17.1勾股定理(第1课时)课时练习 (2)
17.1《勾股定理》(第1课时)

17.1《勾股定理》(第1课时)教学设计一、教材分析(一)地位和作用本节课是人教版八年级下册第十七章第一节勾股定理第一课时。
本节之前学生已经学习了三角形一些知识,勾股定理研究的是直角三角形三边之间特有的数量关系,将形与数密切联系起来,是解直角三角形的主要依据,在生产和生活实际中应用广泛。
勾股定理的探究是从特殊的等腰直角三角形出发,到网格中的直角三角形,再到一般的直角三角形,体现了从特殊到一般的探探索、发现和证明的过程。
证明勾股定理的关键是利用割补法求以斜边为边长的正方形的面积,教学中要注意引导学生通过探索去发现图形的性质,提出一般的猜想,并获得定理的证明。
(二)教学目标1、知识与技能:掌握一个定理——勾股定理,并会用定理解决简单问题。
2、过程与方法(1)经历一次由特殊到一般的探索过程,通过观察、思考、尝试猜想结论,发展合情推理能力。
(2)体验一种利用几何图形的面积证明代数恒等式的数形结合的思想,感受数学思维的严谨性。
3、情感态度与价值观:通过对勾股定理历史的了解,感受数学文化,增添一份民族自豪感。
在探究活动中,培养学生的合作交流意识和探索精神。
(三)重点、难点重点:探究并证明勾股定理。
难点:勾股定理的探究和证明。
二、教法分析勾股定理是反映直角三角形三边关系的一个特殊的结论。
在正方形网格中比较容易发现以等腰直角三角形三边为边长的正方形的面积关系,进而得出三边之间的关系。
但要从等腰直角三角形过渡到网格中的一般直角三角形,提出合理的猜想,学生有较大困难。
学生第一次尝试用构造图形的方法来证明定理存在较大的困难,解决问题的关键是要想到用合理的割补方法求以斜边为边的正方形的面积。
因此,在教学中需要先引导学生观察网格背景下的正方形的面积关系,然后思考没有网格背景下的正方形的面积关系,再将这种关系表示成边长之间的关系,这有利于学生自然合理地发现和证明勾股定理。
本节课主要采用启发式、探究式教学,由浅入深,由特殊到一般的提出问题,引导学生采用观察思考、动手实践、自主探索、合作交流的学习方法,使学生主动获得知识并发展能力.三、学法分析八年级学生已经具备了一定的观察、归纳、猜想和推理能力,已经学习了一些几何图形的面积的计算方法,但是运用面积法和割补思想解决问题的意识和能力还不够,对于如何将形与数有机的结合起来还有待提高.四、教学过程设计(一)、创设情景,引入新课国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会”.2022年在北京召开了第24届国际数学家大会.上图就是大会会徽的图案.你见过这个图案吗?这个图案有什么特别的意义?师生活动:教师引导学生观察,指出这个图案与勾股定理有关,勾股定理是我们要研究的问题.设计意图:从国际数学家大会的会徽说起,设置悬念,引入课题。
17.1勾股定理第一课时 (2)

17.1勾股定理太和县倪邱中学王殿卿第课时1.了解勾股定理的文化背景,了解利用拼图验证勾股定理的方法.2.能说出勾股定理,并能应用其进行简单的计算.1.在勾股定理的探索过程中,经历观察——猜想——归纳——验证的数学发现过程.2.发展合情推理的能力,体会数形结合思想、由特殊到一般的数学思想、分类讨论思想.通过对勾股定理历史的了解和实例应用,体会勾股定理的文化价值;通过获得成功的经验和克服困难的经历,增强学习数学的信心,激发学生的民族自豪感和爱国情怀.【重点】探索和验证勾股定理,并能应用其进行简单的计算.【难点】用拼图的方法验证勾股定理.【教师准备】教学中出示的教学插图和例题.【学生准备】三角板、方格纸、三角形模型.导入一:国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会”.2002年在北京召开了第24届国际数学家大会.此图案就是大会会徽的图案.大会的会徽图案有什么特殊含义呢?这个图案与数学中的勾股定理有着密切的关系.中国古代人把直角三角形中较短的直角边叫做“勾”,较长的直角边叫做“股”,斜边叫做“弦”.上述图案就揭示了“勾”“股”“弦”之间的特殊关系.我们学习过等腰三角形,知道等腰三角形是两边相等的特殊的三角形,它有许多特殊的性质.研究特例是数学研究的一个方法,直角三角形是有一个角为直角的特殊三角形,等腰直角三角形又是特殊的直角三角形,直角三角形的三边之间存在怎样的关系呢?我们的探究活动就从等腰直角三角形开始吧.[设计意图]勾股定理揭示的是特殊三角形的三边关系,从探索等腰直角三角形三边关系入手,揭示直角三角形的三边关系,体现了由特殊到一般的数学研究方法.导入二:请同学们认真观察课本封面和本章章前彩图,说一说封面和章前彩图中的图形表示什么意思?它们之间有联系吗?封面是我国公元3世纪汉代的赵爽在注解《周髀算经》时给出的“弦图”,章前彩图是2002年世界数学家大会的会徽,大会的会徽使用的主体图案就是“赵爽弦图”.目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等.我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的.这个事实可以说明勾股定理的重大意义.尤其是在两千年前,是非常了不起的成就.你知道为什么把这个图案作为这次大会的会徽吗?本节课,我们一起来解读图中的奥秘.[设计意图]以生活课本中的图案、故事导入,增强了趣味性,拉近了数学与生活的距离,激发了学生的民族自豪感和爱国情怀.导入三:如图所示,一座城墙高11.7 m,城墙外有一条宽为9 m的护城河,那么一架长为15 m的云梯能否达到城墙的顶端?这就是我们今天所要学习的内容,一个非常重要的定理——“勾股定理”.[设计意图]以学生熟悉的生活情境作为教学活动的切入点,使学生对问题产生兴趣.让学生主动去分析,发现,亲身体验,产生学习“勾股定理”的主观愿望.1.探索勾股定理成的地面图案反映了直角三角形三边的某种数量关系.这个地面图案中有大大小小、各种“姿势”的正方形.毕达哥拉斯在这些正方形中发现了什么呢材图17.1 - 2)(1)问题提出:在图17.1 - 2中,是以等腰直角三角形三边为边长的三个正方形.这三个正方形面积之间存在怎样的关系?三个正方形之间的面积关系说明了什么?(2)学生活动:质疑、猜测、探索、交流三个正方形面积之间的关系.