17.1 勾股定理(第一课时)

合集下载

17.1勾股定理(第一课时)教案

17.1勾股定理(第一课时)教案

商丘市乡村中小学、幼儿园教师优质课评选17.1勾股定理(第一课时)教案商丘市城乡一体化示范区七中赵伯超2016年6月21日17.1勾股定理(第一课时)教案商丘市城乡一体化示范区七中赵伯超勾股定理是反映自然界基本规律的一条重要结论,它有着悠久的历史,它在数学的发展中起着重要的作用,在现实世界中也有着广泛的应用。

勾股定理是在学习了三角形有关性质的基础上提出来的,勾股定理揭示了直角三角形的三边之间的数量关系,对前面的知识起到完善,延伸的作用。

学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

本节课试图通过数学活动,对学生所学知识进行内化与迁移,以发展思维。

同时对勾股定理的学习,对比我国数学家和西方数学家对勾股定理的研究,对学生进行爱国主义的教育,以落实素质教育的目标。

一、教学目标:知识与技能:了解勾股定理的文化背景,体验勾股定理的探索过程,掌握勾股定理的内容,会用面积法证明勾股定理。

了解利用拼图验证勾股定理的方法。

数学思考:在勾股定理的探索过程中,让学生经历“观察—猜想—归纳—验证”,培养合情推理能力,体会数形结合和从特殊到一般的思想。

解决问题:1、通过拼图活动,体验数学思维的严谨性,发展形象思维。

2、在探索活动中,学会与人合作,并能与他人交流思维的过程和探索的结果。

情感与态度:1、通过对勾股定理历史的了解,对比介绍我国古代和西方数学家关于勾股定理的研究,感受数学文化,激发学生的爱国热情,激励学生奋发学习。

2、在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气,培养合作意识和探索精神。

二、重点、难点1.重点:探索和证明勾股定理。

经历用不同的拼图方法验证勾股定理的过程,体验解决同一问题方法的多样性,进一步体会勾股定理的文化价值。

2.难点:勾股定理的证明。

经历用不同的拼图方法证明勾股定理。

3.突破方法:发挥学生主体作用,通过学生动手实验,让学生在实验中探索,在探索中领悟,在领悟中理解。

勾股定理的教学设计(第一课时)

勾股定理的教学设计(第一课时)

17.1 勾股定理(第一课时)【教学目标】 1.经历勾股定理的探究过程,了解关于勾股定理的一些文化历史背景,通过对我国古代研究勾股定理的成就的介绍,培养学生的民族自豪感。

2.能用勾股定理解决一些简单问题。

【重点难点】重点:探索和证明勾股定理。

难点:应用勾股定理解决实际问题。

【教学过程设计】【活动一】(一)创设问题情境1、你听说过“勾股定理”吗?(1)勾股定理古希腊数学家毕达哥拉斯发现的,西方国家称勾股定理为“毕达哥拉斯”定理(2)在中国,相传4000多年前,大禹曾在治理洪水的过程中,利用勾股定理来测量两地的地势差 (3)我国著名的《算经十书》最早的一部《周髀算经》。

书中记载有“勾广三,股修四,径隅五。

”这作为勾股定理特例的出现。

2、毕答哥拉斯是古希腊著名的数学家。

相传在2500年以前,他在朋友家做客时,发现朋友家用的地砖铺成的地面反映了直角三角形的某写特性。

(1)现在请你一观察一下,你能发现什么?(2)一般直角三角形是否也有这样的特点吗?(二)师生行为教师讲故事(勾股定理的发现)、展示图片,参与小组活动,指导、倾听学生交流。

针对不同认识水平的学生,引导其用不同的方法得出大正方形的面积等于两个小正方形的面积之和。

学生听故事发表见解,分组交流、在独立思考的基础上以小组为单位,采用分割、拼接、数格子的个数等等方法。

阐述自己发现的结论。

(三)(三)设计意图①通过讲故事,让学生了解历史,培育学生爱国主义情操,激发学习的积极性。

②渗透从特殊到一般的数学思想,为学生提供参与数学活动的时间与空间,发挥学生的主体作用;培养学生的类比迁移能力及探索问题的能力,使学生在相互欣赏、争辩、互助中得到提高。

③鼓励学生用语免得数学活动的困难,尝试从不同角度去寻求解决问题的有效方法。

并通过方法的反思,获得解决问题的经验。

在本次活动中教师用重点关注:①学生能否将实际问题(地砖图形在三个正方形围成的一个直角三角形)转化成数学问题(探索直角三角形的特性三边关系)。

《勾股定理》PPT优质课件(第1课时)

