油包水乳化体系之配方设计及生产工艺初步研究
天然奶油油包水乳状液的研究

应用 〔J〕 .吉林大学学报 (工学版), 2004 , 34 (2):307 ~ 331.
收稿日期:2005 -01 -07 作者简介:穆同娜 (1979 -), 女 , 天津人 , 中国农业大学食品科学 与营养工程学院在读硕士研究生 , 研究方向为食品科学与工程。 通讯地址:(100083) 北京市清华东路 17 号
【摘 要】为得到对天然奶油乳状液稳定 性效果较 好的乳 化剂 , 通过 采用 HL B 值筛选法 , 对不 同的乳化剂进行复配 。 结果表明 , 所复配的乳化剂的 HLB 值在 3.6 ~ 3.9 时所获得的天然奶油油包水 乳状液最为稳定 。 同时 , 油水比例为 1.0, 乳化剂的添 加量在 5%左右时 , 乳化体系稳定性较 好 。 【关键词】天然奶油 ;油包水 ;乳状液 ;乳化剂 ;HLB 值
· 油脂工程 · 粮油加工与食品机械
MACHINERY FOR CEREALS OIL AND F OOD P ROCESSING
天然奶油油包水乳状液的研究
穆同娜1 薛文通1 杨文领1 , 2 (1 .中国农业大学食品科学与营养工程学院 2 .总后勤军需装备研究所)
1 材料与方法
1.1 试验材料与设备 材 料 :Span20 (H LB 值 :8.6)、 Span40 (H LB 值 :
6.7)、 Span60 (HLB 值 :4.7)、 Span65 (HLB 值 :2.1)、 Tween20 (H LB 值 :16.9)和天然奶油 。
设备 :漩涡振荡器 、 恒温水浴锅 、 电热干燥箱 、 均质 机 、 针式注射器 。 1.2 乳状液制备方法
油包水乳化体系的配方设计及生产工艺研究(续前)

调整,并介绍了有利凯玛公司的油包水乳化剂。
关键词:乳化剂;油包水;乳化体系;工艺控制
中图分类号:TQ658
文献标识码:A
文章编号:1006—7264(2006)11—0034一07
2.3油包水含固颗粒的选择 在油包水乳化体系中,可以选择的固体分类很
多,常见的粉体颗粒有二氧化钛、二氧化锌、二氧化 硅、高岭土、滑石粉、云母粉、氧化铁黄、氧化铁红、氧化 铁黑和碳黑等。因为二氧化钛的使用最为常见和关 键,本文固体颗粒粉末讨论主要围绕二氧化钛展开, 讨论粉体颗粒大小的选择与遮盖能力以及着色影响、 固体颗粒的表面处理及固体颗粒的助乳化作用。
PRISORINE 379 1。
影响粉体的助乳化效果的因素第一取决于粉体颗 粒的大小,第二取决于固体颗粒的表面处理类型。很 多资料上写明细固体颗粒是有助乳化效果的,但在这
收稿日期:2006一09—25 作者简介:唐俊敏(1980-),男,江苏人,工程师。联系电话:02l一64479516。 ·34·
对于一锅法生产油包水的乳化体系,通常对设备 都有很高的要求,并且需要设备短时问内能够输出极 高的能量,同时还要保证物料的上下传质要均匀和有
·36·
万方数据