学生的探索方法可能是:通过数正方形内等腰直角三角形个数的办法,得出两个小正方形的面积之和等于大正方形的面积.(3)教师总结:通过直接数等腰直角三角形的个数,或者用割补的方法将小正方形中的等腰直角三角形补成一个大正方形,得出结论:小正方形的面积之和等于大正方形的面积,也就是等腰直角三角形两条直角边的平方和等于斜边的平方.追问:在图17.1 - 2中,如果选取更大的等腰直角三角形,按照同样的方法作三个正方形,这三个正方形的面积关系还一样吗?如图所示.[设计意图]这个探索活动是学习、探索勾股定理的基础.借助三个正方形面积之间的关系,探索等腰直角三角形三边的数量关系,这是本活动的出发点.提出追问的问题,有助于学生的认识上升到整个直角三角形的一般性的高度,也为学生有个性的创意活动搭建了平台.(2)探索具体边长的非等腰直角三角形三边之间的关系.提出问题:(结合带提示的下图)1.正方形A,B,C的面积分别是多少?它们之间的数量关系说明了什么?2.正方形A',B',C'的面积分别是多少?它们之间的数量关系说明了什么?学生活动:依据教材探究的提示,根据直角三角形的边长,分别计算出正方形A,B,A',B'的面积;再通过建立一个大正方形计算出正方形C,C'的面积.探究提示:正方形A,B的面积分别为4和9,通过建立边长为5的正方形,计算出正方形C的面积为25减去四个小直角三角形面积和,也就是正方形C的面积为13.同理,正方形A',B'的面积分别为9和25,通过建立边长为8的正方形,计算出正方形C'的面积为64减去四个小直角三角形面积和,也就是正方形C'的面积为34.活动总结:直角三角形两条直角边长的平方和等于斜边长的平方.[设计意图]由特殊到一般,借助网格,利用面积割补法计算正方形的面积,探索直角三角形三边之间的关系,为探究无网格背景下直角三角形三边关系打下基础,提供方法.思路二1.画一个两直角边长分别为3 cm和4 cm的直角三角形ABC,用刻度尺量出AB的长.再画一个两直角边长分别为5和12的直角三角形ABC,用刻度尺量AB的长.你是否发现32+42与52的关系,52+122和132的关系?学生计算后发现:32+42=52,52+122=132,那么就有勾2+股2=弦2.学生讨论:对于任意的直角三角形,也有这个性质吗?2.如图所示,每个小方格的面积均为1,请分别算出图中正方形A,B,C的面积,看看能得出什么结论.探究提示:右下图正方形C的面积为13.左上图亦是同样的思考方法.学生计算后发现:小正方形A,B的面积之和等于大正方形C的面积.追问:由以上你能得出什么结论?若直角三角形的两条直角边长分别为a,b,斜边长为c,则a,b,c有什么关系?教师引导学生直接由正方形的面积等于边长的平方归纳出:直角三角形两条直角边长的平方和等于斜边长的平方.数学表达式为:a2+b2=c2.[设计意图]通过学生画、量、算等形式,让学生在探究中发现结论,借助网格,利用面积割补法计算正方形的面积,探索直角三角形三边之间的关系,为探究无网格背景下直角三角形三边关系打下基础,提供方法.2.勾股定理的证明教师提问:对于任意直角三角形三边之间应该有什么关系?教师引导学生猜想:如果直角三角形两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.追问:以上直角三角形的边长都是具体的数值,一般情况下,如果直角三角形的两直角边长分别为a,b,斜边长为c,我们的猜想仍然成立吗?思路一(出示教材图17.1 - 5)让学生剪4个全等的直角三角形,拼成如图所示的图形,利用面积证明.图中大正方形的面积是c2,直角三角形的面积是ab,中间正方形的面积为(b-a)2,则有c2=ab×4+(b-a)2,即a2+b2=c2.教师适时介绍:这个图案是公元3世纪汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.赵爽根据此图指出:四个全等的直角三角形(朱实)可以按如图所示围成一个大正方形,中间部分是一个小正方形(黄实).我们刚才用割的方法证明使用的就是这个图形.教师在学生归纳基础上总结:直角三角形两直角边长的平方和等于斜边长的平方.中国人称它为“勾股定理”,外国人称它为“毕达哥拉斯定理”.[设计意图]通过拼图活动,调动学生思维的积极性,为学生提供从事数学活动的机会,发展学生的形象思维,使学生对定理的理解更加深刻,体会数学中数形结合的思想.通过对赵爽弦图的介绍,了解我国古代数学家对勾股定理的发现及证明所做出的贡献,增强民族自豪感.通过了解勾股定理的证明方法,增强学生学习数学的自信心.思路二学生利用拼图游戏验证定理,并思考:能用右图证明这个结论吗?已知:在△ABC中,∠ACB=90°,∠BAC,∠ABC,∠ACB的对边分别为a,b,c.求证:a2+b2=c2.(1)让学生准备多个三角形模型,最好是有颜色的纸,让学生拼摆不同的形状,利用面积相等进行证明.(2)拼成如图所示,其等量关系为4×ab+(b-a)=c2,化简可证.(3)发挥学生的想象能力拼出不同的图形,进行证明.利用下面这些图也能证明这个结论吗?教师指导学生验证.我们证明了以上结论的正确性,我们就可称之为定理,这就是著名的“勾股定理”.请同学们用不同的表达方式(文字语言、符号语言)表述这一定理.勾股定理的名称介绍:3000多年前,我国古代有一个叫商高的人说:“把一根直尺折成直角,两端连接得一直角三角形,勾广三,股修四,弦隅五.”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5.因为勾股定理内容最早出现在商高的话中,所以又称“商高定理”.一千多年后,西方的毕达哥拉斯证明了此定理,因此又叫“毕达哥拉斯定理”,当时毕达哥拉斯学派为了纪念这一发现,杀了一百头牛庆功,故而还叫“百牛定理”.一个定理有如此多的“头衔”,可见勾股定理的不凡.[设计意图]通过拼图活动,充分调动学生的积极性,进一步激发学生的求知欲;通过借助不同图形探索证明,提高学生思维的活跃性;通过对赵爽弦图的介绍,了解我国古代数学家对勾股定理的发现及证明所做出的贡献,增强民族自豪感.证明:以a,b为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab.把这两个直角三角形拼成如图所示的形状,使A,E,B三点在一条直线上.∵Rt△EAD≌Rt△CBE,∴∠ADE=∠BEC.∵∠AED+∠ADE=90°,∴∠AED+∠BEC=90°.