大学物理期末考试复习资料

合集下载

大物大一期末知识点

大物大一期末知识点

大物大一期末知识点大物大一期末考试是大学物理课程中的重要部分,掌握好期末考试的知识点非常重要。

下面将从力学、热学、光学和电磁学四个方面总结大物大一期末考试的知识点。

一、力学1. 牛顿定律:牛顿第一定律、牛顿第二定律和牛顿第三定律的概念和应用。

2. 力的合成与分解:力的合成与分解的原理和计算方法。

3. 动量与动量守恒:动量的概念、动量与作用力的关系、动量守恒定律的概念和应用。

4. 力学能量:功与功率的概念、机械能守恒定律的概念和应用。

5. 万有引力与运动的规律:质点的万有引力、行星运动的定性和定量规律。

二、热学1. 温度与热量:温度的测量与传递、热量的概念和单位。

2. 理想气体:理想气体的状态方程、理想气体的温度和分子运动。

3. 热力学第一定律:热力学第一定律的概念、热机效率和功率的计算。

4. 理想气体的定容定压定温过程:理想气体的定容过程、定压过程和定温过程的特点和计算。

三、光学1. 光的传播:光的直线传播和光的反射规律。

2. 光的折射:光的折射定律、光的反射和折射的应用。

3. 光的波动性:光的波长、光的干涉和光的衍射的概念和现象。

4. 光的光学仪器:凸透镜的成像规律、放大镜和显微镜的原理和图像特点。

四、电磁学1. 电场与电势:电场的概念、电场强度和电势的计算和性质。

2. 电容与电容器:电容的概念、电容器的结构和电容的计算。

3. 电流和电阻:电流的概念、欧姆定律、电阻的概念和计算、串联和并联电阻的计算。

4. 磁场与电磁感应:磁场的概念、电磁感应定律和法拉第电磁感应定律的应用。

以上是大物大一期末考试的主要知识点概述,希望对你有所帮助。

在复习期间,还需要进行大量的习题训练,加深对知识点的理解和掌握。

祝你顺利通过大物大一期末考试!。

大学物理上期末知识点总结

大学物理上期末知识点总结

大学物理上期末知识点总结关键信息:1、力学部分知识点质点运动学牛顿运动定律动量守恒定律和能量守恒定律刚体定轴转动2、热学部分知识点气体动理论热力学基础3、电磁学部分知识点静电场恒定磁场电磁感应电磁场和电磁波11 力学部分111 质点运动学位置矢量、位移、速度、加速度的定义和计算。

