三角函数中数学思想方法归纳解析

合集下载

中考数学三角函数公式汇总与解析

中考数学三角函数公式汇总与解析

中考数学三角函数公式汇总与解析1.锐角三角函数锐角三角函数定义:锐角角A的正弦(si n),余弦(c o s)和正切(t a n),余切(c o t)以及正割(se c),余割(c sc)都叫做角A的锐角三角函数。

正弦(si n):对边比斜边,即si n A=a/c余弦(c o s):邻边比斜边,即c o sA=b/c正切(t a n):对边比邻边,即t a n A=a/b余切(c o t):邻边比对边,即c o t A=b/a正割(se c):斜边比邻边,即se c A=c/b余割(c sc):斜边比对边,即c s c A=c/a2.3.互余角的关系s i n(π-α)=c o sα,c o s(π-α)=si nα,t a n(π-α)=c o tα,c o t(π-α)=t a nα.4.平方关系sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)5.积的关系s i nα=t a nα·c o sαc o sα=c o tα·si nαt a nα=si nα·se cαc o tα=c o sα·c s cαs e cα=t a nα·c scαc s cα=se cα·c o tα6.倒数关系t a nα·c o tα=1s i nα·c scα=1c o sα·se cα=17.诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:s i n(2kπ+α)=si nαk∈zc o s(2kπ+α)=c o sαk∈zt a n(2kπ+α)=t a nαk∈zc o t(2kπ+α)=c o tαk∈z公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:s i n(π+α)=-si nαc o s(π+α)=-c o sαt a n(π+α)=t a nα8.两角和差公式(1)si n(A+B)=si n A c o sB+c o sA si n B(2)si n(A-B)=si n A c o s B-si n B c o sA(3)c o s(A+B)=c o sA c o sB-si n A si n B(4)c o s(A-B)=c o sA c o sB+si n A si n B(5)t a n(A+B)=(t a n A+t a n B)/(1-t a n A t a n B)(6)t a n(A-B)=(t a n A-t a n B)/(1+t a n A t a n B)(7)c o t(A+B)=(c o t A c o t B-1)/(c o t B+c o t A)(8)c o t(A-B)=(c o t A c o t B+1)/(c o t B-c o t A)除了以上常考的三角函数公式外,掌握下面半角公式,积化和差和万能公式有利于快速解决选择题,达到事半功倍的效果哦!1.半角公式注:正负由α/2所在的象限决定。

三角函数中数学思想方法归纳解析

三角函数中数学思想方法归纳解析

高考三角函数中数学思想方法归纳解析在三角函数这一章的学习和复习过程中,熟练掌握以下几种数学思想方法,有助于提高同学们灵活处理问题和解决问题的能力。

下面通过例题透视三角函数中的数学思想。

一、数形结合思想由数想形,以形助数的数形结合思想,具有可以使问题直观呈现的优点,有利于加深同学们对知识的识记和理解;在解答数学题时,数形结合,有利于分析题中数量之间的关系,丰富表象,引发联想,启迪思维,拓宽思路,迅速找到解决问题的方法,从而提高分析问题和解决问题的能力。

例1.求不等式x x cos sin >在[]ππ,-上的解集。

解析:设x y sin 1=,x y cos 2=,在同一坐标系中作出在[]π,0上两函数图像(如图1),在[]π,0上解得x x cos sin =的解为4π=x 或43π=x ,故由图像得要使得21y y >,即434ππ<<x ,由于x y sin 1=,x y cos 2=在[]ππ,-上为偶函数,故在[]0,π-上的解为443ππ-<<-x ,得原不等式的解集为⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛--43,44,43ππππ 二、分类讨论思想分类是根据对象的本质属性的异同将其划分为不同种类,即根据对象的共同性与差异性,把具有相同属性的归入一类,把具有不同属性的归入另一类。

分类讨论是数学解题的重要手段,如果对学过的知识恰当地进行分类,就可以使大量纷繁的知识具有条理性。

例2.设⎥⎦⎤⎢⎣⎡∈2,0πθ,且022sin 2cos 2<--+m m θθ恒成立,求m 的取值范围。

解析:令()12sin 2sin 22sin 2cos 22--+-=--+=m m m m f θθθθθ令θsin =t ,由⎥⎦⎤⎢⎣⎡∈2,0πθ,得10≤≤t ,则()()12122222++---=--+-=m m m t m mt t t f ,[]1,0∈t ,()0<θf 在⎥⎦⎤⎢⎣⎡∈2,0πθ上恒成立,()t f ∴在[]1,0∈t 上恒成立。