∴∠DEC=180°-90°=90°.∴△DEC是一个等腰直角三角形,它的面积等于c2.又∵∠DAE=90°,∠EBC=90°,∴AD∥BC.∴四边形ABCD是一个直角梯形,它的面积等于(a+b)2.∴(a+b)2=2×ab+c2.∴a2+b2=c2.学生思考后,教师再展示证明过程.[设计意图]通过了解勾股定理的不同证明方法,丰富自己的知识;通过了解到古今中外无数人进行证明,激发学生学习数学的热情.[知识拓展]解决直角三角形有关计算和证明的问题时,要注意:(1)求直角三角形斜边上的高常运用勾股定理和面积关系式联合求解.(2)要证明线段的平方关系,首先考虑使用勾股定理,从图中寻找或构造包含所证线段的直角三角形,利用等量代换和代数中的恒等变换进行论证.(3)由勾股定理的基本形式a2+b2=c2可以得到一些变形关系式,如a2=c2-b2=(c+b)(c-b),b2=c2-a2=(c+a)(c-a)等.(4)在钝角三角形中,三角形三边长分别为a,b,c,若c为最大边长,则有a2+b2<c2,在锐角三角形中,三角形三边长分别为a,b,c,若c为最大边长,则有a2+b2>c2.3.例题讲解(补充)在直角三角形中,各边的长如图,求出未知边的长度.引导分析:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.通过对等式变形,可以得出直角三角形三边之间的关系:c=,b=,a=.解:(1)根据勾股定理,得AB===.(2)根据勾股定理,得AB===2.[解题策略]在直角三角形中,已知两边长,求第三边长,应用勾股定理求解,也可建立方程解决问题.(补充)有两边长分别为3 cm,4 cm的直角三角形,其第三边长为cm.〔解析〕分情况讨论:当4 cm为直角边长时,当4 cm为斜边长时,依次求出答案即可.①当4 cm是直角边长时,斜边==5(cm),此时第三边长为5 cm;②当4 cm为斜边长时,第三边==(cm).综上可得第三边的长度为5 cm或cm.故填5或.[解题策略]注意掌握勾股定理的表达式,分类讨论是解决此题的关键,难点在于容易漏解.。
《勾股定理》PPT优质课件(第1课时)

A. 3
B.3
C. 5
D.5
E
课堂检测
基础巩固题
1. 若一个直角三角形的两直角边长分别为9和12,则斜边的
长为( C)
A.13
B.17
C. 15
D.18
2.若一个直角三角形的斜边长为17,一条直角边长为15,则
另一直角边长为( A )
A.8
B.40
C.50
D.36
3.在Rt△ABC中,∠C=90°,若a︰b=3︰4,c=100,则 a= _6_0___,b = __8_0___.
课堂检测
4.如图,所有的四边形都是正方形,所有的三角形都是直角三角 形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面 积之和为_____4_9_____cm2 .
C D
B A
7cm
课堂检测
能力提升题
在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
形,拼成一个新的正方形.
探究新知 剪、拼过程展示:
b
a ca
朱实
b 朱实 黄实朱实
c 〓b
ba
朱实
a
M a P bb
N
探究新知 “赵爽弦图”
c
朱实
b
朱实
黄实 朱实
a
朱实
证明:∵S大正方形=c2, S小正方形=(b-a)2,
∴S大正方形=4·S三角形+S小正方形,
探究新知
毕达哥拉斯证法:请先用手中的四个全等的直角三角形按图 示进行拼图,然后分析其面积关系后证明吧.
因此设a=x,c=2x,根据勾股定理建立方程得 (2x)2-x2=152,
新人教版第十七章勾股定理教案

新人教版第十七章勾股定理教案第十七章勾股定理第1课时勾股定理(1)教学目标:1.知识与技能:掌握勾股定理的内容,会用面积法证明勾股定理,能够应用勾股定理进行简单的计算和实际运用。
2.过程与方法:通过观察、猜想、归纳、验证的数学发现过程,发展合情推理的能力,体会数形结合和由特殊到一般的数学思想。
3.情感态度与价值观:在探索勾股定理的过程中,体验获得成功的快乐。
教学重点:知道勾股定理的结果,并能运用于解题。
教学难点:进一步发展学生的说理和简单推理的意识及能力。
教学准备:彩色粉笔、三角尺、图片、四个全等的直角三角形。
教学过程:一、课堂导入2002年世界数学家大会在我国北京召开,出示了本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号。
今天我们就来一同探索勾股定理。
二、合作探究让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。
这个事实是我国古代3000多年前有一个叫XXX的人发现的。
他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
”这句话的意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5.再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。
讨论:32+42与52有何关系?52+122和132有何关系?通过计算得到32+42=52,52+122=132,于是有勾2+股2=弦2.那么对于任意的直角三角形也有这个性质吗?用四个全等的直角三角形拼成如图所示的图形,其等量关系为:4S△+S小正=S大正,即4×ab+(b-a)2=c2,化简可得a2+b2=c2.三、证明定理勾股定理的证明方法达300余种。
下面这个古老的精彩的证法出自我国古代无名数学家之手。
已知:如图,在△ABC 中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。
八年级数学人教版下册习题课件17.1 勾股定理第1课时 勾股定理

A.4 B.16 7C..(1襄6 D阳.中25 考)已知 CD 是△ ABC 的边 AB 上的高,若 CD= 3 ,AD
9.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为( )
D若.A最D=大2正,方=BC形=1与4,直,角则A三ABB角2=+形C的2D面A2=积C_和_,___求___.BC 的长.