运动方程的表达式和求解。

曲线运动中的切向加速度和法向加速度。

相对运动的概念和计算。

112 牛顿运动定律牛顿第一定律、第二定律、第三定律的内容和应用。

常见力的分析,如重力、弹力、摩擦力等。

牛顿定律在质点和质点系中的应用。

113 动量守恒定律和能量守恒定律动量、冲量的定义和计算。

动量守恒定律的条件和应用。

功、功率的计算。

动能定理、势能的概念和计算。

机械能守恒定律的条件和应用。

114 刚体定轴转动刚体定轴转动的运动学描述,如角速度、角加速度等。

转动惯量的计算和影响因素。

刚体定轴转动定律的应用。

力矩的功、转动动能、机械能守恒在刚体定轴转动中的应用。

12 热学部分121 气体动理论理想气体的微观模型和假设。

理想气体压强和温度的微观解释。

能量均分定理和理想气体内能的计算。

麦克斯韦速率分布律。

122 热力学基础热力学第一定律的内容和应用。

热力学过程,如等容、等压、等温、绝热过程的特点和计算。

循环过程和热机效率。

热力学第二定律的两种表述和微观意义。

13 电磁学部分131 静电场库仑定律、电场强度的定义和计算。

电场强度的叠加原理。

电通量、高斯定理的应用。

静电场的环路定理、电势的定义和计算。

等势面、电场强度与电势的关系。

132 恒定磁场毕奥萨伐尔定律、磁感应强度的定义和计算。

磁感应强度的叠加原理。

磁通量、安培环路定理的应用。

安培力、洛伦兹力的计算。

133 电磁感应法拉第电磁感应定律的应用。

动生电动势和感生电动势的计算。

自感和互感的概念和计算。

磁场能量的计算。

134 电磁场和电磁波位移电流的概念。

麦克斯韦方程组的积分形式和微分形式。

电磁波的产生和传播特性。

大学物理期末备考要点

大学物理期末备考要点

大学物理期末备考要点一、力学1. 牛顿运动定律a. 第一定律:惯性定律b. 第二定律:力的大小与加速度的关系c. 第三定律:作用力与反作用力2. 动能与动量a. 动能定理b. 质点系的动量定理c. 动量守恒定律3. 万有引力与重力a. 万有引力定律b. 重力加速度c. 重力势能d. 行星运动4. 平衡与静力学a. 平衡条件b. 杠杆原理c. 原则与应用5. 力学中的摩擦a. 特点与原因b. 静摩擦力与滑动摩擦力c. 摩擦力的计算与应用二、热学1. 热与温度a. 热量的传递方式b. 温标与温度转换2. 热力学第一定律a. 能量守恒定律b. 内能变化与热交换c. 等容、等压、等温过程3. 热力学第二定律a. 热机与卡诺定理b. 极限温度与热机效率c. 热力学不可逆性4. 热力学第三定律a. 绝对零度的定义与测量b. 熵及其性质c. 热力学函数及其应用5. 气体状态方程a. 状态方程的表示与转换b. 理想气体状态方程c. 一般气体状态方程三、电磁学1. 静电学a. 电荷与电场b. 电场强度c. 高斯定理d. 电势与电势能e. 电容与电容器2. 电流与电阻a. 电流的定义与测量b. 电阻与电阻器c. 欧姆定律d. 串、并联电路3. 磁场与电磁感应a. 磁场的产生与性质b. 电流产生的磁场c. 安培环路定理d. 磁感应强度e. 法拉第电磁感应定理4. 电磁波与光学a. 电磁波的性质与传播b. 光的传播与反射c. 光的折射与色散d. 几何光学5. 电磁波谱a. 可见光与光学仪器b. 红外线与微波c. 紫外线与X射线d. γ射线与辐射治疗四、量子物理1. 微观粒子的波粒二象性a. 波粒二象性的实验证据b. 普朗克常数与光子能量c. 德布罗意假设与波长2. 波函数与薛定谔方程a. 波函数的本质与物理意义b. 波函数的概率解释与测量c. 薛定谔方程及其应用3. 稳定原子结构a. 氢原子能级与能量b. 多电子原子的壳层结构c. 系统的波函数与能量4. 分子结构与化学键a. 原子、分子与化学键的关系b. 电子云模型与共价键c. 键的强度与化学键理论5. 核物理与放射性a. 原子核的组成与性质b. 放射性衰变与半衰期c. 核反应与核能的利用五、相对论与宇宙学1. 狭义相对论a. 狭义相对论的基本原理b. 时间与空间的相对性c. 相对论动力学与质能关系2. 广义相对论a. 弯曲时空与引力b. 爱因斯坦场方程c. 引力透镜效应与黑洞3. 宇宙的结构与演化a. 宇宙学原理与宇宙模型b. 宇宙的膨胀与暗能量c. 大爆炸理论与宇宙学红移以上为大学物理期末备考的要点,涵盖了力学、热学、电磁学、量子物理、相对论与宇宙学的基本知识。

大学物理复习资料

大学物理复习资料

大学物理复习资料### 大学物理复习资料#### 一、经典力学基础1. 牛顿运动定律- 描述物体运动的基本规律- 惯性、力与加速度的关系2. 功和能量- 功的定义与计算- 动能定理和势能3. 动量守恒定律- 动量的定义- 碰撞问题的处理4. 角动量守恒定律- 角动量的概念- 旋转物体的稳定性分析5. 简谐振动- 振动的周期性- 共振现象#### 二、热力学与统计物理1. 热力学第一定律- 能量守恒- 热量与功的转换2. 热力学第二定律- 熵的概念- 热机效率3. 理想气体定律- 气体状态方程- 温度、压力、体积的关系4. 相变与相平衡- 相变的条件- 相图的解读5. 统计物理基础- 微观状态与宏观性质的联系 - 玻尔兹曼分布#### 三、电磁学1. 电场与电势- 电场强度- 电势差与电势能2. 电流与电阻- 欧姆定律- 电路的基本组成3. 磁场与磁力- 磁场的产生- 洛伦兹力4. 电磁感应- 法拉第电磁感应定律- 感应电流的产生5. 麦克斯韦方程组- 电磁场的基本方程- 电磁波的传播#### 四、量子力学简介1. 波函数与薛定谔方程- 波函数的概率解释- 量子态的演化2. 量子态的叠加与测量- 叠加原理- 测量问题3. 能级与光谱线- 原子的能级结构- 光谱线的产生4. 不确定性原理- 位置与动量的不确定性关系5. 量子纠缠与量子信息- 量子纠缠现象- 量子计算与量子通信#### 五、相对论基础1. 狭义相对论- 时间膨胀与长度收缩- 质能等价原理2. 广义相对论- 引力的几何解释- 弯曲时空的概念3. 宇宙学与黑洞- 大爆炸理论- 黑洞的物理特性#### 六、现代物理实验方法1. 粒子加速器- 加速器的工作原理- 粒子探测技术2. 量子纠缠实验- 实验设计- 纠缠态的验证3. 引力波探测- 引力波的产生与传播- 探测器的工作原理通过上述内容的复习,可以全面地掌握大学物理的核心概念和原理。