三角函数中的数学思想

三角函数中的数学思想

三角函数中的数学思想三角函数是中学数学的重要内容之一,符号与变元、集合与对应、数形结合等基本数学思想在研究三角函数时起着重要作用,分析、探索、化归、类比、平行移动、伸长和缩短这些常用的基本方法时隐时现。

这些数学思想方法为学生学习数学和应用数学提供了一个新的领域,教科书对此作了渗透,教学时应注意及时提醒或强调。

下面谈谈这些具体的数学思想和方法:一、数形结合思想数形结合思想是通过“以形助数”或“以数助形”,把抽象的数学语言与直观的图形结合起来思考,也就是将抽象思维与形象思维有机地结合起来解决问题的数学思想方法。

例1:已知0<θ<,求证sinθ<θ<tanθ。

分析:本题所要证明的不等式中各个部分的意义完全不同(分别是角θ的正弦值、角θ、角θ的正切值),因此,证明的关键是找到联系三者的纽带,这就是单位圆中的三角函数线。

评注:本题是一道新颖而别致的题目,此证法体现了数学中数与形的完美结合。

二、分类讨论思想数学基础知识(如法则、公式、定理、性质、基本方法等)的应用都有一定的条件,就是说只能在一定的范围内使用它们。

当在一个比它需要的条件更广的范围内求解问题时,要应用这些基础知识,就需要把这一更广的范围划分成几个较小的范围以适应基本知识所需的条件,在每一个较小的范围内都把问题解决掉。

通俗地讲,就是“化整为零、各个击破”,或者说不同的情况要采用不同的方法去对待。

这种处理问题的思想就是“分类讨论”的思想。

点评:已知α在第几象限,要确定(n∈N+,n≥2)所在的象限,常用的方法是分类讨论,并且按被n除所得的余数0、1、2、…、n-1分为n类。

三、函数思想函数的思想是用运动和变化的观点、集合与对应的思想,去分析和研究数学问题中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,使问题获得解决。

点评:本题若不注意考察题设特点用函数看问题,而是按照通常方法去括号、因式分解去证就比较繁琐。

用数学思想方法解高考三角函数题

用数学思想方法解高考三角函数题
_ 雹 圈
用 数 学 思 想 方 法 解 高 考 三 角 函 数 题
谢 冬梅
( 西南大学 数学与统计学院 , 重庆 摘 要: 三 角 函 数 是 基 本 的初 等 函 数之 一 . 它 涉及 的 公 式 多、 变化 多 , 是 初 等 数 学 的 重 点 内容 . 本 文 通 过 分 析 历 年 高 考 数 学题 中出现 的三 角 函数 题 , 阐 述 如何 运 用 数 形 结合 、 函数 与 方程、 等价转换 、 分 类 与整 合 等 基 本 的教 学思 想方 法解 高考 函

( A > I ) 或缩短 ( 0 < A < I ) 为 原 来 的A倍 ( 横 坐 标X 不变 ) . 自变 量x 和 函 数 值Y 进 行 变换. 另外 , 在做这类 题时 , 还 应 尽 量 避 免 对 代 数 问 题 的 抽 象 讨论 , 把 代 数 问 题 图形 化 . 二、 函数 与 方 程 思 想 函 数 的 思想 是 用 运 动 和变 化 的观 点 、 集 合 与 对 应 的 思想 。 分 析 和 研 究 数学 问题 中 的数 量 关 系 ,建 立 函数 关 系或 构 造 函 数, 运 用 函数 的 图像 和性 质 分 析 问 题 、 转 化 问题 , 从 而 使 问 题 得以解决 ; 方 程 思 想 是 分 析 数 学 问 题 中 的 变 量 间 的 等量 关 系 。 从 而 建 立 方 程或 方 程 组 或 者构 造 方 程 . 通 过 解 方 程 和方 程组 . 或 者 运 用 方 程 的性 质 分 析 问 题 、 转化 问题 , 使题得 以解决. 在 高 考 试 卷 中 ,三 角 函 数 中 的最 值 问题 有 时候 可 转 化 为 函数 问 题解决. 例2 : 在 同一 直 角 坐 标 系 巾 , 函数y = c 。 s ( + ) , x ∈[ 0 ,