《勾股定理》PPT优质课件(第1课时)

A. 3
B.3
C. 5
D.5
E
课堂检测
基础巩固题
1. 若一个直角三角形的两直角边长分别为9和12,则斜边的
长为( C)
A.13
B.17
C. 15
D.18
2.若一个直角三角形的斜边长为17,一条直角边长为15,则
另一直角边长为( A )
A.8
B.40
C.50
D.36
3.在Rt△ABC中,∠C=90°,若a︰b=3︰4,c=100,则 a= _6_0___,b = __8_0___.
课堂检测
4.如图,所有的四边形都是正方形,所有的三角形都是直角三角 形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面 积之和为_____4_9_____cm2 .
C D
B A
7cm
课堂检测
能力提升题
在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
形,拼成一个新的正方形.
探究新知 剪、拼过程展示:
b
a ca
朱实
b 朱实 黄实朱实
c 〓b
ba
朱实
a
M a P bb
N
探究新知 “赵爽弦图”
c
朱实
b
朱实
黄实 朱实
a
朱实
证明:∵S大正方形=c2, S小正方形=(b-a)2,
∴S大正方形=4·S三角形+S小正方形,
探究新知
毕达哥拉斯证法:请先用手中的四个全等的直角三角形按图 示进行拼图,然后分析其面积关系后证明吧.
因此设a=x,c=2x,根据勾股定理建立方程得 (2x)2-x2=152,

新版新课标人教版八年级数学下册17.1勾股定理教材分析第1课时

新版新课标人教版八年级数学下册17.1勾股定理教材分析第1课时

新版新课标人教版八年级数学下册《17.1 勾股定理》教材分析(第1课时)《17.1 勾股定理》教材分析(第1课时)湖北省赤壁市教研室来小静勾股定理把几何图形中直角三角形的形的特征转化成数量关系,为几何图形与数量关系之间搭建桥梁发挥了重要作用.由于直角图形的普遍性,勾股定理在实际应用中及其重要.教科书安排了对勾股定理的观察、计算、猜想及证明进程,首先简略讲述了毕达哥拉斯从观察地面图案的面积关系发现勾股定理的传说,并让学生也去观察一样的图案,通过研究等腰直角三角形这种特殊直角三角形的面积关系,发现它的三边之间的数量关系,在进一步的探讨中,又让学生对一般直角三角形进行计算,计算以直角三角形两直角边为边长的小正方形的面积和等于以斜边为边长的正方形的面积,进而取得这些直角三角形中两直角边的平方和等于斜边的平方,然后,对更一般的结论提出了猜想.并用赵爽证法加以证明,这是一个典型的从特殊到一般的思想方式,这样安排有利于学生熟悉结论研究的探讨进程(观察、想象、计算、猜想、证明),激发学生对结论的探索兴趣和热情,培育学生发现问题、提出问题、分析问题和解决问题的能力和周密审慎的思考习惯.《17.1 勾股定理》教材分析(第1课时)湖北省赤壁市教研室来小静勾股定理把几何图形中直角三角形的形的特征转化成数量关系,为几何图形与数量关系之间搭建桥梁发挥了重要作用.由于直角图形的普遍性,勾股定理在实际应用中及其重要.教科书安排了对勾股定理的观察、计算、猜想及证明进程,首先简略讲述了毕达哥拉斯从观察地面图案的面积关系发现勾股定理的传说,并让学生也去观察一样的图案,通过研究等腰直角三角形这种特殊直角三角形的面积关系,发现它的三边之间的数量关系,在进一步的探讨中,又让学生对一般直角三角形进行计算,计算以直角三角形两直角边为边长的小正方形的面积和等于以斜边为边长的正方形的面积,进而取得这些直角三角形中两直角边的平方和等于斜边的平方,然后,对更一般的结论提出了猜想.并用赵爽证法加以证明,这是一个典型的从特殊到一般的思想方式,这样安排有利于学生熟悉结论研究的探讨进程(观察、想象、计算、猜想、证明),激发学生对结论的探索兴趣和热情,培育学生发现问题、提出问题、分析问题和解决问题的能力和周密审慎的思考习惯.《17.1 勾股定理》教材分析(第1课时)湖北省赤壁市教研室来小静勾股定理把几何图形中直角三角形的形的特征转化成数量关系,为几何图形与数量关系之间搭建桥梁发挥了重要作用.由于直角图形的普遍性,勾股定理在实际应用中及其重要.教科书安排了对勾股定理的观察、计算、猜想及证明进程,首先简略讲述了毕达哥拉斯从观察地面图案的面积关系发现勾股定理的传说,并让学生也去观察一样的图案,通过研究等腰直角三角形这种特殊直角三角形的面积关系,发现它的三边之间的数量关系,在进一步的探讨中,又让学生对一般直角三角形进行计算,计算以直角三角形两直角边为边长的小正方形的面积和等于以斜边为边长的正方形的面积,进而取得这些直角三角形中两直角边的平方和等于斜边的平方,然后,对更一般的结论提出了猜想.并用赵爽证法加以证明,这是一个典型的从特殊到一般的思想方式,这样安排有利于学生熟悉结论研究的探讨进程(观察、想象、计算、猜想、证明),激发学生对结论的探索兴趣和热情,培育学生发现问题、提出问题、分析问题和解决问题的能力和周密审慎的思考习惯.。