2.如图,可以利用两个全等的直角三角形拼出一个梯形.借助这个图 形,你能用面积法来验证勾股定理吗?
解:由图形可知12 (a+b)(a+b)=12 ab+12 ab+12 c2,整理得(a+b)2= 2ab+c2,a2+b2+2ab=2ab+c2,∴a2+b2=c2,由此得到勾股定理
知识点2:利用勾股定理进行计算 3.(滨州中考)在直角三角形中,若勾为 3,股为 4,则弦为( A ) A.5 B.6 C.7 D.8
4.如图,在△ ABC 中,AB=AC,AD 是∠BAC 的平分线.已知 AB =5,AD=3,则 BC 的长为( C ) A.5 B.6 C.8 D.10
第4题图
(2)若a∶c=3∶5,b=32,求a,c的值. A.4 B.6 C.16 D.25
1(13).若(b2=02205,·雅.c=安(3)毕对,角求节线a的互中值相;考垂直)的如四图边形,叫做点“垂E美在”四正边形方,形现有A如B图所C示D的的“垂边美”A四B边形上AB,CD若,对角E线BA=C,1B,D交于点O. (知2)识如点果1a:=E勾1C6股,=定c=理22的0,,证则那明b=么___正_.方形 ABCD 的面积为( B )
6.如图,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D, 且AB=4,BD=5,则点D到BC的距离是( ) D
A.6 B.5 C.4 D.3
【人教版】八年级数学下第十七章《勾股定理》课时作业同步练习(含答案)

微课堂第十七章 勾股定理 17.1 勾股定理 第1课时 勾股定理01 基础题知识点1 勾股定理的证明1.利用图1或图2两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为勾股定理,该定理结论的数学表达式是a 2+b 2=c 2.2.4个全等的直角三角形的直角边分别为a ,b ,斜边为c.现把它们适当拼合,可以得到如图所示的图形,利用这个图形可以验证勾股定理,你能说明其中的道理吗?请试一试.解:图形的总面积可以表示为 c 2+2×12ab =c 2+ab ,也可以表示为a 2+b 2+2×12ab =a 2+b 2+ab ,∴c 2+ab =a 2+b 2+ab. ∴a 2+b 2=c 2.知识点2 利用勾股定理进行计算3.在△ABC 中,∠A ,∠B ,∠C 的对应边分别是a ,b ,c ,若∠B =90°,则下列等式中成立的是(C )A .a 2+b 2=c 2B .b 2+c 2=a 2C .a 2+c 2=b 2D .c 2-a 2=b 24.已知在Rt △ABC 中,∠C =90°,AC =2,BC =3,则AB 的长为(C )A .4B . 5C .13D .55.已知直角三角形中30°角所对的直角的边长是2 3 cm ,则另一条直角边的长是(C )A .4 cmB .4 3 cmC .6 cmD .6 3 cm 6.(2016·阿坝)直角三角形斜边的长是5,一直角边的长是3,则此直角三角形的面积为6. 7.在△ABC 中,∠C =90°,AB =c ,BC =a ,AC =b.(1)a =7,b =24,求c ; (2)a =4,c =7,求b.解:(1)∵∠C =90°,∴△ABC 是直角三角形.∴a 2+b 2=c 2. ∴72+242=c 2.∴c2=49+576=625.∴c=25.(2)∵∠C=90°,∴△ABC是直角三角形.∴a2+b2=c2.∴42+b2=72.∴b2=72-42=49-16=33.∴b=33.8.如图,在△ABC中,AD⊥BC,垂足为点D,∠B=60°,∠C=45°.(1)求∠BAC的度数;(2)若AC=2,求AD的长.解:(1)∠BAC=180°-60°-45°=75°.(2)∵AD⊥BC,∴△ADC是直角三角形.∵∠C=45°,∴∠DAC=45°.∴AD=CD.根据勾股定理,得AD= 2.02中档题9.(2016·荆门)如图,在△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为(C) A.5 B.6 C.8 D.10第9题图第10题图10.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是(C) A.48 B.60 C.76 D.8011.(2017·陕西)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为(A)A.3 3 B.6 C.3 2 D.21第11题图第14题图12.(2016·东营)在△ABC中,AB=10,AC=210,BC边上的高AD=6,则另一边BC等于(C) A.10 B.8C.6或10 D.8或1013.若一直角三角形两边长分别为12和5,则第三边长为13或119.14.如图,在Rt △ABC 中,∠C =90°,AD 平分∠CAB ,AC =6,BC =8,CD =3.15.图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.在Rt △ABC 中,若直角边AC =6,BC =5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是76.16.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,AC =20,BC =15.(1)求AB 的长;(2)求CD 的长.解:(1)∵在Rt △ABC 中,∠ACB =90°,BC =15,AC =20, ∴AB =AC 2+BC 2=202+152=25.(2)∵S △ABC =12AC ·BC =12AB ·CD ,∴AC ·BC =AB ·CD .∴20×15=25CD .∴CD =12.17.(2016·益阳)在△ABC 中,AB =15,BC =14,AC =13,求△ABC 的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程. 作AD ⊥BC 于点D , 设BD =x ,用含x的代数式表示CD.→根据勾股定理,利用 AD 作为“桥梁”,建立方程模型求出x.→利用勾股定理求出AD 的长,再计算三角形面积.解:在△ABC 中,AB =15,BC =14,AC =13, 设BD =x ,则CD =14-x.由勾股定理,得AD 2=AB 2-BD 2=152-x 2,AD 2=AC 2-CD 2=132-(14-x)2. ∴152-x 2=132-(14-x)2.解得x =9. ∴AD =12.∴S △ABC =12BC·AD =12×14×12=84.03综合题18.如图,已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,则第2 017个等腰直角三角形的斜边长是(2)2017.习题解析第2课时 勾股定理的应用01 基础题知识点1 勾股定理在平面图形中的应用1.如图,一根垂直于地面的旗杆在离地面5 m 处折断,旗杆顶部落在离旗杆底部12 m 处,旗杆折断之前的高度是(D )A .5 mB .12 mC .13 mD .18 m第1题图 第2题图2.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行10米.3.