高中数学:三角函数中的常用数学思想方法

高中数学:三角函数中的常用数学思想方法

一、方程的思想例1、已知sinθ+cosθ=,θ(0,π),则cotθ=________。

解析:由sinθ+cosθ=平方得sinθcosθ=。

又θ(0,π),所以sinθ>0,cosθ<0,且sinθ>,将sinθ,cosθ看作是方程的两根。

所以sinθ=,cosθ=。

从而cotθ=,应填。

二、函数的思想例2、已知x,y ∈[],且x3+sinx-2a=0①,4y3+sinycosy+a=0②,求cos(x+2y)的值。

解析:设f(u)=u3+sinu。

由①式得f(x)=2a,由②式得f(2y)=-2a。

因为f(u)在区间[]上是单调奇函数,所以f(x)=-f(2y)=f(-2y)。

又所因x,-2y∈[],所以x=-2y,即x+2y=0。

所以cos(x+2y)=1。

三、数形结合的思想例3、函数f(x)=sinx+2,x∈[0,2π]的图象与直线y=k有且仅有两个不同的交点,则k的取值范围是______。

解析:f(x)=函数f(x)=sinx+2,x∈[0,2π]的图象(如图1)与直线y=k有且仅有两个不同的交点,则1<k<3。

四、化归的思想例4、设α为第四象限的角,若,则tan2α=_________。

解析:因为===,所以,tan2=。

又因为为第四象限的角,所以tan=,从而求得tan2=。

五、分类讨论的思想例5、若△ABC的三内角满足sinA=①,问此三角形是否可能为直角三角形?解析:假设△ABC可以为直角三角形。

(1)若B=90°,则A=90°-C,代入①中,得sin(90°-C)=,所以cos2C=1+sinC,1-sin2C=1+sinC,所以sinC=1,即C=90°。

这是不可能的,所以B≠90°。

(2)同理,C≠90°。

(3)若A=90°。

①式右边=①式左边=sinA=sin90°=1。

所以此三角形可为直角三角形,此时A=90°。

关注:三角函数解题中的数学思想方法

关注:三角函数解题中的数学思想方法

1 2
,当狋=槡2
时,狔

最大值为1 2
+槡2.
评注:第(1)小题利用消元法,第(2)小题利用换
元法最终都转化为二次函数求最值问题;但要注意变
量的取值 范 围.本 题 告 诉 我 们,当 无 法 直 接 利 用 三 角 函数的有关知识解决三角函数问题时,一般可采用换
元或消元的思想,转化为其他函数来解决,可谓“他山
化法.
三、函数与方程思想
图1
解析:我们可把原函数犳(狓)=槡狓 -cos狓 看成幂 函数狔=槡狓 与余弦函数狔=cos狓 的差,于是把它们画 在在同一坐标系中,如图1所示,狔1=槡狓 与狔2=cos狓, 狓 ∈ [0,+ ∞)的图像,从图像上直接可以看出狔1 与 狔2 的图像只有一个交点,所以犳(狓)=槡狓 -cos狓 在 [0,+ ∞)内只有一个零点.
1 2
时,sin狔 -cos2狓
有最小值
-1 11 2;当 sin狓
=-
2 3
时,sin狔 -cos2狓 有 最 大 值 4 9.故 sin狔 -cos2狓 ∈
[ ] -111 2,49 .
(2)设sin狓+cos狓=狋(-槡2 ≤狋≤ 槡2),则sin狓·
cos狓
=狋22-1,则狔=
1 2狋2
+狋-
一、数形结合思想
在《三角函数》这 章 中,数 形 结 合 思 想 贯 穿 始 终,
主要体现在以下几个方面:利用单位圆给出三角函数
的定义,并 推 导 出 同 角 三 角 函 数 的 基 本 关 系;利 用 三
角函数线画正(余)弦及正切函数的图像.
例1 函数犳(狓)=槡狓 -cos狓 在[0,+ ∞)上的
教学 参谋 解法探究 2020年2月