在复习过程中,建议结合实际例题和实验操作,以加深理解和应用能力。

大物期末复习资料课件

大物期末复习资料课件

全息显示、全息存储、全息干涉计量 等。
全息照相的特点
能够记录物体的三维信息和立体感, 图像清楚度高,能够进行动态和静态 记录。
05
量子物理
黑体辐射与普朗克能量子假设
黑体辐射
描述物体吸取和发射电磁辐射的能力 ,普朗克假设电磁辐射能量只能以离 散的量子情势发射或吸取。
普朗克能量子假设
能量子是能量的最小单位,物体在吸 取或发射能量时,只能以能量子的整 数倍进行。
大物期末复习资料课件
contents
目录
• 力学 • 热学 • 电磁学 • 光学 • 量子物理
01
力学
牛顿运动定律
01 02
牛顿第一定律
物体保持静止或匀速直线运动的性质称为惯性,不受外力作用的物体将 保持其原始状态,即静止的物体继续保持静止,匀速直线运动的物体继 续保持匀速直线运动。
牛顿第二定律
、意义和应用。
03
电磁学
电场与高斯定理
总结词
理解电场的基本概念和性质,掌握高 斯定理的应用。
详细描述
电场是电荷周围存在的特殊物质,具 有力和能的性质。高斯定理是描述电 场散布的重要定理,通过它可求解电 荷散布的问题。
磁场与安培环路定律
总结词
理解磁场的基本概念和性质,掌握安培环路定律的应用。
详细描述
物体的加速度与作用在物体上的合外力成正比,与物体的质量成反比, 加速度的方向与合外力的方向相同。
03
牛顿第三定律
作用力和反作用力总是大小相等、方向相反、作用在同一条直线上。
动量与角动量
动量
一个物体的质量与速度的乘积称 为动量,是矢量,方向与速度方 向相同。
角动量
一个物体相对于某点转动时,其 动量的大小和方向随时间变化, 该物体的动量称为角动量。