八(2)班小明和小亮同学学习了“勾股定理”之后,为了测得如图风筝的高度CE ,他们进行了如下操作:①测得BD 的长度为15米;(注:BD ⊥CE)②根据手中剩余线的长度计算出风筝线BC 的长为25米; ③牵线放风筝的小明身高1.6米. 求风筝的高度CE.解:在Rt △CDB 中,由勾股定理,得CD =CB 2-BD 2=252-152=20(米).∴CE =CD +DE =20+1.6=21.6(米). 答:风筝的高度CE 为21.6米.4.如图,甲船以16海里/时的速度离开码头向东北方向航行,乙船同时由码头向西北方向航行,已知两船离开码头1.5 h 后相距30海里,问乙船每小时航行多少海里?解:设码头所在的位置为C ,1.5 h 后甲船所在位置为A ,乙船所在位置为B ,则 AC 与正北方向的夹角为45°,BC 与正北方向的夹角为45°, ∴∠ACB =90°.在Rt △ABC 中,∵AC =16×32=24(海里),AB =30海里.由勾股定理,得 BC 2=AB 2-AC 2=302-242=324.解得BC =18. ∴18÷32=12(海里/小时).答:乙船每小时航行12海里.知识点2勾股定理与方程的应用5.印度数学家什迦逻(1141~1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边;渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识回答这个问题.解:如图,由题意可知AC=0.5,AB=2,OB=OC.设OA=x,则OB=OA+AC=x+0.5.在Rt△OAB中,OA2+AB2=OB2,∴x2+22=(x+0.5)2.解得x=3.75.∴水深3.75尺.6.如图,在一棵树(AD)的10 m高处(B)有两只猴子,其中一只爬下树走向离树20 m(C)的池塘,而另一只则爬到树顶(D)后直扑池塘,如果两只猴子经过的路程相等,那么这棵树有多高?解:B为猴子的初始位置,则AB=10 m,C为池塘,则AC=20 m.设BD=x m,则树高AD=(10+x)m.由题意知BD+CD=AB+AC,∴x+CD=20+10.∴CD=(30-x)m.在Rt△ACD中,∠A=90°,由勾股定理得AC2+AD2=CD2,∴202+(10+x)2=(30-x)2.∴x=5.∴AD=10+5=15(m).故这棵树有15 m高.知识点3两次勾股定理的应用7.(2017·绍兴)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为(C) A.0.7米B.1.5米C.2.2米D.2.4米第7题图第8题图8.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B 距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑0.5米.02中档题9.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了__________步路(假设2步为1 m),却踩伤了花草(D)A.4 B.6 C.7 D.8第9题图第10题图10.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为(D) A.4米B.8米C.9米D.7米11.如图,长为8 cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3 cm到点D,则橡皮筋被拉长了2cm.第11题图第12题图习题解析12.将一根24 cm的筷子,置于底面直径为15 cm,高8 cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为h cm,则h的取值范围是7≤h≤16.13.如图是一面长方形彩旗完全展平时的尺寸图(单位:cm).其中长方形ABCD是由双层白布缝制的穿旗杆用的旗裤,阴影部分DCEF为长方形绸缎旗面,将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为220 cm.在无风的天气里,彩旗自然下垂.求彩旗下垂时最低处离地面的最小高度h.解:彩旗自然下垂的长度就是长方形DCEF的对角线DE的长度,连接DE,在Rt△DEF中,根据勾股定理,得DE=DF2+EF2=1202+902=150.h=220-150=70(cm).∴彩旗下垂时的最低处离地面的最小高度h为70 cm.14.超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100米的P处.这时,一辆富康轿车由西向东匀速驶来,测得此车从A 处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,试判断此车是否超过了每小时80千米的限制速度?解:在Rt △APO 中,∠APO =60°,则∠PAO =30°. ∴AP =2OP =200 m ,AO =AP 2-OP 2=2002-1002=1003(m ).在Rt △BOP 中,∠BPO =45°,则BO =OP =100 m .∴AB =AO -BO =1003-100≈73(m ). ∴从A 到B 小车行驶的速度为73÷3≈24.3(m /s )=87.48 km /h >80 km /h . ∴此车超过每小时80千米的限制速度.03 综合题15.如图,在Rt △ABC 中,∠C =90°,AB =5 cm ,AC =3 cm ,动点P 从点B 出发沿射线BC 以1 cm /s 的速度移动,设运动的时间为t s .(1)求BC 边的长;(2)当△ABP 为直角三角形时,求t 的值.解:(1)在Rt △ABC 中,由勾股定理,得BC 2=AB 2-AC 2=52-32=16. ∴BC =4 cm .(2)由题意,知BP =t cm ,①当∠APB 为直角时,如图1,点P 与点C 重合,BP =BC =4 cm , ∴t =4;②当∠BAP 为直角时,如图2,BP =t cm ,CP =(t -4)cm ,AC =3 cm , 在Rt △ACP 中,AP 2=AC 2+CP 2=32+(t -4)2. 在Rt △BAP 中,AB 2+AP 2=BP 2, 即52+[32+(t -4)2]=t 2. 解得t =254.∴当△ABP 为直角三角形时,t =4或t =254.第3课时 利用勾股定理作图01 基础题知识点1 在数轴上表示无理数1.在数轴上作出表示5的点(保留作图痕迹,不写作法).解:略.知识点2 网格中的无理数2.如图,在边长为1个单位长度的小正方形组成的网格中,点A ,B 都是格点,则线段AB 的长度为(A )A .5B .6C .7D .25知识点3 等腰三角形中的勾股定理3.在△ABC 中,AB =AC =13 cm ,BC =10 cm ,求等腰三角形的边上的高与面积.解:过点A 作AD ⊥BC 于D , ∵AB =AC =13 cm , ∴BD =CD =12BC =12×10=5(cm).∴AD =AB 2-BD 2=132-52=12(cm).∴S △ABC =12BC ·AD =12×10×12=60(cm 2).02 中档题 4.(2017·南充)如图,等边△OAB 的边长为2,则点B 的坐标为(D )A .(1,1,)B .(3,1)C .(3,3)D .(1,3) 5.(2017·成都)如图,数轴上点A 所表示的实数是5-1.第5题图 第6题图6.