三角函数定积分的四种求解方法

三角函数定积分的四种求解方法

三角函数定积分的四种求解方法三角函数定积分是高等数学中一个重要的知识点,常常涉及到三角函数的性质和定积分的运算法则。

在解题过程中,我们可以使用四种不同的方法来求解三角函数定积分,分别是换元法、分部积分法、平均值定理和特殊代换法。

一、换元法换元法,也称为代换法,是求解不定积分的常用方法之一、对于三角函数定积分,我们可以通过选择一个合适的换元变量,将原问题转化为一个更容易求解的形式。

换元法的基本思想是将被积函数中的变量进行替换,以达到简化问题的目的。

在求解三角函数定积分的过程中,我们常常选择正弦函数和余弦函数作为换元变量。

具体而言,我们可以使用以下的换元公式:1. 用tan(x/2)来换元:利用tan(x/2) = sin(x) / (1 + cos(x)) 或者 cos(x) / (1 +sin(x))的换元公式,将题目中的三角函数进行替换,从而将问题转化为一个更容易处理的形式。

2. 用sec(x)来换元:利用sec(x) = 1 / cos(x) 的换元公式,将题目中的三角函数进行替换,得到一个与原函数结构相似但更容易求解的新函数。

二、分部积分法分部积分法是求解不定积分的另一种常用方法。

对于三角函数定积分,我们可以通过选择合适的u和v来进行分部积分,以求得积分结果。

具体使用分部积分法求解三角函数定积分时,我们可以根据需要选择不同的u和v:1. 选择u = f(x),dv = g(x)dx:这种情况下,我们需要计算u和v的导数,然后代入分部积分公式:∫[u(x)dv(x)]dx = u(x)v(x) - ∫[v(x)du(x)]dx,从而求得积分结果。

2. 选择du = f(x)dx,v = g(x):这种情况下,我们需要计算du和v的导数,然后代入分部积分公式:∫[u(x)dv(x)]dx = u(x)v(x) - ∫[v(x)du(x)]dx,从而求得积分结果。

三、平均值定理平均值定理是一个重要的数学定理,可以用来求解定积分的近似值。

高中数学三角函数知识点解题技巧总结

高中数学三角函数知识点解题技巧总结

高中数学三角函数知识点解题技巧总结高中数学三角函数知识点总结高中数学三角函数知识点解题方法总结一、见“给角求值”问题,运用“新兴”诱导公式一步到位转换到区间(-90o,90o)的公式.1.sin(kπ+α)=(-1)ksinα(k∈Z);2.cos(kπ+α)=(-1)kcosα(k∈Z);3.tan(kπ+α)=(-1)ktanα(k∈Z);4.cot(kπ+α)=(-1)kcotα(k∈Z).二、见“sinα±cosα”问题,运用三角“八卦图”1.sinα+cosα;0(或0(或|cosα|óα的终边在Ⅱ、Ⅲ的区域内;4.|sinα|“化弦为一”:已知tanα,求sinα与cosα的齐次式,有些整式情形还可以视其分母为1,转化为sin2α+cos2α.六、见“正弦值或角的平方差”形式,启用“平方差”公式:1.sin(α+β)sin(α-β)=sin2α-sin2β;2.cos(α+β)cos(α-β)=cos2α-sin2β.七、见“sinα±cosα与sinαcosα”问题,起用平方法则:(sinα±cosα)2=1±2sinαcosα=1±sin2α,故1.若sinα+cosα=t,(且t2≤2),则2sinαcosα=t2-1=sin2α;2.若sinα-cosα=t,(且t2≤2),则2sinαcosα=1-t2=sin2α.八、见“tanα+tanβ与tanαtanβ”问题,启用变形公式:tanα+tanβ=tan(α+β)(1-tanαtanβ).思考:tanα-tanβ=???九、见三角函数“对称”问题,启用图象特征代数关系:(A≠0)1.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于过最值点且横向于y轴的直线分别成直线型;2.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于其中间零点分别成中心对称;3.同样,利用图象也可以得到向量y=Atan(wx+φ)和函数y=Acot(wx+φ)的对称性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考三角函数中数学思想方法归纳解析
在三角函数这一章的学习和复习过程中,熟练掌握以下几种数学思想方法,有助于提高同学们灵活处理问题和解决问题的能力。