大学物理期末必备知识

大学物理期末必备知识

大学物理期末必备知识在物理学的学习过程中,期末考试是对学生们学习成果的一次全面检验。

为了顺利通过这一考试,学生们需要掌握一些必备的物理知识。

本文将为大家总结大学物理期末必备知识,帮助大家高效备考。

第一章:力学在力学中,学生们需要掌握以下几个重要概念:力、质量、加速度、牛顿三定律等。

1. 力:力是物体之间相互作用时产生的影响物体运动的物理量。

常见的力有重力、弹力、摩擦力等。

学生们需要了解不同力的概念、性质和计算方法。

2. 质量:质量是物体内在的特性,是衡量物体惯性的物理量。

学生们需要理解质量的基本概念和单位,并能够运用相关的公式进行计算。

3. 加速度:加速度是物体在单位时间内速度变化的量,揭示了物体运动状态的改变。

学生们需要熟悉加速度的计算方法,并能够应用到不同的物理问题中。

4. 牛顿三定律:牛顿三定律是力学的基石,描述了物体运动的基本规律。

学生们需要了解三定律的内容和适用条件,并能够应用到实际问题中解决物理计算和分析。

第二章:热学热学是物理学的一个重要分支,研究物体温度、热量传递和热力学等内容。

在期末考试中,学生们需要掌握以下几个重要概念:温度和热量、热传导、热容和热力学循环等。

1. 温度和热量:温度是物体热平衡状态下的物理量,热量是物体内部粒子运动引起的能量传递。

学生们需要理解温度和热量的概念,以及它们的计量单位和测量方法。

2. 热传导:热传导是指物质内部热量通过传导方式传递的过程。

学生们需要了解热传导的基本原理和计算方法,并能够应用到物理问题中。

3. 热容:热容是物体对热量变化的敏感性程度,用于描述物体的热状态变化。

学生们需要了解热容的概念和计算方法,并能够应用到热力学计算中。

4. 热力学循环:热力学循环是指在一定条件下,物质经历一系列热力学过程的循环。

学生们需要了解热力学循环的基本原理和性质,并能够分析和计算循环过程中的热量和功。

第三章:电磁学电磁学是物理学的另一个重要分支,研究电荷、电场、电流和电磁场等内容。

大学物理期末考试复习

大学物理期末考试复习

O
7.如图,导体棒AB在均匀磁场B中绕通过C点的垂 直于棒长且沿磁场方向的轴 OO’转动(角速度 与 B同 方向),BC的长度为棒长的1/3,则 (A) A点比B点电势高. (B) A点与B点电势相等. (C) A点比B点电势低. (D) 有稳恒电流从A点流向B点.
边缘电势高于转轴所在 B F
e = Bl2/2
2、一运动电荷q,质量为m,进入均匀磁场中
(A) 其动能改变,动量不变. (C) 其动能不变,动量改变. (B) 其动能和动量都改变. (D) 其动能、动量都不变.
2
在均匀磁场中,有两个平面线圈,其面积 A1 =
2A2,通有电流 I1 = 2I2,它们所受到的最大磁力矩之比
M1 / M2等于
(A)1 (B)2 (C)4 (D)2 x y z (ct )
18、边长为a的的正方形薄板静止于惯性系K的XOY平 面内,且两边分别与X、Y轴平行,今有惯性系K’ 以0.8C(C为真空中光速)的速度相对于K系沿X轴 作匀速直线运动,则K’测得薄板面积: (A)a2;(B)0.6a2 ;(C)0.8a2 ;(D)a2/0.6 . 答案: 解释: a ' l
答案: 解释:
2
C 2 1 k (B) k C 2 k ( k 2) (D) k 1
2
即:
mc km0c m0 km0 2 2 1 v / c
m km0
解之得:
C 2 v k 1 k
二、填空题 1 .一质点带有电荷q,以速度u在半径为R的圆周 上作匀速圆周运动,该带电质点在轨道中心产生 2 u q / 4 R 的磁感应强度B = ;该带电质点轨道 运动的磁矩Pm= IS u qR / 2 。

大学物理学复习资料

大学物理学复习资料

大学物理学复习资料第一章 质点运动学 主要公式:1.笛卡尔直角坐标系位失r=x i +y j +z k,质点运动方程(位矢方程):k t z j t y i t x t r)()()()(++=参数方程:。

t t z z t y y t x x 得轨迹方程消去→⎪⎩⎪⎨⎧===)()()(2.速度:dt r d v =3.加速度:dt vd a =4.平均速度:trv ∆∆=5.平均加速度:t va ∆∆=6.角速度:dt d θω=7.角加速度:dtd ωα=8.线速度与角速度关系:ωR v = 9.切向加速度:ατR dtdva ==10.法向加速度:Rv R a n 22==ω11.总加速度:22n a a a +=τ第二章 牛顿定律 主要公式:1.牛顿第一定律:当0=合外F时,恒矢量=v。

2.牛顿第二定律:dtP d dt v d m a m F=== 3.牛顿第三定律(作用力与反作用力定律):F F '-=第三章 动量与能量守恒定律 主要公式:1.动量定理:P v v m v m dt F I t t∆=-=∆=⋅=⎰)(12212.动量守恒定律:0,0=∆=P F合外力当合外力3、 动能定理:)(21212221v v m E dx F W x x k -=∆=⋅=⎰合 4.机械能守恒定律:当只有保守内力做功时,0=∆E 第五章 机械振动 主要公式:1.)cos(ϕω+=t A x Tπω2= 弹簧振子:mk=ω,k m T π2=单摆:lg =ω,g lT π2=2.能量守恒:动能:221mv E k =势能:221kx E p =机械能:221kA E E E Pk =+= 3.两个同方向、同频率简谐振动得合成:仍为简谐振动:)cos(ϕω+=t A x 其中:⎪⎩⎪⎨⎧++=∆++=22112211212221cos cos sin sin cos 2ϕϕϕϕϕϕA A A A arctg A A A A Aa. 同相,当相位差满足:πϕk 2±=∆时,振动加强,21A A A MAX +=;b. 反相,当相位差满足:πϕ)12(+±=∆k 时,振动减弱,21A A A MIN -=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(a + b) sinϕ = ±kλ (k = 0,1,2,L )