效,并且一般应用在300 kg以下的乳化设备中。对 于间歇式生产则主要应用在高水相含量以及高黏度的 体系中,这样的体系如果用连续操作,需要对水相的 输入速度和时间有一定的苛刻要求,这样将会增大生 产工艺的难度、降低可控制性以及生产的重复性。采 用间歇式的生产方法,可以更有效地解决问题。其主 要控制为将水相多次抽入进行高速搅拌乳化,而不需 要考虑控制进水的速度。这样工艺,不建议在水相没 有完全抽人前进行均质。常见的是将水相分为三次抽 入,第一次抽入水相的1/3,然后在高速搅拌下,混 合2 min~5 min,具体视生产的设备的容量和传动效 果而定;而后再次抽人1/3的水相,在高速搅拌下, 混合2 min~5 IIlin,抽人余下物料,搅拌5 min~10 min 后,再开始中速均质,等物料充分均质和乳化后,在 逐步提高均质强度。也可以将水相分两次抽人,第一 次抽入1,3,第二次抽入余下,这同样也主要取决于 生产设备的容量和传动效能。 3.3油包水生产工艺示例
油包水乳化体系的配方设计及生产工艺研究_待续_

因此, 适当地选择乳化剂和助乳化剂, 进行合理 的配对, 对油包水体系的稳定性有着至关重要的作 用, 也是配方成败的关键。通常的乳化体系, 乳化剂 的用量一般在 3% ~4% , 在含极性油 或 高 粉 量 的 乳 化体系时, 乳化剂用量一般在 4% ~5% 。 在 这 里 需 要指出的一点是, 在乳化体系里, 尤其是油包水的乳 化体系里, 并非是乳化剂用量越高越稳定, 当乳化剂 的用量高于一定的范围, 其体系的稳定性常常是下降 的。其可能的原因一方面是由于乳化界面的空间位阻 效应, 另一方面油包水的乳化剂形成油性胶团的能力 较低。但由于油包水乳化剂的两亲性与强极性油脂属 性非常接近, 多余的乳化剂在界面层则非常活跃, 通 过对界面层的吸引和穿透, 反而使得界面层的强度下 降, 可能导致乳化体系转相甚至破乳。
助乳化剂通常可作为乳化剂的增效剂。对于两亲 的乳化剂, 以溶解度较大的相为外相, 因此, 要增加 乳化体系的稳定性, 需要增强油包水乳化剂在油相的 溶解度。通常在水相添加 0.5% ~2%的无机盐, 可以 很好地降低乳化剂在水相中的溶解度。其原因主要是 无机盐在水合时, 是通过离子键, 其键能要远远大于 油包水乳化剂亲水端水合时形成的氢键, 因而在类似 于“盐析“效应的影响下, 乳化剂在油相得到了更大 的溶解。另外, 无机盐可以使乳化颗粒带电, 使得乳 化颗粒在连续相中相互排斥, 以帮助体系得以更好的 稳定, 这尤其对于黏度较低的油包水乳化体系显得更
·40·
一种油包水乳化蜡的研发探索

一种油包水乳化蜡的研发探索在油包水乳化蜡的制备工艺方面,我们可以尝试采用两步法制备。
第一步是将油脂和表面活性剂按一定比例混合,加热至溶解。
第二步是将溶解的油脂表面活性剂混合液,以快速振荡的方式加入预先加热的水相中,使其乳化形成油包水乳化蜡。
通过这种制备工艺,可以提高乳化效果和稳定性,使得油包水乳化蜡具有更好的使用体验和效果。
在成分选择方面,我们可以考虑采用不同的油脂和表面活性剂进行组合,以获取最佳的乳化效果和稳定性。
在油脂方面,可以选择具有良好溶解性和滋润性的油脂,如甘油二硬脂酸酯、白凡士林等;在表面活性剂方面,可以选择具有良好乳化性能和稳定性的表面活性剂,如磷酸酯类、烷基硫酸盐类等。
通过不同的组合选择,可以改善油包水乳化蜡的乳化效果和稳定性,提高其应用性能。
在工艺优化方面,可以考虑调整乳化温度、振荡速度、乳化时间等参数,以获得更稳定的油包水乳化蜡。
在乳化温度方面,可以通过改变油脂和表面活性剂的熔点来控制乳化温度,以提高乳化效果和稳定性。