八年级数学下册(人教版)17.1.1勾股定理(第一课时)教学设计

八年级数学下册(人教版)17.1.1勾股定理(第一课时)教学设计
4.合作交流,提升能力:组织学生进行小组讨论,分享学习心得和解决问题的方法,培养学生的合作精神和交流能力。在此基础上,设计一些实际问题,让学生运用勾股定理进行求解,提高他们的问题解决能力。
5.总结反思,拓展提高:在教学结束时,引导学生对勾股定理进行总结,明确其应用范围和注意事项。同时,布置一些拓展提高的练习题,让学生在课后进行巩固。
本节课的教学设计以勾股定理为核心,紧密结合教材内容,注重培养学生的知识技能、过程方法和情感态度与价值观,旨在提高学生的数学素养和实际应用能力。
二、学情分析
八年级学生在经过前两年的数学学习后,已经具备了一定的数学基础和逻辑思维能力。在本节课之前,学生已经学习了平面几何、立体几何的基本概念,掌握了直角三角形的性质和判定方法,这些都为学习勾股定理奠定了基础。然而,由于勾股定理涉及斜边与直角边的平方关系,学生在理解上可能会存在一定难度。因此,在教学过程中,教师需关注以下几点:
2.自主探究,发现定理:引导学生观察教材中的直角三角形图形,鼓励他们大胆猜想勾股定理的表达形式。在学生自主探究的基础上,引导他们通过实际测量、计算,验证勾股定理的正确性。
3.精讲精练,突破难点:针对勾股定理的证明过程,教师进行详细讲解,并设计具有梯度的问题,让学生逐步掌握定理的证明方法。同时,通过典型例题的讲解和练习,帮助学生巩固定理的应用。
(四)课堂练习,500字
为了巩固学生对勾股定理的理解,我将设计一些课堂练习题。这些练习题分为基础题和提高题,以满足不同层次学生的学习需求。
1.基础题:主要针对勾股定理的基本应用,如已知直角三角形的两边,求解第三边。
2.提高题:涉及勾股定理在实际问题中的应用,如计算建筑物的高度、距离等。
我会让学生独立完成练习题,并在必要时给予指导。通过课堂练习,学生可以检验自己对勾股定理的掌握程度,并为课后作业打下基础。

人教版八年级数学下册《17.1勾股定理》课件 (共13张PPT)

人教版八年级数学下册《17.1勾股定理》课件 (共13张PPT)

这个世界上,从来没有谁比谁更优秀,只有谁比谁更努力。
很多人都去了,回来的时候每人拎着一只鸡,大家都很高兴!
人生,是一本太仓促的书,越认真越深刻;
越是优秀的人,越是努力,因为优秀从来不是与生俱来,从来不是一蹴而就。
人到中年,突然间醒悟许多,总算明白:人生,只有将世间的路一一走遍,才能到尽头;
一个土豪,每次出门都担心家中被盗,想买只狼狗栓门前护院,但又不想雇人喂狗浪费银两。
3.(1)已知直角三角形的两直角边的长分别为3和4,则第三边
的长为___5____;
(2)已知直角三角形的两边的长分别为3和4,则第三边的长为
__________.
4.求图17-1-1中直角三角形中未知的长度:b=____1_2___, c=____3_0____.
知识清单
知识点1 勾股定理 勾股定理内容:直角三角形两直角边的平方和等于斜__边__的_平__方_. 勾股定理表示方法:如果直角三角形的两直角边分别为a,b ,斜边为c,那么a_2_+__b_2_=__c_2____. 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达 哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾, 较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数 学家商高就提出了“勾三,股四,弦五”形式的勾股定理, 后来人们进一步发现并证明了直角三角形的三边关系为:两 直角边的平方和等于斜边的平方.
生活,只有将尘世况味种种尝遍,才能熬出头。
勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.
人到中年,突然间醒悟许多,总算明白:人生,只有将世间的路一一走遍,才能到尽头;
如图17-1-7,一棵大树被台风刮断,若树在离地面9 m处折断,树顶端落在离树底部12 m处,则大树折断之前的高度为

