知识查验→转化问题思路解决【典例解析】类型一:规律题型中的新定义例题1:(2015•永州,第10题3分)定义[x]为不超过x的最大整数,如[3.6]=3,[0.6]=0,[﹣3.6]=﹣4.对于任意实数x,下列式子中错误的是()A.[x]=x(x为整数) B.0≤x﹣[x]<1C.[x+y]≤[x]+[y]D.[n+x]=n+[x](n为整数)【解析】:根据“定义[x]为不超过x的最大整数”进行计算【解答】:解:A、∵[x]为不超过x的最大整数,∴当x是整数时,[x]=x,成立;B、∵[x]为不超过x的最大整数,∴0≤x﹣[x]<1,成立;C、例如,[﹣5.4﹣3.2]=[﹣8.6]=﹣9,[﹣5.4]+[﹣3.2]=﹣6+(﹣4)=﹣10,∵﹣9>﹣10,∴[﹣5.4﹣3.2]>[﹣5.4]+[﹣3.2],∴[x+y]≤[x]+[y]不成立,D、[n+x]=n+[x](n为整数),成立;故选:C.【点评】本题考查了一元一次不等式组的应用,解决本题的关键是理解新定义.新定义解题是近几年中考常考的题型.变式训练1:(2015•山东潍坊,第12题3分)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为( )A.(—2012,2) B.(一2012,一2)C. (—2013,—2)D. (—2013,2)类型二:运算题型中的新定义例题2:(2016·四川宜宾)规定:log a b(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:log n a n=n.log N M=(a>0,a≠1,N>0,N≠1,M>0).例如:log223=3,log25=,则log1001000= .【解析】实数的运算.先根据log N M=(a>0,a≠1,N>0,N≠1,M>0)将所求式子化成以10为底的对数形式,再利用公式进行计算.【解答】解:log1001000===.故答案为:.变式训练2:(2016四川省乐山市第16题)在直角坐标系xOy 中,对于点P (x ,y )和Q (x ,y′),给出如下定义:若(0)(0)y x y y x ≥⎧'=⎨-<⎩,则称点Q 为点P 的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)若点(﹣1,﹣2)是一次函数3y x =+图象上点M 的“可控变点”,则点M 的坐标为 ;(2)若点P 在函数216y x =-+(5x a -≤≤)的图象上,其“可控变点”Q 的纵坐标y′的取值范围是1616y '-≤≤,则实数a 的取值范围是 .类型三: 探索题型中的新定义例题3:(2016山西省第10题)宽与长的比是21-5(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连接EF ;以点F 为圆心,以FD 为半径画弧,交BC 的延长线与点G ;作AD GH ⊥,交AD 的延长线于点H .则图中下列矩形是黄金矩形的是( )A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH【解析】考点:黄金分割的识别【解答】:由作图方法可知DF=5CF ,所以CG=CF )15(-,且GH=CD=2CF ,从而得出黄金矩形CG=CF )15(-,GH=2CF ∴2152)15(-=-=CF CF GH CG ∴矩形DCGH 是黄金矩形。
2020年中考数学压轴题型专练:数学新定义题型(含答案)

2020中考数学 压轴题型专练:数学新定义题型(含答案)1.我们规定:若m u r =(a ,b ),n r =(c ,d ),则m u r •n r =ac +bd .如m u r =(1,2),n r =(3,5),则m u r •nr=1×3+2×5=13.(1)已知m u r =(2,4),n r =(2,-3),求m u r •n r ;(2)已知m u r =(x -a ,1),n r =(x -a ,x +1),求y =m u r •n r ,问y =m u r •n r的函数图象与一次函数y =x -1的图象是否有交点,请说明理由.解:(1)∵m u r =(2,4),n r=(2,-3), ∴m u r •n r=2×2+4×(-3)=-8;(2)无交点.理由:∵m u r =(x -a ,1),n r=(x -a ,x +1),∴y =m u r •n r=(x -a )2+(x +1)=x 2-(2a -1)x +a 2+1 ∴y =x 2-(2a -1)x +a 2+1联立方程:x 2-(2a -1)x +a 2+1=x -1, 化简得:x 2-2ax +a 2+2=0, ∵△=b 2-4ac =-8<0,∴方程无实数根,两函数图象无交点.2,T (4,2)=1. (1)求a ,b 的值;(2)若T (m ,m +3)=-1,求m 的值.解:(1)(1,1)2,21a bT --==--即a -b =-2, T (4,2)=42182a b+=+,即2a +b =5,解得a =1,b =3;(2) 根据题意得3(3)12(3)m m m m ++=-++,解得127m =-, 经检验,127m =-是方程的解. 3.一个三位正整数M ,其各位数字均不为零且互不相等.若将M 的十位数字与百位数字交换位置,得到一个新的三位数,我们称这个三位数为M 的“友谊数”,如:168的“友谊数”为“618”;若从M 的百位数字、十位数字、个位数字中任选两个组成一个新的两位数,并将得到的所有两位数求和,我们称这个和为M 的“团结数”,如:123的“团结数”为12+13+21+23+31+32=132. (1)求证:M 与其“友谊数”的差能被15整除;(2)若一个三位正整数N ,其百位数字为2,十位数字为a 、个位数字为b ,且各位数字互不相等(a ≠0,b ≠0),若N 的“团结数”与N 之差为24,求N 的值.解:(1)由题意可得,设M 为100a +10b +c ,则它的友谊数为:100b +10a +c , (100a +10b +c )-(100b +10a +c )=100a +10b +c -100b -10a -c∴M 与其“友谊数”的差能被15整除;(2)由题意可得,N =2×100+10a +b =200+10a +b ,N 的团结数是:10×2+a +10a +2+10×2+b +10×b +2+10a +b + 10b +a =22a +22b +44,∴22a +22b +44-(200+10a +b )=24,已知a、b为整数,且a≠0,b≠0,a≠b,解得84ab⎧⎨⎩==或18ab⎧⎨⎩==,即N是284或218.4.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0.那么我们称这个方程为“凤凰”方程.(1)已知ax2+bx+c=0(a≠0)是“凤凰”方程.且有两个相等的实数根.试求a与c 的关系;(2)已知关于x的方程m(x2+1)-3x2+nx=0是“凤凰”方程,且两个实数根都是整数.求整数m的值.解:(1)由题意得:a+b+c=0,b=-a-c,∵ax2+bx+c=0(a≠0)有两个相等的实数根,∴△=b2-4ac=0,把b=-a-c代入到b2-4ac=0中得:(-a-c)2-4ac=0,(a-c)2=0,∴a=c;(2)m(x2+1)-3x2+nx=0,(m-3)x2+nx+m=0,当x=1时,2m-3+n=0,n=3-2m,解得因为方程两个实数根都是整数,∴整数m为0或2或4或6.5. 设三个内角的度数分别为α、β、γ,如果其中一个角的度数是另一个角度数的3倍,那么“和谐”,并把满足条件的α、β、γ(β≤γ)称为“和谐”的一组值.例如α=30°,β=60°,γ=90°是“和谐”的一组值.(1)当α=48°,写出以α=48°为其中一个内角的“和谐”的一组值;(2)当α≥135°时,符合条件的“和谐”的值是否只有一组,写出你的判断并用含α的代数式表示β、γ;(3)α为何值时,符合条件的“和谐”的值分别有一组、二组、三组值?请你分别写出对应α的值或范围(直接填在下表中).解:(1)α=48°,β=33°,γ=99°或α=48°,β=16°,γ=116°.(3)α≥135°,45°≤α<135°,0°<α<45°.【解法提示】α≥135°时,只有一组;45°≤α<135°时,有二组;0°<α<45°时,有三组.6. 观察下表:我们把某格中字母相加所得到的多项式称为特征多项式,例如第1格的“特征多项式”为4x+y,回答下列问题:多项式”为 ;(2)若第1格的“特征多项式”的值为-10,第2格的“特征多项式”的值为-16. ①求x ,y 的值;②在①的条件下,第n 格的“特征多项式”是否有最小值?若有,求出最小值和相应的n值;若没有,请说明理由.解:(1):16x +9y ;25x +16y ;(n +1)2x +n 2y ;【解法提示】第3格的“特征多项式”为:16x +9y ;第4格的“特征多项式”为:25x +16y ;第n 格的“特征多项式”为:(n +1)2x +n 2y ;(2)①∵第1格的“特征多项式”的值为-10,第2格的“特征多项式”的值为-16,∴根据题意可得:4109416x y x y +-+-⎧⎨⎩==,②有最小值,7.在平面直角坐标系xOy中,定义一种变换:使平面内的点P(x,y)对应的像为P′(ax +by,bx-ay),其中a、b为常数.已知点(2,1)经变换后的像为(1,-8).(1)求a,b的值;(2)已知线段OP=2,求经变换后线段O′P′的长度(其中O′、P′分别是O、P经变换后的像,点O为坐标原点).解:(1)根据题意,得2128a bb a+--⎧⎨⎩==,解得23 ab-⎧⎨⎩==;(2)∵OP=2,点P的坐标是(x,y),∴根据勾股定理知,x2+y2=4.∵O′、P′分别是O、P经变换后的像,点O为坐标原点,∴O′(0,0),P′(2x-3y,-3x-2y),8.定义新运算:(a,b)⊗(c,d)=(ac,bd),(a,b)⊕(c,d)=(a+c,b+d),(a,b)*(c,d)=a2+c2-bd .(1)已知(1,2)⊗(p,q)=(2,-4),分别求出p与q的值;(2)在(1)的条件下,求(1,2)⊕(p,q)的结果.解:(1)∵(a,b)⊗(c,d)=(ac,bd),∴(1,2)⊗(p ,q )=(1×p ,2×q ), ∵(1,2)⊗(p ,q )=(2,-4), ∴p =2,2q =-4, ∴q =-2;(2)∵p =2,q =-2,(a ,b )⊕(c ,d )=(a +c ,b +d ), ∴(1,2)⊕(p ,q ) =(1,2)⊕(2,-2) =(3,0).9.已知抛物线21111y a x b x c =++,22222y a x b x c =++,且满足111222(0,1)a b c k k a b c ===≠,则抛物线12,y y 互为“友好抛物线”. (1)若y 2有最大值8,则y 1也有最大值,这样的说法对吗,为什么? (2)结合二次函数的特点和你对“友好抛物线”的理解,写出至少2条结论. 解:(1)不对.当k >0时,y 1有最大值为8k ; 当k <0时,y 1有最小值为8k .(2)①当a 1与a 2符号相反时其开口方向相反,当| a 1|≠| a 2|时,两抛物线开口大小不同; ②y 1与y 2的对称轴相同;③如果1y 与x 轴有两个不同的交点,则y 2与x 轴也有两个不同的交点(写出2条合理结论即可) 10. 在直角坐标系中,如果二次函数y =ax 2+bx +2(a ≠0)的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,2),且AB =OC ,那么我们称这个二次函数为“和合二次函数”.由;(2)“和合二次函数”y =ax 2+bx +2的图象经过点(-6,2).①求a与b的值;②此函数图象可由抛物线y=ax2经过怎样的平移得到?x轴的交点坐标为A(-4,0),B(-2,0),AB=2,∴AB=OC,(2)①y=ax2+bx+2与x轴交点的横坐标为x1,x2,11.