在振荡速度方面,可以通过调整搅拌器的转速来控制乳化速度,以获得更细腻的乳化效果。
在乳化时间方面,可以通过延长乳化时间来提高乳化效果和稳定性。
通过工艺优化,可以提高油包水乳化蜡的制备工艺和性能,满足不同应用领域的需求。
在性能测试方面,可以采用乳液稳定性、溶剂效果、乳化性能等指标进行评估。
乳液稳定性可以通过离心试验和冻融试验来测试,以评估乳化蜡的乳化效果和稳定性。
溶剂效果可以通过溶剂溶解实验来测试,以评估乳化蜡的溶剂效果和应用性能。
乳化性能可以通过乳化温度、振荡速度和乳化时间来评估,以了解乳化蜡的制备工艺和性能。
通过性能测试,可以评估和改进油包水乳化蜡的应用性能,满足市场需求和开拓新的应用领域。
通过制备工艺的探索、成分选择的优化、工艺的优化以及性能测试的评估,可以改进油包水乳化蜡的制备工艺和性能,提高其应用性能和市场竞争力。
还可以通过与其他功能性成分的组合研发,开发出更多的应用领域和产品形态。
油包水乳化体系之配方设计

油包水乳化体系之配方设计油包水乳化体系是指将油和水两种不相溶的液体通过乳化剂进行混合并形成稳定的乳状液体体系。
在配方设计中,需要考虑乳化剂的选择和使用,油水相的配比,以及其他辅助成分的添加等因素。
以下是一个油包水乳化体系的配方设计示例。
一、乳化剂的选择和使用乳化剂是油包水乳化体系的关键成分,它能够降低油水界面间的表面张力,使其能够混合在一起形成乳状液。
一般可以选择磺酸盐类、非离子或阳离子表面活性剂作为乳化剂。
二、油水相配比油水相的配比取决于所希望的乳状液的浓度和稠度。
一般来说,油相的含量在20%到70%之间较为常见。
根据使用的需求,可以选择合适的油水配比。
三、其他辅助成分的添加除了油和水,油包水乳化体系中还可以添加其他辅助成分,如防腐剂、稳定剂、抗氧化剂、调节pH值的剂等。
这些辅助成分可以根据产品的特性和使用需求进行选择和添加。
四、配方示例以下是一个油包水乳化体系的配方设计示例:1.乳化剂的选择和使用:-磺酸盐类:如十二烷基硫酸钠、辛基磺酸钠等;-非离子表面活性剂:如辛基聚氧乙烯醇醚等;-阳离子表面活性剂:如四烷基溴化铵等。
2.油水相配比:-油相:30%橄榄油、5%甘油三酯;-水相:63%蒸馏水、2%甘油。
3.其他辅助成分的添加:-防腐剂:0.2%苯甲酸;-稳定剂:0.5%羟乙基纤维素;-抗氧化剂:0.3%维生素E;-调节剂:调节pH值至4.5以上只是一个示例的油包水乳化体系的配方设计,具体的配方设计还需根据产品的特性和使用需求进行进一步调整和优化。
在实际的配方设计过程中,还需进行合适的试验和测试,以确保所设计的乳状液体系的稳定性和适用性。
油包水乳化体系研究

油包水乳化体系研究油包水乳化体系的稳定性是研究的关键问题之一、在乳化体系中,油相与水相之间存在一定的界面张力。
形成乳化体系的关键是在界面上存在一层稳定的膜状结构,阻止油相和水相的相互分离和聚集。
研究表明,乳化体系的稳定性与乳化剂的性质密切相关。
乳化剂是一种降低界面张力的表面活性剂,它可以在油水界面上形成一层薄膜,阻止油相和水相的相互分离。
研究人员通过改变乳化剂的种类和浓度等因素,探索了不同乳化剂对乳化体系稳定性的影响。
研究结果表明,乳化剂的种类和浓度对乳化体系的稳定性具有重要影响。