人教版八年级下册17.1《勾股定理》第一课时教学设计

人教版八年级下册17.1《勾股定理》第一课时教学设计
6.注重课后反思,让学生在反思中巩固所学知识,发现自己的不足,为下一节课的学习做好准备。
四、教学内容与过程
(一)导入新课
1.教师通过展示一组图片,包括古代建筑、现代桥梁等,引导学生观察这些图形中的直角三角形,并提出问题:“这些图形有什么共同特点?它们在数学中有什么特殊性质?”
2.学生观察后,教师总结直角三角形的定义,并引导学生回顾已知的直角三角形相关知识,为新课的学习做好铺垫。
5.针对教学难点,采取以下措施:
a.对勾股定理的证明过程进行详细讲解,通过画图、举例等方式,让学生在直观感知的基础上,理解证明的严密性。
b.专门安排一节课,让学生列举并分析勾股数的特点,总结规律,以便更好地辨识和应用勾股数。
c.结合实际情境,开展数学建模活动,让学生在小组内共同探讨、解决问题,提高他们的数学建模能力。
5.掌握勾股数的特点,能够辨识和列举出一组勾股数。
(二)过程与方法
在教学过程中,学生将通过以下方式来达成目标:
1.通过观察直角三角形的特性,引导学生发现勾股定理,培养观察力和逻辑思维能力。
2.通过小组合作,探究勾股定理的证明方法,提高合作意识和解决问题的能力。
3.通过数学问题的解答,培养学生将理论知识应用于实际情境的能力。
4.利用数形结合的方法,让学生在直观的图形中理解抽象的数学公式,提高形象思维和抽象思维的能力。
5.通过分析勾股数的特点,让学生总结规律,增强数学归纳和总结的能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发他们探究数学问题的热情。
2.使学生体会到数学知识与现实生活的紧密联系,增强学生的数学应用意识。
人教版八年级下册17.1《勾股定理》第一课时教学设计
一、教学目标

17.1勾股定理(第1课时)课件(共23张PPT)

17.1勾股定理(第1课时)课件(共23张PPT)

让我们一起再探究:等腰直角三角形三边关系
C A B 9 C A B 图2-2 4 9 4 18 8
图2-1
(图中每个小方格代表一个单位面积)
C A B 图2-1 A B
S正方形c
C
1 4 3318 2
图2-2
(图中每个小方格代表一个单位面积)
(单位面积)
分“割”成若干个直 角边为整数的三角形
弦 勾