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图①,在△ABC中,AB=AC,顶角A的正对记作sad A,这时sad A=BCAB=底边腰,容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解答下列问题: (1)sad60°= ,sad90°= ;(2)如图②,已知sin A=35,其中∠A为锐角,试求sad A的值.第11题图解(2)设AB =5a ,BC =3a ,则AC =4a ,如解图,在AB 上取AD =AC =4a ,作DE ⊥AC 于点E ,则DE =AD ·sin A =4a ·35,AE =AD ·cos A =4a ·45,CE =4a 165-a =45a ,CD 5==,∴sad A =5CD AC =.第11题解图12.阅读材料,解答下面问题:如果一个三角形能被经过其顶点的一条线段分割成两个等腰三角形,那么称这个三角形为特异三角形,这条线段为这个三角形的特异线.如图①,△ABC 中,∠A =36°,∠ABC =∠C =72°,BD 平分∠ABC ,△ABC 被分成了两个等腰三角形,即△ABD、△BDC.我们称BD为△ABC的特异线,△ABC为特异三角形.(1)如图②,△ABC中,∠B=2∠C,线段AC的垂直平分线交AC于点D,交BC于点E.求证:AE是△ABC的一条特异线.(2)若△ABC是特异三角形,∠A=30°,∠B为钝角,请在图③、图④中尝试画出△ABC 的两条特异线,并标出∠C的度数,(说明:图形为示意图,只需画出图形,标出角度即可).第12题图解:(1)∵DE是线段AC的垂直平分线,∴EA=EC,即△EAC是等腰三角形,∴∠EAC=∠C,∴∠AEB=∠EAC+∠C=2∠C,∵∠B=2∠C,∴∠AEB=∠B,即△EAB是等腰三角形,∴AE是△ABC是一条特异线;(2)如解图①,BD是特异线时,如果AB=BD=DC,则∠BDA=∠A=30°,∴∠BDC=150°,∴∠C=15°,如解图②,AD=AB,DB=DC,则∠ADB=∠ABD=75°,∴∠C=37.5°.第12题解图13. 定义,如果一个锐角等腰三角形满足一个角度数是另一个角度数的2倍,那么我们称这个三角形为“智慧三角形”.(1)“智慧三角形”顶角的度数为;(2)如图①,正五边形ABCDE中,对角线AC,BE交于点P.求证:△APE是“智慧三角形”;(3)如图②,六边形ABCDEF中,AB∥DE,BC∥EF,CD∥AF,且∠A=108°,∠B=144°,①求∠D的度数;②求证:AB+BC=DE+EF.第13题图(1)解:36°;【解法提示】分两种情况:①底角度数是顶角度数的2倍时,设顶角度数为x,则底角度数为2x,由三角形内角和定理得:x+2x+2x=180°,解得x=36°,即顶角度数为36°;②顶角度数是底角度数的2倍时,设底角度数为x,则顶角度数为2x,由三角形内角和定理得:x+x+2x=180°,解得x=45°,2x=90°(不合题意);综上所述:“智慧三角形”顶角的度数为36°;(2)证明:∵五边形ABCDE是正五边形,∴AB=AE=BC,∠ABC=∠BAE=108°,∴∠ABE=∠AEB=∠ACB=36°,∴∠PAE=108°-36°=72°,∴∠APE=72°,∴∠APE=∠PAE=2∠AEB,∴AE=PE,∴△APE为智慧三角形;(3)①解:延长FA、CB交于点G,延长AB、DC交于点H,延长CD、FE交于M,如解图所示,∵∠BAF=108°,∠ABC=144°,∴∠BAG=72°,∠ABG=36°,∴∠G=72°,同理:∠H=72°,∵AB∥DE,∴∠CDE=180°-72°=108°;②证明:∵∠G=∠BAG,∴BG=AB,同理:EM=DE,∵BC∥EF,CD∥AF,∴四边形GCMF是平行四边形,∴GC=FM,即BG+BC=EM+EF,∴AB+BC=DE+EF.第13题解图14. 定义:如果三角形有一条边上的中线恰好等于这条边的边长,那么称这个三角形为“匀称三角形”,这条中线为“匀称中线”.(1)请根据定义判断下列命题的真假(请在真命题后的横线内打“√”,假命题后的横线内打“╳”)①等腰直角三角形一定不存在匀称中线.②如果直角三角形是匀称三角形,那么匀称中线一定是较长直角边上的中线.(2)已知:如图①,在Rt△ABC中,∠C=90°,AC>BC,若△ABC是“匀称三角形”,求BC:AC:AB的值;(3)拓展应用:如图②,△ABC是⊙O的内接三角形,AB>AC,∠BAC=45°,将△ABC绕点A逆时针旋转45°得△ADE,点B的对应点为D,连接CD 交⊙O于M,连接AM.①请根据题意用实线在图②中补全图形;②若△ADC是“匀称三角形”,求tan∠AMC的值.第14题图解:(1)√,√;(2)如解图①,∵∠C=90°,AC>BC由(1)可知△ABC的匀称中线是AC边上的中线,设D为AC中点,则BD为匀称中线, 设AC=2a,则CD=a,BD=2a,∵∠C=90°,(3)①补全图形如解图②;②如解图③,∵△ABC绕点A逆时针旋转45°得△ADE,∴∠DAE=∠BAC=45°,AD=AB,∴∠DAC=90°,AD>AC,∵△ADC是匀称三角形,过点C作CH⊥AB于H,则∠AHC=∠BHC=90°,第14题解图解:由p2-p-1=0及1-q-q2=0,可知p≠0,q≠0,根据以上阅读材料所提供的方法,完成下面的解答:根据2m2-5m-1=0和2n2-5n-1=0的特征,∴m、n是方程2x2-5x-1=0的两个不相等的实数根,。
【最新】2020年中考数学典例精做专题03 定义新运算 (教师版)

※知识精要1.定义新运算是一种人为的、临时性的运算形式,是可以深刻理解数学本源的题型,它使用的是一些特殊的运算符号,如:*、△、⊙,#等。
2. 熟练掌握有理数的运算,整式的化简和分式的化简,方程、不等式的解法。
※要点突破解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算、方程、不等式等,再进行运算.※典例精讲例1.对于有理数a、b定义一种运算:,计算(-2)*3+1.【答案】-6【解析】∵a*b=2a-b,∴(-2)*3+1=2×(-2)-3+1=-4-3+1=-6.例2.对于任意有理数a、b、c、d,我们规定符号(a,b)⊗(c,d)=ad﹣bc,例如:(1,3)⊗(2,4)=1×4﹣2×3=﹣2.(1)求(﹣2,3)⊗(4,5)的值为_____;(2)求(3a+1,a﹣2)⊗(a+2,a﹣3)的值,其中a2﹣4a+1=0.【答案】﹣22式的值.有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.※课堂精练一、单选题1.我们定义一种新运算,例如,则式子的值为A.B.C.D.【答案】B2.设a,b,c,d代表四个有理数,规定=ad-bc,则计算的正确结果是()A.-25 B.-10 C.10 D.26【答案】B【解析】根据规定=ad-b c,可得,然后根据有理数的乘法和加法,减法法则计算即可.【详解】因为规定=ad-bc,所以,故选B.3.对,定义一种新运算“※”,规定:(其中,均为非零常数),若,.则的值是().A.B.C.D.【答案】C【解析】根据新定义的运算律可得,解方程即可得到m、n的值,再带入到.中,求解即可.根据题意可得方程组解得,则=5×2+(-1)×1=9,故选:C4. 对于任意非零实数a,b,定义运算“※”如下:“a※b”=,则1※2+2※3+3※4+…+2017※2018的值为()A.B.C.D.-【答案】D二、填空题5.小亮在电脑上设计了一个有理数运算的程序:输入a,※键,再输入b,得到运算a※b=a2-ab,则(-2)※3=____.【答案】10【解析】(-2)※3=(-2)2-(-2)×3=4+6=10.6.现定义两种运算“⊕”与“”,对于任意两个整数a,b,a⊕b=a+b-1,a b=ab-1,则68+(-3)⊕(-5)=______【答案】38 ; 【解析】∵a ⊕b =a +b -1,a b =ab -1,∴68=6×8-1=47,(-3)⊕(-5)=-3-5-1=-9, ∴68+(-3)⊕(-5)=47-9=38,故答案为:38.7.如果表示运算x+y+z ,表示运算a -b +c -d,那么的结果是 。
2020年中考数学二轮复习重要考点精析--新定义型题型-含答案

中考数学二轮复习重要考点精析新定义型题型一、中考专题诠释所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力二、解题策略和解法精讲“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.三、中考典例剖析考点一:规律题型中的新定义例1 阅读下面的材料,先完成阅读填空,再按要求答题:sin30°=12,cos30°=2,则sin230°+cos230°= ;①sin45°=2,cos45°=2,则sin245°+cos245°= ;②sin60°=,cos60°=12,则sin260°+cos260°= .③…观察上述等式,猜想:对任意锐角A,都有sin2A+cos2A= .④(1)如图,在锐角三角形ABC中,利用三角函数的定义及勾股定理对∠A证明你的猜想;(2)已知:∠A为锐角(cosA>0)且sinA=35,求cosA.思路分析:①②③将特殊角的三角函数值代入计算即可求出其值;④由前面①②③的结论,即可猜想出:对任意锐角A,都有sin2A+cos2A=1;(1)如图,过点B作BD⊥AC于D,则∠ADB=90°.利用锐角三角函数的定义得出sinA=BD AB ,cosA=ADAB ,则sin2A+cos2A=222BD AD AB +,再根据勾股定理得到BD2+AD2=AB2,从而证明sin2A+cos2A=1;(2)利用关系式sin2A+cos2A=1,结合已知条件cosA >0且sinA=35,进行求解.解:∵sin30°=12,cos30°=3, ∴sin230°+cos230°=(12)2+(3)2=14+34=1;①∵sin45°=2,cos45°=2,∴sin245°+cos245°=(22)2+(22)2=12+12=1;②∵sin60°=32,cos60°=12,∴sin260°+cos260°=(3)2+(12)2=34+14=1.③观察上述等式,猜想:对任意锐角A ,都有sin2A+cos2A=1.④(1)如图,过点B 作BD ⊥AC 于D ,则∠ADB=90°.∵sinA=BD AB ,cosA=ADAB ,∴sin2A+cos2A=(BD AB )2+(ADAB )2=222BD AD AB +,∵∠ADB=90°,∴BD2+AD2=AB2,∴sin2A+cos2A=1.(2)∵sinA=35,sin2A+cos2A=1,∠A为锐角,∴45 =.点评:本题考查了同角三角函数的关系,勾股定理,锐角三角函数的定义,比较简单.对应训练1.我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.重心有很多美妙的性质,如关于线段比.面积比就有一些“漂亮”结论,利用这些性质可以解决三角形中的若干问题.请你利用重心的概念完成如下问题:(1)若O是△ABC的重心(如图1),连结AO并延长交BC于D,证明:23 AO AD=;(2)若AD是△ABC的一条中线(如图2),O是AD上一点,且满足23AOAD=,试判断O是△ABC的重心吗?如果是,请证明;如果不是,请说明理由;(3)若O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC的顶点重合)(如图3),S四边形BCHG,S△AGH分别表示四边形BCHG和△AGH的面积,试探究BCHGAGHSSV四边形的最大值.(1)证明:如答图1所示,连接CO并延长,交AB于点E.∵点O 是△ABC 的重心,∴CE 是中线,点E 是AB 的中点.∴DE 是中位线,∴DE ∥AC ,且DE=12AC . ∵DE∥AC,∴△AOC ∽△DOE ,∴AO AC OD DE =2, ∵AD=AO+OD ,∴AO AD =23.(2)答:点O 是△ABC 的重心.证明:如答图2,作△ABC 的中线CE ,与AD 交于点Q ,则点Q 为△ABC 的重心.由(1)可知,AO AD =23,而AO AD =23,∴点Q 与点O 重合(是同一个点),。