一些具有良好表面活性的乳化剂,如Tween系列、Spans系列等,在适当浓度下能够形成较为稳定的乳化体系。
油包水乳化体系的形成机制也是研究的重点之一、一般认为,乳化体系的形成是由于乳化剂在油水界面上形成的薄膜结构。
乳化剂分子中的亲油基团与油相结合,亲水基团与水相结合,形成稳定的乳化体系。
研究人员通过表面张力、扩散系数等实验方法,揭示了乳化体系形成机制的一些特点。
研究结果表明,乳化剂与油相和水相之间的亲疏水性差异是形成乳化体系的关键因素之一、此外,温度、pH值等环境条件也对乳化体系的形成具有一定的影响。
油包水乳化体系在食品工业、化妆品工业、制药工业等领域有着广泛的应用前景。
在食品工业中,油包水乳化体系被应用于乳制品、饮料、糕点等产品的加工过程中。
乳制品中常常使用油包水乳化体系来制备香味浓郁的奶油、黄油等产品。
在化妆品工业中,油包水乳化体系常被用作皮肤护理产品的基础。
例如,乳液、面霜等产品均是利用油包水乳化体系来提供滋润和保湿效果。
在制药工业中,油包水乳化体系还被应用于一些药品的制备过程中。
例如,大多数胶囊制剂均是利用油包水乳化体系来包裹药物。
综上所述,油包水乳化体系的研究目前仍处于探索阶段,需要进一步探索其稳定性、形成机制以及应用前景等方面的问题。
随着科学技术的不断进步,油包水乳化体系在食品工业、化妆品工业和制药工业等领域的应用前景将更加广阔。
油包水乳化体系之配方设计及生产工艺初步研究

[原创]油包水乳化体系之配方设计及生产工艺初步研究油包水乳化体系之配方设计及生产工艺初步研究两年前,一直答应朋友要写个关于油包水的帖子,可以没能够抽出时间和精力,好好完成这件事,今天,终于完成了初稿,写出来和大家分享。
本文版权归本人所有,请尊重本人劳作,如被引用,请事先与本人联系,并标明出处,否则保留相关权利。
本文观点仅代表个人立场,主要观点和结论以实验数据为主,但由于仪器和时间有限,任何观念或理论设定基础,不能确保完全准确,并与事实精确吻合。
如有疑问,欢迎交流和共勉,邮件请发至*******************.cn,笔者会尽快回复。
油包水乳化体系的定义通常将连续相为油相的乳化体系定义为油分散体系,根据油相的不同,可分为油脂分散体系,硅油分散体系,以及油脂硅油复合分散体系。
根据内相的种类,如全水相,全固体相或者混合内相,以及多分散体系等。
油包水乳化体系的概况油包水乳化体系的保湿性比传统的水包油体系有很大的提升,同时在滋润度和膏体的光亮度上较水包油的也是有明显的改观,但同时缺点也是非常明显的,一是配方的稳定性和生产工艺的调控,较水包油的要求有所提升;二是乳化体涂抹的肤感通常较水包油的较粘腻,厚重。
但目前随着新型的乳化剂的出现,如聚甘油酯以及聚硅氧烷醇共聚体,油包水乳化体系的涂抹感观已经有了极大的提升,甚至也有部分可以和传统的水包油乳化体系的涂抹感观不相上下。
通常来说,市场上油包水产品主要有以下四大类:粉底液,粉底霜,保湿霜,乳蜜。
另外,油包水的基质因为对离子,酸碱,以及抗氧化行原性,可应用在更多疗效型美容用品和中高端保养产品中。
本文将重点讨论以影响油包水乳化体系的稳定性因素;油包水的生产工艺;以及油包水的配方设计原则为主要内容展开论述。
一来希望通过学习和交流来共同提高,二来也希望能抛砖引玉,引起大家更多的探讨和推动油包水体系的市场应用。