a sinϕ = ±k ′λ
(k ′ = 1,2L )
可知,当 k = a + b k ′ 时明纹缺级. a
(1) a + b = 2a 时, k = 2,4,6,⋅ ⋅ ⋅偶数级缺级;
(2) a + b = 3a 时, k = 3,6,9,⋅ ⋅ ⋅ 级次缺级;
=
ε1
+ε2
=
µ 0 Ibv 2π
(1 d

d
1 +
) a
= 1.6 ×10−8
V 方向沿顺时针.
11-12 如题图所示,长度为 2b 的金属杆位于两无限长直导线所在平面的正中间,并以速度 vv 平行于
两直导线运动.两直导线通以大小相等、方向相反的电流 I ,两导线相距2 a .试求:金属杆两端的
电势差及其方向.
λ = λx 时, k = 3
重合时ϕ 角相同,所以有 a sinϕ = (2× 2 +1) 6000 = (2× 3 +1) λx
2
2

λx
=
5 × 6000 7
=
4286
o
A
o
14-13 用 λ = 5900 A 的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条
纹?
解: a + b =
∑ r = 12 cm 时,
q
=
ρ
4π 3
(r外3

r内3)

( ) E
=
r
4π 3
r外 3
− r内3
4πε 0r 2
≈ 4.10 ×104
N ⋅ C−1
沿半径向外.
9.17 在 A ,B 两点处放有电量分别为+ q ,- q 的点电荷,AB 间距离为2 R ,现将另一正试验点电荷 q0
从 O 点经过半圆弧移到 C 点,求移动过程中电场力作的功. 解:
为 b , c )构成,如题9-16图所示.使用时,电流 I 从一导体流去,从另一导体流回.设电流都是均匀
地分布在导体的横截面上,求:(1)导体圆柱内( r < a ),(2)两导体之间( a < r < b ),(3)导体圆
筒内( b < r < c )以及(4)电缆外( r > c )各点处磁感应强度的大小
dEP
=
1 4πε 0
λdx (a − x)2
∫ ∫ EP =
dE P
=
l 4πε 0
l
2 −l
2
dx (a − x)2
=
ll
πε 0 (4a 2 − l 2 )
= l[1 − 1]
4πε 0 a − l a + l
2
2
用 l = 15 cm , λ = 5.0 ×10−9 C ⋅ m−1 , a = 12.5 cm 代入得
解:如图所示, O 点磁场由 AB 、 BC 、 CD 三部分电流产生.其中 v
AB 产生 B1 = 0
CD
产生 B2
= µ0I 12R
,方向垂直向里
CD 段产生
B3
=
µ0I 4π R
(sin
90°

sin
60° )
=
µ0I 2πR
(1 −
3 ) ,方向 ⊥ 向里 2
2

B0
=
B1
+
B2
+
B3
=
µ0I 2πR
− r2) − b2 )
(4) r > c B2πr = 0 B = 0
11-6如题10-5所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,
dI
且电流以 的变化率增大,求:
dt
(1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则
2
−l
3
2
(x2
+
d
2 2
)
2
=
ll
2πε 0d2
l
2
+
4d
2 2
以 λ = 5.0 ×10−9 C ⋅ cm−1 , l = 15 cm , d 2 = 5 cm 代入得 EQ = EQy = 14.96 ×102 N ⋅ C−1 ,方向沿 y 轴正向
9-11 均匀带电球壳内半径6cm,外半径10cm,电荷体密度为2×10−5 C·m-3求距球心5cm,8cm ,12cm
解:在金属杆上取 dr 距左边直导线为 r ,则
∫ ∫ ε AB =
B(vv
×
v B)