新定义概念问题2019中考数学高端精品(解析版)

专题04 新定义概念问题【考点综述评价】所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,其特点是源于初中数学内容,但又是学生没有遇到的新信息,它可以是新的概念、新的运算、新的符号、新的图形、新的定理或新的操作规则与程序、新的情境等等.要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学试题的新亮点.解题关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.【考点分类总结】考点1:定义新数【典型例题】(2017枣庄)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=pq.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=34.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【答案】(1)证明见解析;(2)15,26,37,48,59;(3)34.【分析】(1)对任意一个完全平方数m,设m=n2(n为正整数),找出m的最佳分解,确定出F(m)的值即可;学,科、网(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,由“吉祥数”的定义确定出x与y 的关系式,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F(t)的最大值即可.【方法归纳】对新数的解析蕴含在对数量关系的描述中,充分理解,结合相应知识,才能顺利解答.【变式训练】(2017重庆)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=()()F sF t,当F(s)+F(t)=18时,求k的最大值.【答案】(1)F(243)=9,F(617)=14;(2)54.【分析】(1)根据F(n)的定义式,分别将n=243和n=617代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k=() () F s F t中,找出最大值即可.【解答】(1)F(243)=(423+342+234)÷111=9;F(617)=(167+716+671)÷111=14.(2)∵s,t都是“相异数”,s=100x+32,t=150+y,∴F(s)=(302+10x+230+x+100x+23)÷111=x+5,F考点2:定义新运算【典型例题】(2017山东省日照市)阅读材料:在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=.例如:求点P0(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P0(0,0)到直线4x+3y﹣3=0的距离为d==35.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线3544y x=-+的距离为;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线34y x b=-+相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.【答案】(1)4;(2)b =54或154;(3)S △ABP 的最大值=4,S △ABP 的最小值=2. 【分析】(1)根据点到直线的距离公式就是即可; (2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C 到直线3x +4y +5=0的距离,求出⊙C 上点P 到直线3x +4y +5=0的距离的最大值以及最小值即可解决问题.【方法归纳】理解新运算法则是解题的关键. 【变式训练】(2017四川省乐山市)对于函数mnx x y +=,我们定义11--+='m n mx nx y (n m 、为常数).例如24x x y +=,则x x y 243+='.x.k-w 已知:()x m x m x y 223131+-+=. (1)若方程0='y 有两个相等实数根,则m 的值为 ;(2)若方程41-='m y 有两个正数根,则m 的取值范围为 . 【答案】(1)12;(2)m ≤34且m ≠12.【分析】根据新定义得到y ′=222(1)x m x m +-+ . (1)由判别式等于0,解方程即可;(2)根据根与系数的关系列不等式组即可得到结论.考点3:定义新概念【典型例题】(2017内蒙古通辽市)邻边不相等的平行四边形纸片,剪去一个菱形,余下的一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;…依此类推,若第n 次操作余下的四边形是菱形,则称原平行四边形为n 阶准菱形,如图1,▱ABCD 中,若AB =1,BC =2,则▱ABCD 为1阶准菱形. (1)猜想与计算:邻边长分别为3和5的平行四边形是 阶准菱形;已知▱ABCD 的邻边长分别为a ,b (a >b ),满足a =8b +r ,b =5r ,请写出▱ABCD 是 阶准菱形. (2)操作与推理:小明为了剪去一个菱形,进行了如下操作:如图2,把▱ABCD 沿BE 折叠(点E 在AD 上),使点A 落在BC 边上的点F 处,得到四边形ABFE .请证明四边形ABFE 是菱形.【答案】(1)3,12;(2)证明见解析.【分析】(1)利用平行四边形准菱形的意义即可得出结论; (2)先判断出∠AEB =∠ABE ,进而判断出AE =BF ,即可得出结论.(2)由折叠知:∠ABE =∠FBE ,AB =BF ,∵四边形ABCD 是平行四边形,∴AE ∥BF ,∴∠AEB =∠FBE ,∴∠AEB =∠ABE ,∴AE =AB ,∴AE =BF ,∴四边形ABFE 是平行四边形,∴四边形ABFE 是菱形.【方法归纳】解题关键是理解新定义,再结合已学知识解答.【变式训练】(2017北京市)在平面直角坐标系xOy 中的点P 和图形M ,给出如下的定义:若在图形M 上存在一点Q ,使得P 、Q 两点间的距离小于或等于1,则称P 为图形M 的关联点.(1)当⊙O 的半径为2时,①在点P 1(12,0),P 2(12,P 3(52,0)中,⊙O 的关联点是 . ②点P 在直线y =﹣x 上,若P 为⊙O 的关联点,求点P 的横坐标的取值范围.(2)⊙C 的圆心在x 轴上,半径为2,直线y =﹣x +1与x 轴、y 轴交于点A 、B .若线段AB 上的所有点都是⊙C 的关联点,直接写出圆心C 的横坐标的取值范围.【答案】(1)①P 2,P 3;②﹣2≤x ≤﹣2或2≤x ≤2;(2)﹣2≤x C ≤1或2≤x C ≤【分析】(1)①根据点P 1(12,0),P 2(12,2),P 3(52,0),求得OP 1=12,OP 2=1,OP 3=52,于是得到结论;学-科=网②根据定义分析,可得当最小y =﹣x 上的点P 到原点的距离在1到3之间时符合题意,设P (x ,﹣x ),根据两点间的距离公式即可得到结论;(2根据已知条件得到A (1,0),B (0,1),如图1,当圆过点A 时,得到C (﹣2,0),如图2,当直线AB 与小圆相切时,切点为D ,得到C (10),于是得到结论;如图3,当圆过点A ,则AC =1,得到C (2,0),如图4,当圆过点B ,连接BC ,根据勾股定理得到C (0),于是得到结论.【解答】(1)①∵点P 1(12,0),P 2(12,2),P 3(52,0),∴OP 1=12,OP 2=1,OP 3=52,∴P 1与⊙O 的最小距离为32,P 2与⊙O 的最小距离为1,OP 3与⊙O 的最小距离为12,∴⊙O ,⊙O 的关联点是P 2,P 3;(2)∵直线y =﹣x +1与x 轴、y 轴交于点A 、B ,∴A (1,0),B (0,1),如图1,当圆过点A 时,此时,CA =3,∴C (﹣2,0);如图2,当直线AB 与小圆相切时,切点为D ,∴CD =1,∵直线AB 的解析式为y =﹣x +1,∴直线AB 与x轴的夹角=45°,∴AC ,∴C (10),∴圆心C 的横坐标的取值范围为:﹣2≤x C ≤1;综上所述:圆心C的横坐标的取值范围为:﹣2≤x C≤12≤x C≤考点4:定义新法则【典型例题】(2017上海市)我们规定:一个正n边形(n为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n边形的“特征值”,记为λn,那么λ6= ..【答案】2【分析】如图,正六边形ABCDEF中,对角线BE、CF交于点O,连接EC.易知BE是正六边形最长的对角线,EC是正六边形的最短的对角线,只要证明△BEC是直角三角形即可解决问题.【解答】如图,正六边形ABCDEF 中,对角线BE 、CF 交于点O ,连接EC .【方法归纳】正确理解新定义的图形,寻找形与数的对应关系. 【变式训练】(2017吉林省长春市)定义:对于给定的两个函数,任取自变量x 的一个值,当x <0时,它们对应的函数值互为相反数;当x ≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y =x ﹣1,它的相关函数为()()1010x x y x x -+<⎧⎪=⎨-≥⎪⎩. (1)已知点A (﹣5,8)在一次函数y =ax ﹣3的相关函数的图象上,求a 的值; (2)已知二次函数2142y x x =-+-.x..k+-w ①当点B (m ,32)在这个函数的相关函数的图象上时,求m 的值; ②当﹣3≤x ≤3时,求函数2142y x x =-+-的相关函数的最大值和最小值;(3)在平面直角坐标系中,点M ,N 的坐标分别为(﹣12,1),(92,1}),连结MN .直接写出线段MN与二次函数24y x x n =-++的相关函数的图象有两个公共点时n 的取值范围. 【答案】(1)1;(2)①m =2m =2或m =2;②最大值为432,最小值为﹣12;(3)﹣3<n ≤﹣1或1<n ≤54.【分析】(1)函数y =ax ﹣3的相关函数为3(0)3(0)ax x y ax x -+<⎧=⎨-≥⎩,将然后将点A (﹣5,8)代入y =﹣ax +3求解即可;(2)二次函数2142y x x =-+-的相关函数为2214(0)214(0)2x x x y x x x ⎧-+<⎪⎪=⎨⎪-+-≥⎪⎩,①分为m <0和m ≥0两种情况将点B 的坐标代入对应的关系式求解即可;②当﹣3≤x <0时,2142y x x =-+-,然后可 此时的最大值和最小值,当0≤x ≤3时,函数2142y x x =-+-,求得此时的最大值和最小值,从而可得到当﹣3≤x ≤3时的最大值和最小值;(3)首先确定出二次函数24y x x n =-++的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值,然后结合函数图象可确定出n 的取值范围. 【解答】(1)函数y =ax ﹣3的相关函数为3(0)3(0)ax x y ax x -+<⎧=⎨-≥⎩,将点A (﹣5,8)代入y =﹣ax +3得:5a +3=8,当m ≥0时,将B (m ,32)代入2142y x x =-+-得:213422m m -+-=,解得:m =2或m =2.综上所述:m =2m =2或m =2. ②当﹣3≤x <0时,2142y x x =-+,抛物线的对称轴为x =2,此时y 随x 的增大而减小,∴此时y 的最大值为432. 