影响油包水乳化体系的稳定性因素影响油包水乳化体系的稳定的因素较多,通常可以分为以下几点。
#油包水乳化体系之配方及生产工艺初步分析研究

[原创]油包水乳化体系之配方设计及生产工艺初步研究油包水乳化体系之配方设计及生产工艺初步研究两年前,一直答应朋友要写个关于油包水的帖子,可以没能够抽出时间和精力,好好完成这件事,今天,终于完成了初稿,写出来和大家分享。
本文版权归本人所有,请尊重本人劳作,如被引用,请事先与本人联系,并标明出处,否则保留相关权利。
本文观点仅代表个人立场,主要观点和结论以实验数据为主,但因为仪器和时间有限,任何观念或理论设定基础,不能确保完全准确,并与事实精确吻合。
如有疑问,欢迎交流和共勉,,笔者会尽快回复。
油包水乳化体系的定义通常将连续相为油相的乳化体系定义为油分散体系,根据油相的不同,可分为油脂分散体系,硅油分散体系,以及油脂硅油复合分散体系。
根据内相的种类,如全水相,全固体相或者混合内相,以及多分散体系等。
油包水乳化体系的简况油包水乳化体系的保湿性比传统的水包油体系有很大的提升,同时在滋润度和膏体的光亮度上较水包油的也是有明显的改观,但同时缺点也是非常明显的,一是配方的稳定性和生产工艺的调控,较水包油的要求有所提升;二是乳化体涂抹的肤感通常较水包油的较粘腻,厚重。
但目前随着新型的乳化剂的出现,如聚甘油酯以及聚硅氧烷醇共聚体,油包水乳化体系的涂抹感观已经有了极大的提升,甚至也有部分可以和传统的水包油乳化体系的涂抹感观不相上下。
通常来说,市场上油包水产品主要有以下四大类:粉底液,粉底霜,保湿霜,乳蜜。
另外,油包水的基质因为对离子,酸碱,以及抗氧化行原性,可应用在更多疗效型美容用品和中高端保养产品中。
本文将重点讨论以影响油包水乳化体系的稳定性因素;油包水的生产工艺;以及油包水的配方设计原则为主要内容展开论述。
一来希望通过学习和交流来共同提高,二来也希望能抛砖引玉,引起大家更多的探讨和推动油包水体系的市场应用。
影响油包水乳化体系的稳定性因素影响油包水乳化体系的稳定的因素较多,通常可以分为以下几点。
1、油包水乳化剂的选择,2、乳化体系油脂的选择,3、油包水含固体颗粒粉末的选择,4、乳化体系黏度的控制,5、油包水生产工艺的选择等主要方面乳化剂的选择通常乳化剂分子聚集在油水相界面上,亲水基伸入水中,亲油基伸入油中,使水-油界面的界面张力下降而使乳化系统得以稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
油包水乳化体系之配方设计及生产工艺初步研究油包水乳化体系的定义通常将连续相为油相的乳化体系定义为油分散体系,根据油相的不同,可分为油脂分散体系,硅油分散体系,以及油脂硅油复合分散体系。
根据内相的种类,如全水相,全固体相或者混合内相,以及多分散体系等。
油包水乳化体系的概况油包水乳化体系的保湿性比传统的水包油体系有很大的提升,同时在滋润度和膏体的光亮度上较水包油的也是有明显的改观,但同时缺点也是非常明显的,一是配方的稳定性和生产工艺的调控,较水包油的要求有所提升;二是乳化体涂抹的肤感通常较水包油的较粘腻,厚重。
但目前随着新型的乳化剂的出现,如聚甘油酯以及聚硅氧烷醇共聚体,油包水乳化体系的涂抹感观已经有了极大的提升,甚至也有部分可以和传统的水包油乳化体系的涂抹感观不相上下。