(2017·乐山)点A ,B ,C 在格点图中的位置如图所示,格点小正方形的边长为1,则点C 到线段AB 所在直线的距离355.7.如图,△ABC 和△DCE 都是边长为4的等边三角形,点B ,C ,E 在同一条直线上,连接BD ,求BD 的长.解:∵△ABC 和△DCE 都是边长为4的等边三角形, ∴CB =CD ,∠CDE =∠DCE =60°.∴∠BDC =∠DBC =12∠DCE =30°.∴∠BDE =90°.在Rt △BDE 中,DE =4,BE =8,DB =BE 2-DE 2=82-42=4 3.03 综合题8.仔细观察图形,认真分析下列各式,然后解答问题.OA 22=(1)2+1=2,S 1=12; OA 23=(2)2+1=3,S 2=22; OA 24=(3)2+1=4,S 3=32; …求:(1)请用含有n(n 是正整数)的等式表示上述变化规律; (2)推算出OA 10的长;(3)求出S 21+S 22+S 23+…+S 210的值.解:(1)OA 2n =(n -1)2+1=n ,S n=n2(n 为正整数). (2)OA 210=(9)2+1=10,∴OA 10=10. (3)S 21+S 22+S 23+…+S 210=(12)2+(22)2+(32)2+…+(92)2+(102)2 =14+24+34+…+94+104 =1+2+3+…+9+104=1+102×104=554.小专题(二) 巧用勾股定理解决折叠与展开问题类型1 利用勾股定理解决平面图形的折叠问题解决折叠问题关键是抓住对称性.勾股定理的数学表达式是一个含有平方关系的等式,求线段的长时,可由此列出方程,运用方程思想分析问题和解决问题,以简化求解.【例1】 直角三角形纸片的两直角边AC =8,BC =6,现将△ABC 如图折叠,折痕为DE ,使点A 与点B 重合,则BE 的长为254.1.(2017·黔西南)如图,将边长为6 cm 的正方形纸片ABCD 折叠,使点D 落在AB 边中点E 处,点C 落在点Q 处,折痕为FH ,则线段AF 的长是94cm .第1题图 第2题图2.如图,在长方形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB =6.类型2 利用勾股定理解决立体图形的展开问题立体图形中求表面距离最短时,需要将立体图形展开成平面图形,然后将条件集中于一个直角三角形,利用勾股定理求解.【例2】 (教材P39T12变式与应用)如图,有一个圆柱,它的高等于12 cm ,底面半径等于3 cm ,在圆柱的底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点的食物,需要爬行的最短路程是多少?(π取3)【思路点拨】 要求蚂蚁爬行的最短路径,需将空间图形转化为平面图形(即立体图形的平面展开图),把圆柱沿着过A 点的AA ′剪开,得到如图所示的平面展开图,因为“两点之间,线段最短”,所以蚂蚁应沿着平面展开图中线段AB 这条路线走.【解答】 如图,由题意可得:AA ′=12,A ′B =12×2π×3=9.在Rt △AA ′B 中,根裾勾股定理得:AB 2=A ′A 2+A ′B 2=122+92=225.∴AB =15.∴需要爬行的最短路径是15 cm.3.如图是一个高为10 cm ,底面圆的半径为4 cm 的圆柱体.在AA 1上有一个蜘蛛Q ,QA =3 cm ;在BB 1上有一只苍蝇P ,PB 1=2 cm ,蜘蛛沿圆柱体侧面爬到P 点吃苍蝇,最短的路径是16π2+25cm.(结果用带π和根号的式子表示)第3题图 第4题图4.如图,在一个长为2 m ,宽为1 m 的长方形草地上,放着一根长方体的木块,它的棱和草地宽AD 平行且棱长大于AD ,木块从正面看是边长为0.2 m 的正方形,一只蚂蚁从点A 处到达点C 处需要走的最短路程是2.60m (精确到0.01 m ).5.如图,长方体的高为5 cm ,底面长为4 cm ,宽为1 cm .(1)点A 1到点C 2之间的距离是多少?(2)若一只蚂蚁从点A 2爬到C 1,则爬行的最短路程是多少?解:(1)∵长方体的高为5 cm ,底面长为4 cm ,宽为1 cm , ∴A 2C 2=42+12=17(cm ). ∴A 1C 2=52+(17)2=42(cm ). (2)如图1所示,A 2C 1=52+52=52(cm ). 如图2所示,A 2C 1=92+12=82(cm ). 如图3所示,A 2C 1=62+42=213(cm ).∵52<213<82,∴一只蚂蚁从点A 2爬到C 1,爬行的最短路程是5 2 cm .17.2 勾股定理的逆定理01 基础题知识点1 互逆命题1.下列各命题的逆命题不成立的是(C )A .两直线平行,同旁内角互补B .若两个数的绝对值相等,则这两个数也相等C .对顶角相等D .如果a 2=b 2,那么a =b2.写出下列命题的逆命题,并判断它们是真命题还是假命题.(1)如果两个三角形全等,那么这两个三角形的面积相等;(2)等腰三角形的两个底角相等.解:(1)如果两个三角形的面积相等,那么这两个三角形全等.是假命题. (2)有两个内角相等的三角形是等腰三角形.是真命题.知识点2 勾股定理的逆定理3.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是(B) A.3,4, 5 B .1,2, 3 C .6,7,8 D .2,3,4 4.下列各组数是勾股数的是(A )A .3,4,5B .1.5,2,2.5C .32,42,52D .13,14,155.在△ABC 中,AB =8,AC =15,BC =17,则该三角形为(B )A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形6.三角形的边长之比为:①1.5∶2∶2.5;②4∶7.5∶8.5;③1∶3∶2;④3.5∶4.5∶5.5.其中可以构成直角三角形的有(C )A .1个B .2个C .3个D .4个7.如图,分别以三角形三边为直径向外作三个半圆,如果较小的两个半圆面积之和等于较大的半圆面积,那么这个三角形为(B )A .锐角三角形B .直角三角形C .钝角三角形D .锐角三角形或钝角三角形8.已知:在△ABC 中,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,三边分别为下列长度,判断该三角形是不是直角三角形,并指出哪一个角是直角.(1)a =3,b =22,c =5; (2)a =5,b =7,c =9; (3)a =2,b =3,c =7; (4)a =5,b =26,c =1.解:(1)是,∠B是直角.(2)不是.(3)是,∠C是直角.(4)是,∠A是直角.9.如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.(1)求△ABC的周长;(2)判断△ABC是不是直角三角形?为什么?解:(1)在Rt△ABD和Rt△ACD中,根据勾股定理,得AB2=AD2+BD2,AC2=AD2+CD2,又∵AD=12,BD=16,CD=5,∴AB=20,AC=13.∴△ABC的周长为AB+AC+BC=AB+AC+BD+DC=20+13+16+5=54.(2)△ABC不是直角三角形.理由:∵AB=20,AC=13,BC=21,AB2+AC2≠BC2,∴△ABC不是直角三角形.02中档题10.