当0≤x ≤3时,函数2142y x x =-+-,抛物线的对称轴为x =2,当x =0有最小值,最小值为﹣12,当x =2时,有最大值,最大值y =72.综上所述,当﹣3≤x ≤3时,函数2142y x x =-+-的相关函数的最大值为432,最小值为﹣12; (3)如图1所示:线段MN 与二次函数24y x x n =-++的相关函数的图象恰有1个公共点.所以当x =2时,y =1,即﹣4+8+n =1,解得n =﹣3.如图2所示:线段MN 与二次函数24y x x n =-++的相关函数的图象恰有3个公共点∵抛物线24y x x n =-++经过点(0,1),∴n =1.如图4所示:线段MN 与二次函数24y x x n =-++的相关函数的图象恰有2个公共点.【新题好题训练】1.定义[x ]表示不超过实数x 的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y =[x ]的图象如图所示,则方程[]221x x =的解为( ).A .0或2B .0或2C .1或2-D .2或2- 【答案】A .【分析】根据新定义和函数图象讨论:当1≤x ≤2时,则212x =1;当﹣1≤x ≤0时,则212x =0,当﹣2≤x <﹣1时,则212x =﹣1,然后分别解关于x 的一元二次方程即可.学+/科网 【解答】当1≤x <2时,212x =1,解得x 1=2,x 2=﹣2;当x =0,212x =0,x =0;当﹣1≤x <0时,212x =﹣1,方程没有实数解;当﹣2≤x <﹣1时,212x =﹣1,方程没有实数解; 所以方程[]221x x =的解为0或2.故选A . 2.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距4×4的正方形网格图形中(如图1),从点A 经过一次跳马变换可以到达点B ,C ,D ,E 等处.现有20×20的正方形网格图形(如图2),则从该正方形的顶点M 经过跳马变换到达与其相对的顶点N ,最少需要跳马变换的次数是( )A .13B .14C .15D .16 【答案】B .【分析】A ﹣C ﹣F 的方向连续变换10次后点M 的位置,再根据点N 的位置进行适当的变换,即可得到变换总次数.3.已知点A 在函数11y x=-(x >0)的图象上,点B 在直线y 2=kx +1+k (k 为常数,且k ≥0)上.若A ,B 两点关于原点对称,则称点A ,B 为函数y 1,y 2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为( )A.有1对或2对B.只有1对C.只有2对D.有2对或3对【答案】A.【分析】根据“友好点”的定义知,函数y1图象上点A(a,1a)关于原点的对称点B(-a,1a)一定位于直线y2上,即方程ka2﹣(k+1)a+1=0有解,整理方程得(a﹣1)(ka﹣1)=0,据此可得答案.4.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是.(写出所有正确说法的序号)学科.+网①当x=1.7时,[x]+(x)+[x)=6;②当x=﹣2.1时,[x]+(x)+[x)=﹣7;③方程4[x]+3(x)+[x)=11的解为1<x<1.5;④当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.【答案】②③.【分析】根据题意可以分别判断各个小的结论是否正确,从而可以解答本题.【解答】①当x=1.7时,[x]+(x)+[x)=[1.7]+(1.7)+[1.7)=1+2+2=5,故①错误;②当x=﹣2.1时,[x]+(x)+[x)=[﹣2.1]+(﹣2.1)+[﹣2.1)=(﹣3)+(﹣2)+(﹣2)=﹣7,故②正确;③4[x]+3(x)+[x)=11,7[x]+3+[x)=11,7[x]+[x)=8,1<x<1.5,故③正确;④∵﹣1<x<1时,∴当﹣1<x<﹣0.5时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当﹣0.5<x<0时,y=[x]+(x)+x =﹣1+0+x =x ﹣1,当x =0时,y =[x ]+(x )+x =0+0+0=0,当0<x <0.5时,y =[x ]+(x )+x =0+1+x =x +1,当0.5<x <1时,y =[x ]+(x )+x =0+1+x =x +1,∵y =4x ,则x ﹣1=4x 时,得x =13-;x +1=4x 时,得x =13;当x =0时,y =4x =0,∴当﹣1<x <1时,函数y =[x ]+(x )+x 的图象与正比例函数y =4x 的图象有三个交点,故④错误,故答案为:②③.5.阅读理解:如图1,⊙O 与直线a 、b 都相切,不论⊙O 如何转动,直线a 、b 之间的距离始终保持不变(等于⊙O 的直径),我们把具有这一特性的图形成为“等宽曲线”,图2是利用圆的这一特性的例子,将等直径的圆棍放在物体下面,通过圆棍滚动,用较小的力既可以推动物体前进,据说,古埃及人就是利用这样的方法将巨石推到金字塔顶的.拓展应用:如图3所示的弧三角形(也称为莱洛三角形)也是“等宽曲线”,如图4,夹在平行线c ,d 之间的莱洛三角形无论怎么滚动,平行线间的距离始终不变,若直线c ,d 之间的距离等于2cm ,则莱洛三角形的周长为 cm .【答案】2π.【分析】由等宽曲线的定义知AB =BC =AC =2cm ,即可得∠BAC =∠ABC =∠ACB =60°,根据弧长公式分别求得三段弧的长即可得其周长.【解答】如图3,由题意知AB =BC =AC =2cm ,∴∠BAC =∠ABC =∠ACB =60°,∴AB 在以点C 为圆心、2为半径的圆上,∴AB 的长为602180π⨯ =23π,则莱洛三角形的周长为23π×3=2π,故答案为:2π. 6.对于实数p ,q ,我们用符号{}min ,p q 表示p ,q 两数中较小的数,如{}min 1,21=,因此{min = ;若{}22min (1),1x x -=,则x = .【答案】2或-1.【分析】首先理解题意,进而可得min{min{(x﹣1)2,x2}=1时再分情况讨论,当x=0.5时,x>0.5时和x<0.5时,进而可得答案.7.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为.【答案】113°或92°.【分析】由△ACD是等腰三角形,∠ADC>∠BCD,推出∠ADC>∠A,即AC≠CD,分两种情形讨论①当AC=AD时,②当DA=DC时,分别求解即可.【解答】∵△BCD∽△BAC,∴∠BCD=∠A=46°,∵△ACD是等腰三角形,∵∠ADC>∠BCD,∴∠ADC >∠A,即AC≠CD,①当AC=AD时,∠ACD=∠ADC=(180°﹣46°)÷2=67°,∴∠ACB=67°+46°=113°,②当DA=DC时,∠ACD=∠A=46°,∴∠ACB=46°+46°=92°,故答案为:113°或92°.8.定义:点P是△ABC内部或边上的点(顶点除外),在△P AB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P是△ABC 的自相似点.请你运用所学知识,结合上述材料,解决下列问题:=x>0)上的任意一点,点N是x轴正半轴上的任意一点.在平面直角坐标系中,点M是曲线yx(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是3),点N ,0)时,求点P 的坐标;学+-科网(2)如图3,当点M 的坐标是(3),点N 的坐标是(2,0)时,求△MON 的自相似点的坐标; (3)是否存在点M 和点N ,使△MON 无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.【答案】(1)P (4,34);(2)(1,3)或(2,3);(3)存在, M ,3),N (0). 【分析】(1)由∠ONP =∠M ,∠NOP =∠MON ,得出△NOP ∽△MON ,证出点P 是△MON 的自相似点;过P 作PD ⊥x 轴于D ,则tan ∠POD =MNONAON =60°,由点M 和N 的坐标得出∠MNO =90°,由相似三角形的性质得出∠NPO =∠MNO =90°,在Rt △OPN 中,由三角函数求出OP =2,OD =4,PD =34,即可得出答案;(2)作MH ⊥x 轴于H ,由勾股定理求出OM =OM 的解析式为y =3x ,ON =2,∠MOH =30°,分两种情况:①作PQ ⊥x 轴于Q ,由相似点的性质得出PO =PN ,OQ =12ON =1,求出P 的纵坐标即可;②求出MN 2,由相似三角形的性质得出PN MNON MO=,求出PN =3,在求出P 的横坐标即可;(3)证出OM =ON ,∠MON =60°,得出△MON 是等边三角形,由点P 在△MON 的内部,得到∠PON ≠∠OMN ,∠PNO ≠∠MON ,即可得出结论.①如图3所示:∵P 是△MON 的相似点,∴△PON ∽△NOM ,作PQ ⊥x 轴于Q ,∴PO =PN ,OQ =12ON =1,∵P 的横坐标为1,∴y =3×1=3,∴P (1,3); ②如图4所示:由勾股定理得:MN 2,∵P 是△MON 的相似点,∴△PNM ∽△NOM ,∴PN MNON MO=,即2PN =,解得:PN ,即P ,代入y x ,解得:x =2,∴P (2,3);综上所述:△MON 的自相似点的坐标为(12);(3)存在点M 和点N ,使△MON 无自相似点,M ,3),N (0);理由如下:∵M 3),N (0),∴OM =ON ,∠MON =60°,∴△MON 是等边三角形,∵点P 在△MON 的内部,∴∠PON ≠∠OMN ,∠PNO ≠∠MON ,∴存在点M 和点N ,使△MON 无自相似点.9.综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被记载于我国古代著名数学著作《周髀算经》中.为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形.例如:三边长分别为9,12,15或3,4,5)型三角形.用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.问题解决(1)请在图2中证明四边形AEFD是正方形.(2)请在图4中判断NF与ND′的数量关系,并加以证明.(3)请在图4中证明△AEN是(3,4,5)型三角形.探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.【答案】(1)证明见解析;(2)NF=ND′,证明见解析;(3)证明见解析;(4)△MFN,△MD′H,△MDA.【分析】(1)根据题中所给(3,4,5)型三角形的定义证明即可;(2)NF=ND′,证明Rt△HNF≌Rt△HND′即可;(3)根据题中所给(3,4,5)型三角形的定义证明即可;(4)由△AEN是(3,4,5)型三角形,凡是与△AEN相似的△都是(3,4,5)型三角形.【解答】(1)∵四边形ABCD是矩形,∴∠D=∠DAE=90°.由折叠知:AE=AD,∠AEF=∠D=90°,∴∠D=∠DAE=∠AEF=90°,∴四边形AEFD是矩形.∵AE=AD,∴矩形AEFD是正方形.(2)NF=ND′.证明如下:连结HN.由折叠知:∠AD′H=∠D=90°,HF=HD=HD′.∵CF∥AE,∴△MFN∽△AEN.∵EN:AE:AN=3:4:5,∴FN:MF:CN=3:4:5,∴△MFN是(3,4,5)型三角形;同理,△MD′H,△MDA是(3,4,5)型三角形.10.我们知道,三角形的内心是三条角平分线的交点,过三角形内心的一条直线与两边相交,两交点之间的线段把这个三角形分成两个图形.若有一个图形与原三角形相似,则把这条线段叫做这个三角形的“內似线”.