通常来说,市场上油包水产品主要有以下四大类:粉底液,粉底霜,保湿霜,乳蜜。
另外,油包水的基质因为对离子,酸碱,以及抗氧化行原性,可应用在更多疗效型美容用品和中高端保养产品中。
本文将重点讨论以影响油包水乳化体系的稳定性因素;油包水的生产工艺;以及油包水的配方设计原则为主要内容展开论述。
一来希望通过学习和交流来共同提高,二来也希望能抛砖引玉,引起大家更多的探讨和推动油包水体系的市场应用。
影响油包水乳化体系的稳定性因素影响油包水乳化体系的稳定的因素较多,通常可以分为以下几点。
1、油包水乳化剂的选择,2、乳化体系油脂的选择,3、油包水含固体颗粒粉末的选择,4、乳化体系黏度的控制,5、油包水生产工艺的选择等主要方面乳化剂的选择通常乳化剂分子聚集在油水相界面上,亲水基伸入水中,亲油基伸入油中,使水-油界面的界面张力下降而使乳化系统得以稳定。
因而乳化剂对乳状体系的稳定性非常关键,我们将通过考察乳化剂及乳化助剂在界面层的空间排布和相互作用,来分析乳化剂的选择对体系稳定性的影响。
界面层的致密性性由于乳化剂分子在液滴表面上可形成紧密的吸附层,并在界面层成定向楔的界面,故而乳化剂分子的结构以及空间排布对稳定性的影响比较关键。
乳化剂分子的空间构型主要指分子中极性基团截面积的相对大小,若两种基团的截面积不同,在乳化剂分子就像两头大小不一的楔子,在油水界面上形成紧密排列的吸附层。
截面积小的一头总指向分散相,截面积大的一头总指向分散介质,形成定向楔的界面。
因此选择油包水乳化剂时尽可能选择亲油端较大的乳化剂作为主乳化剂,这样乳化体系相对较难发生转相,但同时要考虑到空间位阻,可适当的选配不同分子量的油包水乳化剂作为复合乳化剂,来填充不同分子量乳化剂之间的空隙。
界面膜的强度乳化过程也可看作乳化剂在分散相液滴表面形成一保护膜的过程。
界面膜的厚度尤其是其强度和韧性对乳状体系的稳定性起着举足轻重的作用。
通常混合乳化剂形成的复合膜具有相当高的强度,因而界面膜不易破裂,其形成的乳化体系更趋于稳定。
在选择乳化剂组成混合乳化剂时,要注意各组份的分子之间的相互作用力要强,且能在界面相中紧密排列。
如果能选择分子结构相近且不同分子量的乳化对作为乳化剂,乳化效能和稳定性会有更大的提升。
油包水乳化剂一般的HLB 在3~8的范围内,而目前国内以及国外市场上常见的又以5~6为主,在不同的涂抹感观要求下,HLB可有相应的调整。
目前常见的油包水乳化剂大概可分为以下几类:脂肪酸的二价或三价碱土金属盐,聚氧乙烷和聚氧丙烷共聚体,失山梨醇脂肪酸酯,蔗糖脂肪酸酯,聚氧乙烯脂肪醇醚,聚氧乙烯聚脂肪醇醚,聚甘油脂肪酸酯等等。
如硬脂酸镁,硬脂酸锌,硬脂酸铝,失水山梨醇棕榈酸酯,失水山梨醇硬脂酸酯,失水山梨醇油酸酯,失水山梨醇倍半油酸酯,失水山梨醇三油酸酯,聚氧乙烯硬脂醇醚,聚氧乙烯油醇醚,聚氧乙烯蜂蜡,聚氧乙烯蓖麻油,甲基葡萄糖倍半硬脂酸酯,异硬脂酸单甘油酯等等。
还有部分的聚硅氧烷结构的硅油包水乳化剂,在市场上也有很广的应用。
主要成分是以烷基聚二甲基硅氧烷的聚氧乙烷聚氧丙烷的共聚体,以及其在挥发性硅油或二甲基硅油的分散液为主。
油包水的乳化剂,主体除了从结构种类上分类,其分子量的大小也是非常关键的选择参数,一般来讲,分子量越大,乳化剂在界面层上形成的界面膜的强度和刚度也就越大,体系就跟容易稳定,但同时,也会在涂抹感上略有下降。