如图,AD为△ABC的中线,且AB=13,BC=10,AD=12,则AC等于(D)A.10B.11C.12D.13c-10=0,那么下列说法中不正确的是(C) 11.已知a,b,c是三角形的三边长,如果满足(a-6)2+b-8+||A.这个三角形是直角三角形B.这个三角形的最长边长是10C.这个三角形的面积是48D.这个三角形的最长边上的高是4.812.下列定理中,没有逆定理的是(B)A.等腰三角形的两个底角相等B.对顶角相等C.三边对应相等的两个三角形全等D.直角三角形两个锐角的和等于90°13.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M,N两点相距100海里,则∠NOF 的度数为(C)A.50°B.60°C.70°D.80°14.把一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,则这个三角形是直角三角形.15.如图是一个零件的示意图,测量AB=4 cm,BC=3 cm,CD=12 cm,AD=13 cm,∠ABC=90°,根据这些条件,你能求出∠ACD的度数吗?试说明理由.解:在△ABC中,∵AB=4,BC=3,∠ABC=90°,根据勾股定理,得AC2=AB2+BC2=42+32=52.∴AC=5 cm.∵AC2+CD2=52+122=25+144=169,AD2=132=169,即AC2+CD2=AD2.∴△ACD是直角三角形,且AD为斜边,即∠ACD=90°.16.如图,在四边形ABCD中,AB=BC=1,CD=3,DA=1,且∠B=90°.求:(1)∠BAD的度数;(2)四边形ABCD的面积(结果保留根号).解:(1)连接AC.∵AB=BC=1,∠B=90°,∴∠BAC=∠ACB=45°,AC=AB2+BC2= 2.又∵CD=3,DA=1,∴AC2+DA2=CD2.∴△ADC 为直角三角形,∠DAC =90°. ∴∠BAD =∠BAC +∠DAC =135°. (2)∵S △ABC =12AB·BC =12,S △ADC =12AD·AC =22,∴S 四边形ABCD =S △ABC +S △ADC =1+22.03 综合题17.在一次“探究性学习”课中,老师设计了如下数表:(1)请你分别观察a ,b ,c b ,c ,则a =n 2-1,b =2n ,c =n 2+1;(2)猜想:以a ,b ,c 为边的三角形是否为直角三角形?证明你的结论. 解:以a ,b ,c 为边的三角形是直角三角形.证明:∵a 2+b 2=(n 2-1)2+(2n)2=n 4-2n 2+1+4n 2=(n 2+1)2=c 2, ∴以a ,b ,c 为边的三角形是直角三角形.章末复习(二)勾股定理01基础题知识点1勾股定理1.如图,在△ABC中,∠C=90°,∠A=30°,AB=12,则AC=(C)A. 6 B.6 2C.6 3 D. 12第1题图第2题图2.如图,阴影部分是一个正方形,则此正方形的面积为64.3.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点A为圆心,AC长为半径画弧,交AB于点D,则BD=2.4.如图,在四边形ABCD中,∠B=90°,CD⊥AD,AD2+CD2=2AB2.求证:AB=BC.证明:连接AC.∵在△ABC中,∠B=90°,∴AB2+BC2=AC2.∵CD⊥AD,∴∠ADC=90°.∴AD2+CD2=AC2.∵AD2+CD2=2AB2,∴AB2+BC2=2AB2.∴BC2=AB2.∵AB>0,BC>0,∴AB=BC.知识点2勾股定理的应用5.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)(D)A.12 m B.13 mC.16 m D.17 m第5题图第6题图6.已知A,B,C三地位置如图所示,∠C=90°,A,C两地的距离是4 km,B,C两地的距离是3 km,则A,B 两地的距离是5km;若A地在C地的正东方向,则B地在C地的正北方向.7.(2016·烟台)如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为7.知识点3逆命题与逆定理8.“同旁内角互补”的逆命题是互补的两个角是同旁内角,它是假命题.知识点4勾股定理的逆定理及其应用9.在△ABC中,AB=6,AC=8,BC=10,则该三角形为(B)A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形02中档题10.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=5,则BC的长为(D)A.3-1B.3+1C.5-1D.5+1第10题图第11题图11.(2016·漳州)如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B,C).若线段AD 长为正整数,则点D的个数共有(C)A.5个B.4个C.3个D.2个12.如图,每个小正方形的边长为1,A,B,C是小正方形的顶点,则∠ABC的度数为(C) A.90°B.60°C.45°D.30°第12题图第13题图13.如图,在单位正方形组成的网格图中标有AB,CD,EF,GH四条线段,其中能构成一个直角三角形三边的线段是(B)A.CD,EF,GH B.AB,EF,GHC.AB,CD,EF D.GH,AB,CD14.若一个三角形的周长为12 3 cm,一边长为3 3 cm,其他两边之差为 3 cm,则这个三角形是直角三角形.15.有一块空白地,如图,∠ADC=90°,CD=6 m,AD=8 m,AB=26 m,BC=24 m.试求这块空白地的面积.解:连接AC .∵∠ADC =90°,∴△ADC 是直角三角形.∴AD 2+CD 2=AC 2,即82+62=AC 2,解得AC =10.又∵AC 2+CB 2=102+242=262=AB 2,∴△ACB 是直角三角形,∠ACB =90°∴S 四边形ABCD =S Rt △ACB -S Rt △ACD=12×10×24-12×6×8 =96(m 2).故这块空白地的面积为96 m 2.16.小明将一副三角板按如图所示摆放在一起,发现只要知道其中一边的长就可以求出其他各边的长,若已知CD =2,求AC 的长.解:∵BD =CD =2,∴BC =22+22=2 2.∴设AB =x ,则AC =2x.∴x 2+(22)2=(2x)2.∴x 2+8=4x 2.∴x 2=83. ∴x =263. ∴AC =2AB =436.03 综合题17.如图,在△ABC 中,∠ACB =90°,AC =BC ,P 是△ABC 内一点,且PA =3,PB =1,CD =PC =2,CD ⊥CP ,求∠BPC 的度数.解:连接BD.∵CD⊥CP,CP=CD=2,∴△CPD为等腰直角三角形.∴∠CPD=45°.∵∠ACP+∠BCP=∠BCP+∠BCD=90°,∴∠ACP=∠BCD.∵CA=CB,∴△CAP≌△CBD(SAS).∴DB=P A=3.在Rt△CPD中,DP2=CP2+CD2=22+22=8. 又∵PB=1,DB2=9,∴DB2=DP2+PB2=8+1=9.∴∠DPB=90°.∴∠CPB=∠CPD+∠DPB=45°+90°=135°.。
17.1 勾股定理 第1课时 课件 2021-2022学年人教版八年级数学下册

自学检测1(5分钟)
B
1. 如图,在Rt△ABC中, ∠C=90°.