(1)等边三角形“內似线”的条数为;(2)如图,△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求证:BD是△ABC的“內似线”;(3)在Rt△ABC中,∠C=90°,AC=4,BC=3,E、F分别在边AC、BC上,且EF是△ABC的“內似线”,求EF的长.【答案】(1)3;(2)证明见解析;(3)3512. 【分析】(1)过等边三角形的内心分别作三边的平行线,即可得出答案;(2)由等腰三角形的性质得出∠ABC =∠C =∠BDC ,∠A =∠ABD ,证出△BCD ∽△ABC ,再由三角形的外角性质证出BD 平分∠ABC 即可;(3)分两种情况:①当43CE AC CF BC ==时,EF ∥AB ,由勾股定理求出AB 5,作DN ⊥BC 于N ,则DN ∥AC ,DN 是Rt △ABC 的内切圆半径,求出DN =12(AC +BC ﹣AB )=1,由角平分线定理得出43DE CE DF CF ==,求出CE 的长,证明△CEF ∽△CAB ,得出对应边成比例求出EF =3512; ②当43CF AC CE BC ==时,同理得:EF =3512即可.(3)解:设D 是△ABC 的内心,连接CD ,则CD 平分∠ACB ,∵EF 是△ABC 的“內似线”,∴△CEF 与△ABC 相似;分两种情况:①当43CE AC CF BC ==时,EF ∥AB ,∵∠ACB =90°,AC =4,BC =3,∴AB 5,作DN ⊥BC 于N ,如图2所示:则DN ∥AC ,DN 是Rt △ABC 的内切圆半径,∴DN =12(AC +BC ﹣AB )=1,∵CD 平分∠ACB ,∴43DE CE DF CF ==,∵DN ∥AC ,∴37DN DF CE EF ==,即137CE =,∴CE =73,∵EF ∥AB ,∴△CEF ∽△CAB ,∴EF CEAB AC=,即7354EF=,解得:EF=3512;②当43CF ACCE BC==时,同理得:EF=3512;综上所述,EF的长为35 12.。
2020年九年级数学中考复习专题新定义导学案含答案解析

2020年中考总复习专题新定义一.选择题(共2小题)1.已知点A在函数y1=﹣(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k ≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.有1对或2对B.只有1对C.只有2对D.有2对或3对2.对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是()A.c<﹣3B.c<﹣2C.c<D.c<1二.填空题(共5小题)3.定义一种新运算:新定义运算a*b=a×(a﹣b)3,则3*4的结果是.4.已知点P(x0,y0)到直线y=kx+b的距离可表示为d=,例如:点(0,1)到直线y=2x+6的距离d==.据此进一步可得两条平行线y=x和y=x﹣4之间的距离为.5.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[1,m﹣2]的一次函数是正比例函数,则关于x的方程的解为.6.对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,min{﹣2,﹣3}=﹣3,若min{(x+1)2,x2}=1,则x=.7.已知有理数a≠1,我们把为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数……依此类推,那么a1+a2+…+a100的值是三.解答题(共8小题)8.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若四位数m为“极数”,记D(m)=,求满足D(m)是完全平方数的所有m.9.若二次函数y=ax2+bx+c(a≠0)图象的顶点在一次函数y=kx+t(k≠0)的图象上,则称y=ax2+bx+c(a≠0)为y=kx+t(k≠0)的伴随函数,如:y=x2+1是y=x+1的伴随函数.(1)若y=x2﹣4是y=﹣x+p的伴随函数,求直线y=﹣x+p与两坐标轴围成的三角形的面积;(2)若函数y=mx﹣3(m≠0)的伴随函数y=x2+2x+n与x轴两个交点间的距离为4,求m,n的值.10.我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究:如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展:如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.11.阅读下面的材料:如果函数y=f(x)满足:对于自变量x的取值范围内的任意x1,x2,(1)若x1<x2,都有f(x1)<f(x2),则称f(x)是增函数;(2)若x1<x2,都有f(x1)>f(x2),则称f(x)是减函数.例题:证明函数f(x)=(x>0)是减函数.证明:设0<x1<x2,f(x1)﹣f(x2)=﹣==.∵0<x1<x2,∴x2﹣x1>0,x1x2>0.∴>0.即f(x1)﹣f(x2)>0.∴f(x1)>f(x2).∴函数f(x)=(x>0)是减函数.根据以上材料,解答下面的问题:已知函数f(x)=+2x(x<0),f(﹣1)=+(﹣2)=﹣1,f(﹣2)=+(﹣4)=﹣(1)计算:f(﹣3)=,f(﹣4)=;(2)猜想:函数f(x)=+2x(x<0)是函数(填“增”或“减”);(3)请仿照例题证明你的猜想.12.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q 为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“距离“,记作d(M,N).特别的,当图形M,N有公共点时,记作d(M,N)=0.一次函数y=kx+2的图象为L,L与y轴交点为D,△ABC中,A(0,1),B(﹣1,0),C(1,0).(1)求d(点D,△ABC)=;当k=1时,求d(L,△ABC)=;(2)若d(L,△ABC)=0.直接写出k的取值范围;(3)函数y=x+b的图象记为W,若d(W,△ABC)≤1,求出b的取值范围.13.在平面直角坐标系中,将一个点(横坐标与纵坐标不相等,且均不为0)的横坐标与纵坐标互换后得到的点叫做这个点的“互换点”,如(﹣3,5)与(5,﹣3)是一对“互换点”.(1)任意一对“互换点”(填“都能”或“都不能”)在一个反比例函数的图象上;(2)M、N是一对“互换点”,若点M的坐标为(2,﹣5),求直线MN的表达式;(3)在抛物线y=x2+bx+c的图象上有一对“互换点”A、B,其中点A在反比例函数y =﹣的图象上,直线AB经过点P(,),求此抛物线的表达式.14.在平面直角坐标系xOy中,点A(0,6),点B在x轴的正半轴上.若点P,Q在线段AB上,且PQ为某个一边与x轴平行的矩形的对角线,则称这个矩形为点P,Q的“X 矩形”.下图为点P,Q的“X矩形”的示意图.(1)若点B(4,0),点C的横坐标为2,则点B,C的“X矩形”的面积为.(2)点M,N的“X矩形”是正方形,①当此正方形面积为4,且点M到y轴的距离为3时,写出点B的坐标,点N的坐标及经过点N的反比例函数的表达式;②当此正方形的对角线长度为3,且半径为r的⊙O与它没有交点,直接写出r的取值范围.15.定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD 上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF 交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.专题新定义参考答案与试题解析一.选择题(共2小题)1.已知点A在函数y1=﹣(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k ≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.有1对或2对B.只有1对C.只有2对D.有2对或3对【解答】解:设A(a,﹣),由题意知,点A关于原点的对称点B(﹣a,)在直线y2=kx+1+k上,则=﹣ak+1+k,整理,得:ka2﹣(k+1)a+1=0 ①,即(a﹣1)(ka﹣1)=0,∴a﹣1=0或ka﹣1=0,则a=1或ka﹣1=0,若k=0,则a=1,此时方程①只有1个实数根,即两个函数图象上的“友好点”只有1对;若k≠0,则a=1或a=,此时方程①有2个实数根,即两个函数图象上的“友好点”有2对,综上,这两个函数图象上的“友好点”对数情况为1对或2对,故选:A.2.对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是()A.c<﹣3B.c<﹣2C.c<D.c<1【解答】解:由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2是方程x2+2x+c =x的两个不相等实数根,且x1<1<x2,整理,得:x2+x+c=0,由x2+x+c=0有两个不相等的实数根,且x1<1<x2,知△>0,令y=x2+x+c,画出该二次函数的草图如下:则,解得c<﹣2,故选:B.二.填空题(共5小题)3.定义一种新运算:新定义运算a*b=a×(a﹣b)3,则3*4的结果是﹣3.【解答】解:∵a*b=a×(a﹣b)3,∴3*4=3×(3﹣4)3=3×(﹣1)3=3×(﹣1)=﹣3,故答案为:﹣3.4.已知点P(x0,y0)到直线y=kx+b的距离可表示为d=,例如:点(0,1)到直线y=2x+6的距离d==.据此进一步可得两条平行线y=x和y=x﹣4之间的距离为2.【解答】解:当x=0时,y=x=0,即点(0,0)在直线y=x上,因为点(0,0)到直线y=x﹣4的距离为:d===2,因为直线y=x和y=x﹣4平行,所以这两条平行线之间的距离为2.故答案为2.5.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[1,m﹣2]的一次函数是正比例函数,则关于x的方程的解为x=3.【解答】解:根据题意可得:y=x+m﹣2,∵“关联数”[1,m﹣2]的一次函数是正比例函数,∴m﹣2=0,解得:m=2,则关于x的方程变为+=1,解得:x=3,检验:把x=3代入最简公分母2(x﹣1)=4≠0,故x=3是原分式方程的解,故答案为:x=3.6.对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,min{﹣2,﹣3}=﹣3,若min{(x+1)2,x2}=1,则x=1或﹣2.【解答】解:当(x+1)2<x2,即x<﹣时,方程为(x+1)2=1,开方得:x+1=1或x+1=﹣1,解得:x=0(舍去)或x=﹣2;当(x+1)2>x2,即x>﹣时,方程为x2=1,开方得:x=1或x=﹣1(舍去),综上,x=1或﹣2,故答案为:1或﹣27.已知有理数a≠1,我们把为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数……依此类推,那么a1+a2+…+a100的值是﹣7.5【解答】解:∵a1=﹣2,∴a2==,a3==,a4==﹣2,∴这个数列以﹣2,,,依次循环,且﹣2+=﹣,∵100÷3=33…1,∴a1+a2+…+a100=33×(﹣))﹣2=﹣=﹣7.5,故答案为﹣7.5.三.解答题(共8小题)8.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若四位数m为“极数”,记D(m)=,求满足D(m)是完全平方数的所有m.