而小分子量的油包水的乳化剂,在涂膜感上会略有提升,但整体的相对稳定性能则有下降。
因此,通常选用不同分子量油包水的乳化剂进行复配,即会增加体系的稳定性,也会增加体系的涂摸感。
但是,也并非是乳化剂的分子量越大,体系就越稳定,乳化剂的分子量越小,体系涂抹的肤感就轻盈。
乳化剂分子的亲油亲水分界端的截面积非常关键。
这将直接影响到界面层的致密性。
如果乳化剂中有多个亲水和亲油的端面,很形象的就像“锚‘一样,将使得界面层的稳定性,致密性,以及强度都会有极大的提升。
如三梨醇倍半硬脂酸酯,聚氧乙烯30聚羟基硬脂酸酯,二聚甘油三异硬脂酸制等等。
除了乳化剂中多个亲油亲水平衡点可以增加体系的稳定性外,乳化体系HLB的选择也非常有助于体系的稳定和提升。
目前,市场上主流的油包水主乳化剂的HLB选择范围控制在5~6之间,助乳化剂的范围可能更广些,如HLB在2~8的范围内选者。
由于HLB值是随着温度的变化和体系中反活性基团的含量多少而发生变化的。
通常升高温度,体系的HLB值会下降,降低温度,体系HLB值会上升。
如经常经过由低温到常温的温度变化,油包水的体系发生油水分层进而完全转相的情形,就属于这样的范畴。
那么在不影响体系乳化能力的情形下,适当的添加低HLB的油包水乳化剂,如HLB在3~5之间的失水山梨醇脂肪酸酯,不仅可以降低配方的成本,增强涂抹的轻盈的感觉,而且将对体系耐寒也有一定的帮助。
在油包水乳化剂中,聚氧乙烯30聚羟基硬脂酸酯的乳化能力和抗极性油脂非常强,要远远的优异于其他类型的乳化剂。
除了本身的较高的分子量,双“锚“式界面定型,其较长的聚氧乙烯链式非常关键的。
由于乳化剂要在体系中稳定,必须具有强烈的双亲性,对于任何一相,过弱或过强度不利于体系的稳定。
由于聚氧乙烯30聚羟基硬脂酸酯因为含有30个聚氧乙烯基团,同比于其他的油包水乳化剂,能够承受的极性油脂的能力和强度要高的多(见下文油脂的极性对配方体系的影响),但并非是无限制的增长。
虽然烷基聚二甲基硅氧烷的聚氧乙烷丙烷的共聚体也有较高的聚氧乙烯基团,但是由于反向的亲油基团很弱,过而对极性油脂的承受能力也是有限的。
正是这样的原因,在油脂极性和乳化剂乳化能力的平衡中(极性油脂很容易降低乳化体系的黏度),聚氧乙烯30聚羟基硬脂酸酯可以容易的配制出能够喷雾的油包水乳化体系。
另外,在油包水的体系中,因为滑爽和轻盈的独特肤感,聚甘油酯类油包水乳化剂也有了一定的潜力和发展,并且在市场上已经占有一定的份额。
但因为其乳化能力的不足,通常较多地被应用为助乳化剂,如三聚甘油双异硬脂酸酯等。
目前较为新意的选择也可以是二聚甘油异硬脂酸酯和二聚甘油三异硬脂酸酯,并且这两个油包水的乳化剂都属于同系物的油包水的乳化剂。
如分开分别使用,则乳化效能都比较低,但是如果复配使用,则会有较大的变化。
除两者整体的相容性及配伍性能不错外,两者的分子量也是一高一低的搭配,其HLB 值也分别是7也及2.5。
另外作为粉体的分散处理剂,比较合适的HLB值一半都是在7~9之间,那么二聚甘油异硬脂酸酯和二聚三甘油异硬脂酸酯若按2比1的比例,不仅可以控制整体的HLB值在5~6之间,而且还可以增强粉体的分散性能。
用此两个乳化剂复配使用,不仅可以作出较为清爽的油包水体系,甚至非常接近水包油的感觉,而同时却无硅油包水和油包水类复配带来的果冻感。