图1-1
漂亮的勾股树
活动 2
相传2500年前,毕达哥拉斯有一次 在朋友家里做客时,发现朋友家用砖铺 成的地面中反映了直角三角形三边的某 种数量关系.
我们也来观察右 图中的地面,看看有 什么发现?
数学家毕达哥拉斯的发现:
A
B
C
A、B、C的面积有什么关系? SA+SB=SC 直角三角形三边有什么关系? 两直边的平方和等于斜边的平方
设:直角三角形的三边长分别是a、b、c
猜想:两直角边a、b与斜边c 之间的关系? A a B b
Sa+Sb=Sc
c
C
2 2 2 a +b =c
b
a
c b (a+b )2
证 明 二
a
c
c
1 = c 4 ab 2
2
a2 + b2 + 2ab = c2+2ab
b a
c
b
a
可得: a2 + b2 = c2
C A B 图2-1 A B
S正方形c
C
1 6 2
2
1 8(单位面积)
图2-2
(图中每个小方格代表一个单位面积)
把C“补” 成边长为6的 正方形面积的一半
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17.1 勾股定理
第1课时勾股定理
01 课前预习
要点感知勾股定理:如果直角三角形的两条直角边长分别是a、b,斜边长为c,那么a2+b2=c2. 预习练习在Rt△ABC中,若两条直角边长分别是5 cm、12 cm,则斜边长为(B) A.17 cm B.13 cm
C.7 cm D.12 cm
02 当堂训练
知识点1 利用勾股定理进行计算
1.在△ABC中,∠A、∠B、∠C的对应边分别是a、b、c,若∠B=90°,则下列等式中成立的是(C) A.a2+b2=c2B.b2+c2=a2
C.a2+c2=b2D.c2-a2=b2
2.在Rt△ABC中,斜边长BC=3,则AB2+AC2的值为(B)
A.18B.9
C.6 D.无法计算
3.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则正方形ABCD的面积为(C)
A.48
B.60
C.100
D.140
4.已知直角三角形的斜边长为10,一直角边长是另一直角边长的3倍,则直角三角形中较长的直角边长为(D)
A.10 B.2.5 C.7.5 D.310
5.已知直角三角形中30°角所对的直角边长是2 3 cm,则另一条直角边的长是(C) A.4 cm B.4 3 cm
C.6 cm D.6 3 cm
6.(柳州中考)如图,在△ABC中,∠C=90°,则BC=4.
7.(玉溪中考)如图,在△ABC中,∠ABC=90°,分别以BC、AB、AC为边向外作正方形,面积分别记为S1、S2、S3,若S2=4,S3=6,则S1=2.
8.在△ABC中,∠C=90°,∠A、∠B、∠C的对边分别是a、b、c.
(1)若b=2,c=3,求a的值;
(2)若a∶c=3∶5,b=32,求a、c的值.
解:(1)∵a2+b2=c2,
∴a=c2-b2.
∴a= 5.
(2)设a=3x,c=5x,
∵a2+b2=c2,
∴(3x)2+322=(5x)2.解得x=8.
∴a=24,c=40.
知识点2 勾股定理的证明
9.利用图1或图2两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为勾股定理,该定理结论的数学表达式是a2+b2=c2.
03 课后作业
10.(荆门中考改编)如图,△A BC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BD 的长为(C)
A .5
B .6
C .8
D .10
11.如图,△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,AC =3,BC =4,则CD 的长为(C )
A .5
B .52
C .125
D .2
12.(株洲中考改编)如图,以直角三角形的三边a 、b 、c 为边,向外作等边三角形,等腰直角三角形和正方形,上述三种情况的面积关系满足S 1+S 2=S 3图形个数有(D )
A .0个
B .1个
C .2个
D .3个
13.若一直角三角形两边长分别为12和5,则第三边长为
14.如图,已知△ABC 是腰长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,则第2 017个等腰直角三角形的斜边长是(2)2_017

15.如图,△ABC 中,∠C =90°,D 是AC 中点,求证:AB 2
+3BC 2
=4BD 2
.
证明:在Rt △BDC 中,根据勾股定理,得BD 2
=CD 2
+BC 2
,∴CD 2
=BD 2
-BC 2
.
在Rt △ABC 中,根据勾股定理,得AC 2+BC 2=AB 2
. ∵D 是AC 的中点,∴AC =2CD. ∴4CD 2
+BC 2
=AB 2
.∴CD 2
=AB 2
-BC
2
4
.
∴BD 2
-BC 2
=AB 2-BC 2
4
,即AB 2+3BC 2=4BD 2
.
16.(益阳中考)在△ABC 中,AB =15,BC =14,AC =13,求△ABC 的面积.
某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.
作AD⊥BC于D ,设BD =x ,用含x 的代数表示CD.→根据勾股定理,利用AD 作为“桥梁”,建立方程模型求出x.→利用勾股定理求出AD 的长,再计算三角形面积.
解:在△ABC 中,AB =15,BC =14,AC =13,设BD =x ,∴CD =14-x. 由勾股定理,得AD 2
=AB 2
-BD 2
=152
-x 2
, AD 2
=AC 2
-CD 2
=132
-(14-x)2
, ∴152
-x 2
=132
-(14-x)2
.解得x =9. ∴AD =12.
∴S △ABC =12BC·AD=1
2×14×12=84.
挑战自我
17.(温州中考)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感.他惊喜地发现:当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明.下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a 2
+b 2
=c 2
.
证明:连接DB ,DC ,过点D 作BC 边上的高DF ,DF =EC =b -a. ∵S 四边形ADCB =S △ACD +S △ABC =12b 2+1
2ab ,
又∵S 四边形ADCB =S △ADB +S △DCB =12c 2+1
2a(b -a),
∴12b 2+12ab =12c 2+1
2a(b -a). ∴a 2
+b 2
=c 2
.
图1 图2
请参照上述证法,利用图2完成下面的证明.
将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a 2+b 2=c 2
. 证明:连接DB ,过点B 作DE 边上的高BF ,BF =b -a. ∵S 五边形ACBED =S 梯形ACB E +S △AE D =12(a +b)b +1
2
ab , 又∵S 五边形ACBED =S △ACB +S △ADB +S △BED =12ab +12c 2+1
2
a(b -a), ∴12(a +b)b +12ab =12ab +12c 2+1
2a(b -a). ∴a 2
+b 2
=c 2
.。

相关文档
最新文档