【解答】解:(1)根据“极数”的意义得,1287,2376,8712,任意一个“极数”都是99的倍数,理由:设对于任意一个四位数且是“极数”n的个位数字为x,十位数字为y,(x是0到9的整数,y是0到8的整数)∴百位数字为(9﹣x),千位数字为(9﹣y),∴四位数n为:1000(9﹣y)+100(9﹣x)+10y+x=9900﹣990y﹣99x=99(100﹣10y﹣x),∵x是0到9的整数,y是0到8的整数,∴100﹣10y﹣x是整数,∴99(100﹣10y﹣x)是99的倍数,即:任意一个“极数”都是99的倍数;(2)设四位数m为“极数”的个位数字为x,十位数字为y,(x是0到9的整数,y是0到8的整数)∴m=99(100﹣10y﹣x),∵m是四位数,∴m=99(100﹣10y﹣x)是四位数,即1000≤99(100﹣10y﹣x)<10000,∵D(m)==3(100﹣10y﹣x),∴30≤3(100﹣10y﹣x)≤303∵D(m)完全平方数,∴3(100﹣10y﹣x)既是3的倍数也是完全平方数,∴3(100﹣10y﹣x)只有36,81,144,225这四种可能,∴D(m)是完全平方数的所有m值为1188或2673或4752或7425.9.若二次函数y=ax2+bx+c(a≠0)图象的顶点在一次函数y=kx+t(k≠0)的图象上,则称y=ax2+bx+c(a≠0)为y=kx+t(k≠0)的伴随函数,如:y=x2+1是y=x+1的伴随函数.(1)若y=x2﹣4是y=﹣x+p的伴随函数,求直线y=﹣x+p与两坐标轴围成的三角形的面积;(2)若函数y=mx﹣3(m≠0)的伴随函数y=x2+2x+n与x轴两个交点间的距离为4,求m,n的值.【解答】解:∵y=x2﹣4,∴其顶点坐标为(0,﹣4),∵y=x2﹣4是y=﹣x+p的伴随函数,∴(0,﹣4)在一次函数y=﹣x+p的图象上,∴﹣4=0+p.∴p=﹣4,∴一次函数为:y=﹣x﹣4,∴一次函数与坐标轴的交点分别为(0,﹣4),(﹣4,0),∴直线y=﹣x+p与两坐标轴围成的三角形的两直角边都为|﹣4|=4,∴直线y=﹣x+p与两坐标轴围成的三角形的面积为:.(2)设函数y=x2+2x+n与x轴两个交点的横坐标分别为x1,x2,则x1+x2=﹣2,x1x2=n,∴,∵函数y=x2+2x+n与x轴两个交点间的距离为4,∴,解得,n=﹣3,∴函数y=x2+2x+n为:y=x2+2x﹣3=(x+1)2﹣4,∴其顶点坐标为(﹣1,﹣4),∵y=x2+2x+n是y=mx﹣3(m≠0)的伴随函数,∴﹣4=﹣m﹣3,∴m=1.10.我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究:如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展:如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.【解答】解:(1)矩形或正方形;(2)AC=BD,理由为:连接PD,PC,如图1所示:∵PE是AD的垂直平分线,PF是BC的垂直平分线,∴P A=PD,PC=PB,∴∠P AD=∠PDA,∠PBC=∠PCB,∴∠DPB=2∠P AD,∠APC=2∠PBC,即∠P AD=∠PBC,∴∠APC=∠DPB,∴△APC≌△DPB(SAS),∴AC=BD;(3)分两种情况考虑:(i)当∠AD′B=∠D′BC时,延长AD′,CB交于点E,如图3(i)所示,∴∠ED′B=∠EBD′,∴EB=ED′,设EB=ED′=x,由勾股定理得:42+(3+x)2=(4+x)2,解得:x=4.5,过点D′作D′F⊥CE于F,∴D′F∥AC,∴△ED′F∽△EAC,∴=,即=,解得:D′F=,∴S△ACE=AC×EC=×4×(3+4.5)=15;S△BED′=BE×D′F=×4.5×=,则S四边形ACBD′=S△ACE﹣S△BED′=15﹣=10;(ii)当∠D′BC=∠ACB=90°时,过点D′作D′E⊥AC于点E,如图3(ii)所示,∴四边形ECBD′是矩形,∴ED′=BC=3,在Rt△AED′中,根据勾股定理得:AE==,∴S△AED′=AE×ED′=××3=,S矩形ECBD′=CE×CB=(4﹣)×3=12﹣3,则S四边形ACBD′=S△AED′+S矩形ECBD′=+12﹣3=12﹣.11.阅读下面的材料:如果函数y=f(x)满足:对于自变量x的取值范围内的任意x1,x2,(1)若x1<x2,都有f(x1)<f(x2),则称f(x)是增函数;(2)若x1<x2,都有f(x1)>f(x2),则称f(x)是减函数.例题:证明函数f(x)=(x>0)是减函数.证明:设0<x1<x2,f(x1)﹣f(x2)=﹣==.∵0<x1<x2,∴x2﹣x1>0,x1x2>0.∴>0.即f(x1)﹣f(x2)>0.∴f(x1)>f(x2).∴函数f(x)=(x>0)是减函数.根据以上材料,解答下面的问题:已知函数f(x)=+2x(x<0),f(﹣1)=+(﹣2)=﹣1,f(﹣2)=+(﹣4)=﹣(1)计算:f(﹣3)=﹣,f(﹣4)=﹣;(2)猜想:函数f(x)=+2x(x<0)是增函数(填“增”或“减”);(3)请仿照例题证明你的猜想.【解答】解:(1)∵f(x)=+2x(x<0),∴f(﹣3)=+2×(﹣3)=﹣,f(﹣4)=+2×(﹣4)=﹣故答案为:﹣,﹣;(2)∵﹣4<﹣3,f(﹣4)<f(﹣3)∴函数f(x)=+2x(x<0)是增函数,故答案为:增;(3)设x1<x2<0,∵f(x1)﹣f(x2)=+2x1﹣﹣2x2=(x1﹣x2)(2﹣)∵x1<x2<0,∴x1﹣x2<0,x1+x2<0,∴f(x1)﹣f(x2)<0∴f(x1)<f(x2)∴函数f(x)=+2x(x<0)是增函数.12.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q 为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“距离“,记作d(M,N).特别的,当图形M,N有公共点时,记作d(M,N)=0.一次函数y=kx+2的图象为L,L与y轴交点为D,△ABC中,A(0,1),B(﹣1,0),C(1,0).(1)求d(点D,△ABC)=1;当k=1时,求d(L,△ABC)=;(2)若d(L,△ABC)=0.直接写出k的取值范围;(3)函数y=x+b的图象记为W,若d(W,△ABC)≤1,求出b的取值范围.【解答】解:(1)一次函数y=kx+2的图象与y轴交点D(0,2),d(点D,△ABC)表示点D到△ABC的最小距离,就是点D到点A的距离,即:AD=2﹣1=1,∴d(点D,△ABC)=1当k=1时,直线y=x+2,此时直线L与AB所在的直线平行,且△ABC和△DOE均是等腰直角三角形,d(L,△ABC)表示直线L到△ABC的最小距离,就是图中的AF,在等腰直角三角形ADF中,AD=1,AF=1×=d(L,△ABC)=故答案为:1,;(2)若d(L,△ABC)=0.说明直线L:y=kx+2与△ABC有公共点,因此有两种情况,即:k>0或k<0,仅有一个公共点时如图所示,即直线L 过B点,或过C点,此时可求出k=2或k=﹣2,根据直线L与△ABC有公共点,∴k≥2或k≤﹣2,答:若d(L,△ABC)=0时.k的取值范围为:k≥2或k≤﹣2.(3)函数y=x+b的图象W与x轴、y轴交点所围成的三角形是等腰直角三角形,并且函数y=x+b的图象与AB平行,当d(W,△ABC)=1时,如图所示:在△AGM中,AG=GM=1,则AM=,OM=1+,M(0,1+);即:b=1+;同理:OQ=OP=1+,Q(0,﹣1﹣),即:b=﹣1﹣,若d(W,△ABC)≤1,即b的值在M、N之间∴﹣1﹣≤b≤1+答:若d(W,△ABC)≤1,b的取值范围为﹣1﹣≤b≤1+.13.在平面直角坐标系中,将一个点(横坐标与纵坐标不相等,且均不为0)的横坐标与纵坐标互换后得到的点叫做这个点的“互换点”,如(﹣3,5)与(5,﹣3)是一对“互换点”.(1)任意一对“互换点”都能(填“都能”或“都不能”)在一个反比例函数的图象上;(2)M、N是一对“互换点”,若点M的坐标为(2,﹣5),求直线MN的表达式;(3)在抛物线y=x2+bx+c的图象上有一对“互换点”A、B,其中点A在反比例函数y =﹣的图象上,直线AB经过点P(,),求此抛物线的表达式.【解答】解:(1)任意一对“互换点”都能在一个反比例函数的图象上.理由如下:设A(a,b)在反比例函数y=的图象上,则k=ab.根据“互换点”的意义,可知A(a,b)的“互换点”是(b,a).∵ba=ab=k,∴(b,a)也在反比例函数y=的图象上.故答案为:都能;(2)∵M、N是一对“互换点”,点M的坐标为(2,﹣5),∴N(﹣5,2).设直线MN的表达式为:y=kx+b,∴,解得:,∴直线MN的表达式为y=﹣x﹣3;(3)∵点A在反比例函数y=﹣的图象上,∴设A(k,﹣),∵A,B是一对“互换点”,∴B(﹣,k),设直线AB的解析式为y=mx+n,∵直线AB经过点P(,),∴,解得,∴A(2,﹣1),B(﹣1,2),或A(﹣1,2),B(2,﹣1).将A、B两点的坐标代入y=x2+bx+c,得,解得,∴此抛物线的表达式为y=x2﹣2x﹣1.14.在平面直角坐标系xOy中,点A(0,6),点B在x轴的正半轴上.若点P,Q在线段AB上,且PQ为某个一边与x轴平行的矩形的对角线,则称这个矩形为点P,Q的“X 矩形”.下图为点P,Q的“X矩形”的示意图.(1)若点B(4,0),点C的横坐标为2,则点B,C的“X矩形”的面积为6.(2)点M,N的“X矩形”是正方形,①当此正方形面积为4,且点M到y轴的距离为3时,写出点B的坐标,点N的坐标及经过点N的反比例函数的表达式;②当此正方形的对角线长度为3,且半径为r的⊙O与它没有交点,直接写出r的取值范围0<r<3﹣或r>.【解答】解:(1)设直线AB的函数表达式为y=kx+b(k≠0),将A(0,6)、B(4,0)代入y=kx+b,得:,解得:,∴直线AB的函数表达式为y=﹣x+6.当x=2时,y=﹣x+6=3,∴点C的坐标为(2,3),∴点B,C的“X矩形”的面积=(4﹣2)×(3﹣0)=6.故答案为:6.(2)①∵点M,N的“X矩形”是正方形,∴∠ABO=45°,∴点B的坐标为(6,0),直线AB的函数表达式为y=﹣x+6.∵点M到y轴的距离为3,∴点M的坐标为(3,3).∵点M,N的“X矩形”的面积为4,∴点N的横坐标为3﹣2=1或3+2=5,∴点N的坐标为(1,5)或(5,1).∴经过点N的反比例函数的表达式为y=.②如图1,取AB的中点E,当点E为MN的中点时,⊙O与点M,N的“X矩形”相交有最小值,此时r=OE﹣MN=3﹣,∴0<r<3﹣;如图2,当点N与点B重合(或点M与点A重合)时,⊙O与点M,N的“X矩形”相交有最大值,∵MN=3,∴BF=MN=.在Rt△OBF中,OB=6,BF=,∴OF==,∴r>.故答案为:0<r<3﹣或r>.15.定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD 上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF 交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.【解答】解:(1)∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∠F AB与∠EBA互余,∴四边形ABEF是邻余四边形;(2)如图所示(答案不唯一),四边形AFEB为所求;(3)∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE,∵∠EDF=90°,点M是EF的中点,∴DM=ME,∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴,∵QB=3,∴NC=5,∵AN=CN,∴AC=2CN=10,∴AB=AC=10.第21页(共21页)。
中考真题分类整理:新定义型(附答案)