v dl
Байду номын сангаас
=
A
a+b

µ0 Iv
(1
+
1 )dr = − µ0 Iv ln a + b
a−b 2π r 2a − r
π a−b

ε AB < 0
∴实际上感应电动势方向从 B → A,即从图中从右向左,

U AB
=
µ0 Iv π
r = (2k1 −1)Rλ1 = (2k2 −1)Rλ2
2
2

λ2
=
2k1 2k2
− −
1 1
λ1
=
2 × 5 −1 × 5000 2× 6 −1
=
4091
o
A
14-5 什么叫半波带?单缝衍射中怎样划分半波带?对应于单缝衍射第3级明条纹和第4级暗
条纹,单缝处波面各可分成几个半波带?
答:半波带由单缝 A 、B 首尾两点向ϕ 方向发出的衍射线的光程差用 λ 来划分.对应于第 3 级明纹和 2
UO
=
1 4πε 0
(q − R
q) = 0 R
UO
=
1 4πε 0
(q 3R

q) R
=− q 6πε 0 R

A
=
q0
(U O
−UC
)
=
qoq 6π ε0R
) 10-9 如题9-7图所示,AB 、CD 为长直导线,BC 为圆心在 O 点的一段圆弧形导线,其半径为 R .若通以电流 I ,
求 O 点的磁感应强度. )
2n2e
=
(k
+
1 )λ 2
(k
=
0,1,2,⋅ ⋅ ⋅)

(k + 1)λ e= 2 =

+
λ
2n2
2n2 4n2
=
5500
k+
5500
o
= (1993k + 996) A
2×1.38 4×1.38
o
令 k = 0 ,得膜的最薄厚度为 996 A .当 k 为其他整数倍时,也都满足要求.
o
o
13-15 (1)若用波长不同的光观察牛顿环, λ1 =6000 A , λ2 =4500 A ,观察到用 λ1 时的第k个暗环与
(2)
∆x = ∆ λ = 1×103 × 0.6 ×10−3 = 3 mm
d
0.2
13-12 在折射率 n1=1.52的镜头表面涂有一层折射率 n2 =1.38的Mg F2 增透膜,如果此膜适用于波长 λ
o
=5500 A 的光,问膜的厚度应取何值?
解: 设光垂直入射增透膜,欲透射增强,则膜上、下两表面反射光应满足干涉相消条件,即
0.20(a + b) = 2 × 6000 ×10−10
0.30(a + b) = 3× 6000 ×10−10

a + b = 6.0 ×10−6 m
9-7 长 l =15.0cm的直导线AB上均匀地分布着线密度 λ =5.0x10-9C·m-1的正电荷.试求:(1)在导 线的延长线上与导线B端相距 a1 =5.0cm处 P 点的场强;(2)在导线的垂直平分线上与导线中点相距 d2
=5.0cm 处 Q 点的场强. 解: 如图所示
(1)在带电直线上取线元 dx ,其上电量 dq 在 P 点产生场强为
sinϕ = 0.20 与 sinϕ = 0.30 处,第四级缺级.求:(1)光栅常数;(2)光栅上狭缝的宽度;(3)在90°>
ϕ >-90°范围内,实际呈现的全部级数.
解:(1)由 (a + b) sinϕ = kλ 式
对应于 sin ϕ1 = 0.20 与 sin ϕ 2 = 0.30 处满足:
(1 −
3 2
+
π 6
)
,方向

向里.
10-16图中两导线中的电流均为8A,对图示的三条闭合曲线 a , b , c ,分别写出安培环路定理等式右边电流的代数
和.并讨论:
v (1)在各条闭合曲线上,各点的磁感应强度 B 的大小是否相等?
v (2)在闭合曲线 c 上各点的 B 是否为零?为什么?
vv
解:
∫ B ⋅dl a
= 8µ0
vv
∫ B ⋅dl
ba
= 8µ0
vv
∫cB ⋅ dl = 0
v (1)在各条闭合曲线上,各点 B 的大小不相等.
v
v
v
(2)在闭合曲线 C 上各点 B 不为零.只是 B 的环路积分为零而非每点 B = 0 .
10-18 一根很长的同轴电缆,由一导体圆柱(半径为 a )和一同轴的导体圆管(内、外半径分别
题 11-8 图
解: AB 、 CD 运动速度 vv 方向与磁力线平行,不产生感应电动势.
相关文档
最新文档