(1)若a=b=5,求c;(2)若a=1,c=2,求b
解:(1)据勾股定理得 c a2 b2 52 52 50 5 2;
C
A
(2)据勾股定理得 b c2 a2 22 12 3.
11. 如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=1, 求△ABC的周长.
解:∵AD⊥BC,∴∠ADB=∠ADC=90°. 在Rt△ADB中,∵∠B+∠BAD=90°,∠B=45°, ∴∠B=∠BAD=45°, ∴BD=AD=1,∴AB= 2 . 在Rt△ADC中,∵∠C=30°,∴AC=2AD=2, ∴CD= 3 ,∴BC=BD+CD=1+ 3 , ∴△ABC的周长=AB+AC+BC= 2 3 3.
(2当) BC为A斜 3边0时,b, 1如5 ,图c,B2Ca. 42 32 5. 因此设a=x,cB=2x,根据勾股定理建B 立方程得
(2x)2-x2=152,解得4 x 5 3 . 3
C 图 A
4a 5 3 ,c 10
A
3 图
C
3.
2. 已知∠ACB=90°,CD⊥AB,AC=3,BC=4.求CD的长. A
SA+SB=SC 2
问题3 猜想两直角边a,b与斜边c的关系?
a2+b2=c2
教师点拨
教师点拨(2分钟)
勾股定理 (毕达哥拉斯定理) 直角三角形两直角边的平方和等于斜边的平方.
弦c 股b
┏
勾a
a2+b2=c2
赵爽弦图
教师点拨(2分钟)
17.1第1课时勾股定理及验证

图 17-1-13
第1课时 勾股定理及验证
解:证明:连接 DB,过点 B 作 DE 边上的高 BF,则 BF=b-a. 1 1 ∵S 五边形 ACBED=S 梯形 ACBE+S△AED= (a+b)b+ ab, 2 2 1 1 2 1 又∵S 五边形 ACBED=S△ACB+S△ADB+S△BED= ab+ c + a(b-a), 2 2 2 1 1 1 1 2 1 ∴ (a+b)b+ ab= ab+ c + a(b-a), 2 2 2 2 2 ∴a2+b2=c2.
第1课时 勾股定理及验证
C拓广探究创新练
15.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其 中的“面积法”给了小聪灵感.他惊喜地发现:当两个全等的直角 三角形如图 17-1-12 或图 17-1-13 摆放时, 都可以用“面积法” 来证明.下面是小聪利用图 17-1-12 证明勾股定理的过程: 将两个全等的直角三角形按图 17-1-12 所示的方式摆放,其中 ∠DAB=90° ,求证:a +b =c .
第1课时 勾股定理及验证
14.一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的 一种新的证明方法. 如图 17-1-11 所示, 火柴盒的一个侧面 ABCD 倒下到四边形 AB′C′D′的位置,连接 CC′,AC′,AC,设 AB=a, BC=b,AC=c,请利用四边形 BCC′D′的面积验证勾股定理: a2 +b =c .
图17-1-7
第1课时 勾股定理及验证
10.[2018· 凉山州] 如图 17-1-8,数轴上点 A 对应的数为 2, AB⊥OA 于点 A,且 AB=1,以 O 为圆心,OB 长为半径作弧, 交数轴于点 C,则 OC 的长为( D ) A.3 B. 2 C. 3 D. 5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17.1勾股定理第1课时练习
一、选择题
1. 利用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称为弦图。
观察图形,可以验证()公式。
A. (a+b)(a-b)=a2-b2
B. (a+b)2=a2-2ab+b2
C. c2=a2+b2
D. (a-b)2=a2-2ab+b2
二、填空题
2. 如图,是由四个直角边分别为3和4全等的直角三角形拼成的“赵爽弦图”,那么阴影部分面积为__________。
3. 如图,把长、宽、对角线的长分别是a、b、c的矩形沿对角线剪开,与一个直角边长为c的等腰直角三角形拼接成右边的图形,用面积割补法能够得到的一个等式是_________。
三、解答题
4. 如图是用硬纸板做成的四个全等的直角三角形(两直角边长分别是a、b,斜边长为c)和一个边长为c的正方形,请你将它们拼成一个能证明勾股定理的图形。
c
c
参考答案
1. C 解析:利用两种方法表示出大正方形的面积,根据面积相等可以整理出c2=a2+b2。
2. 1 解析:∵四个全等的直角三角形的直角边分别是3和4,∴阴影部分的正方形的边
解析:此图可以这样理解,。