一、选择题1.(2020·岳阳)对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是() A .c <-3 B .c <-2 C .14c <D .c <1 【答案】B【解析】 当y =x 时,x =x 2+2x +c ,即为x 2+x +c =0,由题意可知:x 1,x 2是该方程的两个实数根,所以12121x x x x c+=-⎧⎨⋅=⎩∵x 1<1<x 2,∴(x 1-1)(x 2-1)<0, 即x 1x 2-(x 1+x 2) +1<0, ∴c -(-1)+1<0, ∴c <-2.又知方程有两个不相等的实数根,故Δ>0, 即12-4c >0, 解得:c <14.∴c 的取值范围为c <-2 .2.(2020·济宁)−1,-1的差类推,那么a 1+a 2+…+a 100的值是() A .-7.5 B .7.5 C .5.5 D .-5.5 【答案】A【解析】二、填空题18.(2020·娄底) 已知点P()00,x y 到直线y kx b =+的距离可表示为d =0,1)到直线y =2x+6的距离d ==y x =与4y x =-之间的距离为___________. 【答案】.【解析】在直线y x =上任取点,不妨取(0,0),根据两条平行线之间距离的定义可知,(0,0)到直线4y x =-的距离就是两平行直线y x =与4y x =-之间的距离.d ===. 16.(2020·常德)规定:如果一个四边形有一组对边平行,一组邻边相等,那么四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M 、N 的坐标分别为(0,1),(0,-1),P 是二次函数y =x 2的图象上在第一象限内的任意一点,PQ 垂直直线y =-1于点Q ,则四边形PMNQ 是广义菱形.其中正确的是 .(填序号)【答案】①④【解析】正方形和菱形满足一组对边平行,一组邻边相等,故都是广义菱形,故①正确;平行四边形虽然满足一组对边平行,但是邻边不一定相等,因此不是广义菱形,故②错误;对角线互相垂直,且两组邻边分别相等的四边形的对边不一定平行,邻边也不一定相等,因此不是广义菱形,故③错误;④中的四边形PMNQ 满足MN ∥PQ ,设P (m ,0)(m >0),∵PM=+1,PQ =-(-1)=+1,∴PM =PQ ,故四边形PMNQ 是广义菱形.综上所述正确的是①④.17.(2020·陇南)定义:等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特征值”.若等腰△ABC 中,∠A =80°,则它的特征值k = .【答案】85或14. 【解析】当∠A 是顶角时,底角是50°,则k=808505=;当∠A 是底角时,则底角是20°,k=201804=,故答案为:85或14.三、解答题1.(2020·重庆A 卷)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数—“纯数”.定义:对于自然数n ,在计算n +(n +1)+(n +2)时,各数位都不产生进位,则称这个自然数n 为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由; (2)求出不大于100的“纯数”的个数.解:(1)2019不是“纯数”,2020是“纯数”,理由如下:∵在计算2019+2020+2021时,个位产生了进位,而计算2020+2021+2022时,各数位都不产生进位,∴2019不是“纯数”,2020是“纯数”.(2)由题意可知,连续三个自然数的个位不同,其他位都相同,并且连续的三个自然数个位为0、1、2时,不会产生进位;其他位的数字为0、1、2、3时,不会产生进位.现分三种情况讨论如下:①当这个数为一位自然数时,只能是0、1、2,共3个;14214m 214m 214m②当这个数为二位自然数时,十位只能为1、2、3,个位只能为0、1、2,即10、11、12、20、21、22、30、31、32共9个; ③当这个数为100时,易知100是“纯数”. 综上,不大于100的“纯数”的个数为3+9+1=13.2.(2020·重庆B 卷)在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等. 现在我们来研究一种特殊的自然数——“纯数”.定义:对于自然数,在通过列竖式进行的运算时各位都不产生进位现象,则称这个自然数为“纯数”.例如:是“纯数”,因为在列竖式计算时各位都不产生进位现象; 不是“纯数”,因为在列竖式计算时个位产生了进位. ⑴请直接写出1949到2019之间的“纯数”;⑵求出不大于100的“纯数”的个数,并说明理由.解:(1)1949到2019之间的“纯数”为2000、2001、2002、2010、2011、2012 . (2)由题意:不大于100的“纯数”包含:一位数、两位数和三位数100若n 为一位数,则有n +(n +1)+(n +2)<10,解得:n <3,所以:小于10的“纯数数”有0、1、2,共3个.两位数须满足:十位数可以是1、2、3,个位数可以是0、1、2,列举共有9个分别是10、11、12、20、21、22、30、31、32;三位数为100,共1个所以:不大于100的“纯数”共有13个.3.(2020·衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满是x =3a c +,y =3b d +,那么称点T 是点A ,B 的融合点。
中考数学复习新定义、新运算型问题精讲(共24张PPT)

3
1
解析:选项A中,3×(-2)+2×3=0,∴两向量互相垂直;
选项 B 中,( 2-1)· ( 2+1)+1×1=2,∴两向量不垂直; 1 选项 C 中,3×(-3)+20180×(-1)=-2,∴两向量不垂直; 选项 D 中, 8×( 2) +(- )×4=2,∴两向量不垂直.
所以说法错误的是 C.
4.(2018· 聊城)若x为实数,则[x]表示不大于x的最大整数,例如 [1.6]=1,[π]=3,[-2.82]=-3等.[x]+1是大于x的最小整数,对任意的实 数x都满足不等式[x]≤x<[x]+1 ①.利用这个不等式①,求出满足
[x]=2x-1的所有解,其所有解为 1 或2
解析:根据题意,得 第一次:当n=13时,F①=3×13+1=40,
第二次:当 n=40 时,F②=23 =5,
2
40
第三次:当 n=5 时,F①=3×5+1=16, 16 第四次:当 n=16 时,F②= 4 =1, 第五次:当 n=1 时,F①=3×1+1=4, 4 第六次:当 n=4 时,F②=22 =1,
������������ ������ ������������ ������
b1a2
b2 = 2
13 -2
b2 = 1 c2 = 2
-14 -7 21 -7
112
-2 =1×(-2)-1×12=-14,
13 12 =2×12-1×3=21,
������ = ������ =
= =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
※知识精要新定义型问题是学习型阅读理解题,是指题目中首先给出一个新定义(新概念或新公式),通过阅读题目提供的材料,理解新定义,再通过对新定义的理解来解决题目提出的问题。
其主要目的是通过对新定义的理解与运用来考查学生的自主学习能力,便于学生养成良好的学习习惯。
※要点突破解决此类题的关键是(1)深刻理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论;(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的做题方法;归纳“举例”提供的分类情况;(3)依据新定义,运用类比、归纳、联想、分类讨论以及数形结合的数学思想方法解决题目中需要解决的问题。
※典例精讲例1阅读理解:如图1,若在四边形ABCD的边AB上任取一点E(点E与点A,B不重合),分别连结ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.解决问题:(1)如图1,若∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB上的一个强相似点E;拓展探究:(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,请直接写出BCAB的值.图1 图2 图3【答案】(1)点E是四边形ABCD的AB边上的相似点;(2)如图;(3)3 BCAB例2.在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”,如图为点P,Q的“相关矩形”示意图.(1)已知点A的坐标为(1,0),①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;(2)⊙O的半径为,点M的坐标为(m,3),若在⊙O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.【答案】(1)直线AC的表达式为y=x-1或y=-x+1;(2)1≤m≤5或-5≤m≤-1解:(1)①∵A(1,0),B(3,1)由定义可知:点A,B的“相关矩形”的底与高分别为2和1,∴点A,B的“相关矩形”的面积为2×1=2;②由定义可知:AC是点A,C的“相关矩形”的对角线,又∵点A,C的“相关矩形”为正方形∴直线AC与x轴的夹角为45°,设直线AC的解析为:y=x+m或y=﹣x+n把(1,0)分别y=x+m,∴m=﹣1,∴直线AC的解析为:y=x﹣1,把(1,0)代入y=﹣x+n,∴n=1,∴y=﹣x+1,综上所述,若点A,C的“相关矩形”为正方形,直线AC的表达式为y=x﹣1或y=﹣x+1;(2)设直线MN的解析式为y=kx+b,∵点M,N的“相关矩形”为正方形,∴由定义可知:直线MN与x轴的夹角为45°,∴k=±1,∵点N在正方形边上,∴当直线MN与正方形有交点时,点M,N的“相关矩形”为正方形,当k=1时,作过R与K的直线与直线MN平行,将(-1,1)和(2,-2)分别代入y=x+b得b=2 或b=-4把M(m,3)代入y=x+2和y=x-4,得m=1 m=7∴1≤m≤7,※课堂精练一、几何新定义型问题1.定义:如图①,点M,N把线段AB分割成AM,MN和BN三段,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.请解决下列问题:(1)已知点M,N是线段AB的勾股分割点,且BN>MN>AM.若AM=2,MN=3,求BN的长;(2)如图②,若点F,M,N,G分别是AB,AD,AE,AC边上的中点,点D,E是线段BC的勾股分割点,且EC>DE>BD,求证:点M,N是线段FG的勾股分割点【答案】(1);(2)证明见解析.(2)∵点F、M、N、G分别是AB、AD、AE、AC边上的中点,∴FM、MN、NG分别是△ABD、△ADE、△AEC的中位线,∴BD=2FM,DE=2MN,EC=2NG.∵点D,E是线段BC的勾股分割点,且EC>DE>BD,∴EC2=DE2+DB2,∴4NG2=4MN2+4FM2,∴NG2=MN2+FM2,∴点M,N是线段FG的勾股分割点.2.如图1,点C将线段AB分成两.部分,如果AC BC ABAC=,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为1S,2S,如果121S SS S=,那么称直线l为该图形的黄金分割线.(1)研究小组猜想:在ABC△中,若点D为AB边上的黄金分割点(如图2),则直线CD是ABC△的黄金分割线.你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D作直线DF CE∥,交AC于点F,连接EF(如图3),则直线EF也是ABC△的黄金分割线.请你说明理由.(4)如图4,点E是ABCDY的边AB的黄金分割点,过点E作EF AD∥,交DC于点F,显然直线EF是ABCDY的黄金分割线.请你画一条ABCDY的黄金分割线,使它不经过ABCDY各边黄金分割点.