因而,可能是高档眼霜,晚霜,面霜以及大量的抗酸或抗碱,抗离子,抗氧化还原性,以及需要高油性渗透滋养类配方的很好的选择方向。
助乳化剂的选择助乳化剂通常可作为乳化剂的增效剂。
对于两亲的乳化剂,以溶解度较大的相为外相,因此,要增加乳化体系的稳定性,需要增强油包水乳化剂在油相的溶解度。
通常在水相添加0.5~2%的无机盐,可以很好的降低乳化剂在水相的溶解度。
其原因主要是无机盐在水合时,是通过离子键,其键能要远远大于油包水乳化剂亲水端水合时形成的氢键和共价键,因而在类似于“盐析“效应的影响下,乳化剂在油相得到了更大的溶解值。
另外,无机盐可以使乳化颗粒带电,形成扩散双电层。
大部分稳定的乳状体系因电离或者吸附会产生电荷,这些属性和胶体有类似的性能。
由于乳化剂常带有极性基团,故吸附与电离常同时发生。
一般介电常数较高的物质常带正电,介电常数低的物质常带负电。
故在O /W型乳状液中油滴常带负电荷;在W/O型乳状液中,水滴常带正电荷。
由于液滴带电而形成双电层,它们之间的相互吸引和排斥,提高了分散体的稳定性,尤其对于黏度较低的油包水乳化体系更显得重要。
作为常见的山梨醇脂肪酸酯,聚甘油脂肪酸酯以及聚氧乙烯脂肪酸酯等油包水乳化剂,可针对性地在水相添加山梨醇,甘油,聚乙二醇等对应的亲水性多元醇。
由于相应的多元醇在一定的温度下在水相都有一定的溶积值,在水相添加适量的多元醇也可以增加对应的乳化剂在油相的溶解值,而通常在水相添加无机盐和多元醇,这样的方式往往是同时进行的。
同时,由于无机盐和多元醇的加入,油包水乳化体体的抗寒性能有了极大的提升,使得产品在低温到室温储藏温度的变化中,体系出水或转相的可能性大大降低,这主要归功于无机盐以及多元醇通过水合作用可以显著降低水的凝固点,故而避免水相凝固造成内相体积过度膨胀而导致破乳。
固体粉末的助乳化作用,许多小粒径固体粉末,请注意是小粒径,当它们处在内外两相界面上时,也能起到良好的乳化作用。
细小改性的固体颗粒,由于本身与界面接触角的原因,会很好的吸附在分散相界面,并对内相有一定的包裹作用,故而是性能不错的助乳化剂,对提高体系的稳定性帮助很大。
如常见的硬脂酸镁,锌,铝等二价碱土或三价碱金属盐,气相二氧化硅等。
而一些常见的固体颗粒,需经过特定的表面处理及改性后,才具有助乳化作用。
因此,适当的选择乳化剂和助乳化剂,进行合理的配对,对油包水体系的稳定性有着至关重要的作用,也是配方成败的关键。
对于通常的乳化体系,乳化剂的用量一般在3~4%左右,在含极性油或高粉量的乳化体系时,乳化剂用量一般在4~5%左右,在这里需要指出的一点是,在乳化体系里,尤其是油包水的乳化体系里,并非是乳化剂用量越高越稳定,当乳化剂的用量高于一定的范围,其体系的稳定性常常是下降的。
其可能的原因一方面是由于乳化界面的空间位阻效应,由于乳化剂相互的作用,当乳化剂的用量超出一定的范围时,其界面层的致密性会有所下降,另一方面,由于油包水的乳化剂的hlb值一般在3~7之间,没有强烈的亲水性,故而在油相形成油性胶团的能力较低。
但由于油包水的乳化剂亲油和亲水的两亲性,与强极性油脂属性非常接近,多余的乳化剂在界面层非常活跃,但对界面层的袭击和穿透影响更多,使得界面层的强度下降和松散性增大,反而可能会让体系破乳或者形成反胶团进而转相。