【答案】见解析(3)因为DF CE ∥,所以DEC △和FCE △的公共边CE 上的高也相等, 所以有DEC FCE S S =△△. ······································································· 7分 设直线EF 与CD 交于点G .所以DGE FGC S S =△△. 所以ADC FGC AFGD S S S =+△△四边形DGE AEF AFGD S S S =+=△△四边形,BDC BEFC S S =△四边形. 又因为ADC BDCABC ADCS S S S =△△△△,所以BEFC AEF ABC AEF S S S S =四边形△△△. ······························ 9分 因此,直线EF 也是ABC △的黄金分割线. ········································ 10分 (4)画法不惟一,现提供两种画法; ·················································· 12分画法一:如答图1,取EF 的中点G ,再过点G 作一条直线分别交AB ,DC 于M ,N 点,则直线MN 就是ABCD Y 的黄金分割线.画法二:如答图2,在DF 上取一点N ,连接EN ,再过点F 作FM NE ∥交AB 于点M ,连接MN ,则直线MN 就是ABCD Y 的黄金分割线.3.定义:四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:FBD N M G(第21题答图1)FBD N M (第21题答图2)(1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(保留画图痕迹,找出3个即可);(2)如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD平分∠ABC.求证:BD是四边形ABCD的“相似对角线”;(3)如图3,已知FH是四边形EFCH的“相似对角线”,∠EFH=∠HFG=30°,连接EG,若△EFG的面积为2,求FH的长.【答案】(1)见解析;(2)证明见解析;(3)FH=2.解:(1)由图1知,AB=,BC=2,∠ABC=90°,AC=5,∵四边形ABCD是以AC为“相似对角线”的四边形,当∠ACD=90°时,△ACD∽△ABC或△ACD∽△CBA,∴或,∴CD=10或CD=2.5同理:当∠CAD=90°时,AD=2.5或AD=10,(2)∵∠ABC=80°,BD平分∠ABC,∴∠ABD=∠DBC=40°,∴∠A+∠ADB=140°∵∠ADC=140°,∴∠BDC+∠ADB=140°,∴∠A=∠BDC,∴△ABD∽△BDC,∴BD是四边形ABCD的“相似对角线”;【点睛】本题考查了相似三角形的综合题,涉及到新概念、相似三角形的判定与性质等,正确理解新概念,熟练应用相似三角形的相关知识是解题的关键.4. 我们给出如下定义:如果四边形中一对顶点到另一对顶点所连对角线的距离相等,则把这对顶点叫做这个四边形的一对等高点.例如:如图①,平行四边形ABCD中,可证点A、C到BD的距离相等,所以点A、C是平行四边形ABCD的一对等高点,同理可知点B、D也是平行四边形ABCD的一对等高点.(1)如图②,已知平行四边形ABCD,请你在图②中画出一个只有一对等高点的四边形ABCE(要求:画出必要的辅助线);(2)已知P是四边形ABCD对角线BD上任意一点(不与B、D点重合),请分别探究图③、图④中S1,S2,S3,S4四者之间的等量关系(S1,S2,S3,S4分别表示△ABP,△CBP,△CDP,△ADP的面积):①如图③,当四边形ABCD只有一对等高点A、C时,你得到的一个结论是________;②如图④,当四边形ABCD没有等高点时,你得到的一个结论是________.【答案】见解析二、函数与图形新定义型问题5. 对于平面直角坐标系xOy 中的点P 和直线m ,给出如下定义:若存在一点P ,使得点P 到直线m 的距离等于,则称P 为直线m 的平行点.(1)当直线m 的表达式为y =x 时,①在点P 1(1,1),P 2(0,2),P 3(22-,22)中,直线m 的平行点是 ; ②⊙O 的半径为10,点Q 在⊙O 上,若点Q 为直线m 的平行点,求点Q 的坐标.(2)点A 的坐标为(n ,0),⊙A 半径等于1,若⊙A 上存在直线x y 3=的平行点,直接写出n 的取值范围.【答案】见解析在Rt △BHQ 1中,可求NQ 1=NB=2.所以ON=22.所以点Q 1的坐标为(2,22). 同理可求点Q 2的坐标为(22-,2-).如图2,当点B 在原点下方时,可求点Q 3的坐标为(22,2)点Q 4的坐标为 (2-,22-).综上所述,点Q 的坐标为(2,22),(22-,2-),(22,2),(2-,22-). (2)334-≤n ≤334. 7.在平面直角坐标系xOy 中,设点P (x 1,y 1),Q (x 2,y 2)是图形W 上的任意两点.定义图形W 的测度面积:若|x 1﹣x 2|的最大值为m ,|y 1﹣y 2|的最大值为n ,则S=mn 为图形W 的测度面积.例如,若图形W 是半径为1的⊙O ,当P ,Q 分别是⊙O 与x 轴的交点时,如图1,|x 1﹣x 2|取得最大值,且最大值m=2;当P,Q分别是⊙O与y轴的交点时,如图2,|y1﹣y2|取得最大值,且最大值n=2.则图形W的测度面积S=mn=4(1)若图形W是等腰直角三角形ABO,OA=OB=1.①如图3,当点A,B在坐标轴上时,它的测度面积S= ;②如图4,当AB⊥x轴时,它的测度面积S= ;(2)若图形W是一个边长1的正方形ABCD,则此图形的测度面积S的最大值为;(3)若图形W是一个边长分别为3和4的矩形ABCD,求它的测度面积S的取值范围.【答案】(1)1,1;(2)2;(3)12≤S≤492.解:(1)①如图3,∵OA=OB=1,点A,B在坐标轴上,∴它的测度面积S=|OA|•|OB|=1,故答案为:1.②如图4,∵AB⊥x轴,OA=OB=1.∴AB=2,2 2,∴它的测度面积S=|AB|•|OC|=2×22=1,故答案为:1.故答案为:2.当顶点A,C都不在x轴上时,如图8,过点A作直线AH⊥x轴于点E,过C点作CF⊥x轴于点F,过点D作直线GH∥x轴,分别交AE,C F于点H,G,则可得四边形EFGH是矩形,当点P,Q与点A,C重合时,|x1﹣x2|的最大值为m=EF,|y1﹣y2|的最大值为n=GF.图形W的测度面积S=EF•GF,∵∠ABC+∠CBF=90°,∠ABC+∠BAE=90°,∴∠CBF=∠BAE,∵∠AEB=∠BFC=90°,∴△AEB∽△BFC,∴43 AE EB ABBF FC BC===,设AE=4a,EB=4b,(a>0,b>0),则BF=3a,FC=3b,在RT△AEB中,AE2+BE2=AB2,∴16a2+16b2=16,即a2+b2=1,∵b>0,∴21b a =-在△ABE 和△CDG 中,E G ABE CDG AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CDG (AAS )∴CG=AE=4a ,∴EF=EB+BF=4b+3a ,GF=FC+CG=3b+4a , ∴图形W 的测度面积S=EF•GF=(4b+3a )(3b+4a )考点:圆的综合题;二次函数的最值问题;全等三角形;新定义题目;探究型题目8.在平面直角坐标系中,点Q 为坐标系上任意一点,某图形上的所有点在∠Q 的内部(含角的边),这时我们把∠Q 的最小角叫做该图形的视角.如图1,矩形ABCD ,作射线OA ,OB ,则称∠AOB 为矩形ABCD 的视角.(1)如图1,矩形ABCD ,A (﹣,1),B (,1),C (,3),D (﹣,3),直接写出视角∠AOB 的度数;(2)在(1)的条件下,在射线CB 上有一点Q ,使得矩形ABCD 的视角∠AQB=60°,求点Q 的坐标;(3)如图2,⊙P的半径为1,点P(1,),点Q在x轴上,且⊙P的视角∠EQF的度数大于60°,若Q(a,0),求a的取值范围.【答案】(1)视角∠AOB的度数是120°;(2)Q的坐标(,﹣1);(3)a的取值范围是0<a<2.解:(1)120°;(2)连结AC,在射线CB上截取CQ=CA,连结AQ.∵AB=2,BC=2,∴AC=4.∴∠ACQ=60°.∴△ACQ为等边三角形,即∠AQC=60°.∵CQ=AC=4,∴Q(,﹣1).∴a 的取值范围是0<a <2.点睛:本题的关键是理解视角的定义,然后根据定义求出题目的要求,三角函数求出度数,第三问里要注意切线的位置的特殊性,利用切线的性质求出视角,近而得出Q 点横坐标的取值范围内的数值即可.9. 对于平面直角坐标系xOy 中的点(,)Q x y (x ≠0),将它的纵坐标y 与横坐标x 的比yx称为点Q 的“理想值”,记作Q L .如(1,2)Q -的“理想值”221Q L ==--. (1)①若点(1,)Q a 在直线4y x =-上,则点Q 的“理想值”Q L 等于_________;②如图,(3,1)C ,⊙C 的半径为1. 若点Q 在⊙C 上,则点Q 的“理想值”Q L 的取值范围是 . (2)点D 在直线3+3y x =上,⊙D 的半径为1,点Q 在⊙D 上运动时都有0≤L Q 3,求点D 的横坐标D x 的取值范围;(3)(2,)M m (m >0),Q 是以r 为半径的⊙M 上任意一点,当0≤L Q ≤22画出满足条件的最大圆,并直接写出相应的半径r 的值.(要求画图位置准确,但不必尺规作图)【答案】见解析由0≤QL ≤3,作直线3y x =.①如图13,当⊙D 与x 轴相切时,相应的圆心1D 满足题意,其横坐标取到最大值.作11D E x ⊥轴于点1E ,可得11D E ∥OB ,111D E AE BO AO =. ∵ ⊙D 的半径为1, ∴ 111D E =.图13∴ 13AE =,1123OE OA AE =-=. ∴123D x =.∴ 21D F =.图14图15三、方程、不等式、函数与新定义11.对于三个数、、,用表示这三个数的中位数,用表示这三个数中最大数,例如:,,.解决问题:(1)填空:,如果,则的取值范围为;(2)如果,求的值;(3)如果,求的值.【答案】(1),;(2)﹣3或0;(3)x=3或﹣3.解:(1)∵sin45°=,cos60°=,tan60°=,∴M{sin45°,cos60°,tan60°}=,∵max{3,5﹣3x,2x﹣6}=3,则,∴x的取值范围为:,故答案为:,;(2)2•M{2,x+2,x+4}=max{2,x+2,x+4},分三种情况:①当x+4≤2时,即x≤﹣2,原等式变为:2(x+4)=2,x=﹣3,②x+2≤2≤x+4时,即﹣2≤x≤0,原等式变为:2×2=x+4,x=0,③当x+2≥2时,即x≥0,原等式变为:2(x+2)=x+4,x=0,综上所述,x的值为﹣3或0;(3)不妨设y1=9,y2=x2,y3=3x﹣2,画出图象,如图所示:结合图象,不难得出,在图象中的交点A、B点时,满足条件且M{9,x2,3x﹣2}=max{9,x2,3x﹣2}=y A=y B,此时x2=9,解得x=3或﹣3.点睛:本题考查了方程和不等式的应用及新定义问题,理解新定义,并能结合图象,可以很轻松将抽象题或难题破解,由此看出,图象在函数相关问题的作用是何等重要.12.定义:对于给定的二次函数y=a(x﹣h)2+k(a≠0),其伴生一次函数为y=a(x﹣h)+k,例如:二次函数y=2(x+1)2﹣3的伴生一次函数为y=2(x+1)﹣3,即y=2x﹣1.(1)已知二次函数y=(x﹣1)2﹣4,则其伴生一次函数的表达式为_____;(2)试说明二次函数y=(x﹣1)2﹣4的顶点在其伴生一次函数的图象上;(3)如图,二次函数y=m(x﹣1)2﹣4m(m≠0)的伴生一次函数的图象与x轴、y轴分别交于点B、A,且两函数图象的交点的横坐标分别为1和2,在∠AOB内部的二次函数y=m(x﹣1)2﹣4m的图象上有一动点P,过点P作x轴的平行线与其伴生一次函数的图象交于点Q,设点P的横坐标为n,直接写出线段PQ的长为时n的值.【答案】y=x﹣5。