下面通过例题透视三角函数中的数学思想。

一、数形结合思想
由数想形,以形助数的数形结合思想,具有可以使问题直观呈现的优点,有利于加深同学们对知识的识记和理解;在解答数学题时,数形结合,有利于分析题中数量之间的关系,丰富表象,引发联想,启迪思维,拓宽思路,迅速找到解决问题的方法,从而提高分析问题和解决问题的能力。

例1.求不等式x x cos sin >在[]ππ,-上的解集。

解析:设x y sin 1=,x y cos 2=,在同一坐标系中作出在[]π,0上两函数图像(如图1),在[]π,0上解得x x cos sin =的解为4
π=
x 或
43π=
x ,故由图像得要使得21y y >,即4
34ππ<<x ,由于x y sin 1=,x y cos 2=在[]ππ,-上为偶函数,故在[]0,π-上的解为443ππ-<<-x ,得原不等式的解集为
⎪⎭⎫
⎝⎛⎪⎭⎫ ⎝⎛--
43,44,4
3ππππ 二、分类讨论思想
分类是根据对象的本质属性的异同将其划分为不同种类,即根据对象的共同性与差异性,把具有相同属性的归入一类,把具有不同属性的归入另一类。

分类讨论是数学解题的重要手段,如果对学过的知识恰当地进行分类,就可以使大量纷繁的知识具有条理性。

例2.设⎥⎦

⎢⎣⎡∈2,0πθ,且022sin 2cos 2
<--+m m θθ恒成立,求m 的取值范围。

解析:令()12sin 2sin 22sin 2cos 2
2
--+-=--+=m m m m f θθθθθ

θ
sin =t ,由


⎤⎢⎣⎡∈2,0πθ,得
1
0≤≤t ,则
()()1212222
2++---=--+-=m m m t m mt t t f ,[]1,0∈t ,()0<θf 在
⎥⎦

⎢⎣⎡∈2,0πθ上恒成立,()t f ∴在[]1,0∈t 上恒成立。

由二次函数图像分类讨论得,
1) 当10<≤m 时,需(),0>m f 得10≤≤m ; 2) 当1>m 时,需()01>f ,得1>m ;
o
x
π y
图1
2π 4π 4
3π y 1 y 2
3) 当0<m 时,需(),00>f 得02
1
<<-m 综上所述,得2
1-
>m 三、整体思想
整体思想方法是一种常见的数学方法,它把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的有机联系,从而在客观上寻求解决问题的新途径。

往往能起到化繁为简,化难为易的效果。

例3.求函数()x
x x
x x f cos sin 1cos sin ++=
的最大、最小值。

解析:由条件和问题联想到公式()x x x x cos sin 21cos sin 2
±=±,可实施整体代换求最值。

令[]
2,24sin 2cos sin -∈⎪⎭⎫ ⎝

+=
+=πx x x t ,1,0cos sin 1-≠≠++t x x ,则
2
1
c o s s i n 2-=t x x
∴[)(]
2,11,2,2
1
121
2---∈-=+-= t t t t y ,故当2=t 时,y 有最大值,且为212-;
当2-=t 时,y 有最小值,且为
2
1
2-- 四、方程思想
方程是研究数量关系的重要工具。

我们把所要研究的问题中的已知与未知量之间的相等关系,通过建立方程或方程组,并求出未知量的值,从而使问题得到解决的思想方法称为方程思想。

例4.已知2sin 3sin =+αα,求α
αα
αcos sin cos sin +-的值
解:令x =+-α
αα
αcos sin cos sin ,则()()0cos 1sin 1=++-ααx x , 2sin 3sin =+αα,
故解得
21cos ,21sin --=-+=x x x x αα,121212
2
=⎪⎭

⎝⎛--+⎪⎭⎫ ⎝⎛-+∴x x x x 解得,62±-=x ,
62cos sin cos sin ±-=+-∴
α
αα
α
五、化归转化思想
化归转化思想是解决数学问题的一种重要思想方法。

处理数学问题的实质就是实现新问题向旧问题的转化、复杂问题向简单问题转化、未知问题向已知问题转化、抽象问题向具体
问题转化等。

例5.若4

βα<
<<,n m =+=+ββααcos sin ,cos sin ,试确定n m ,的大小。

解析:当一个问题直接难以入手或相对比较困难时,我们可以等价转化为我们熟知或容易解答的题型。

要比较n m ,的大小可转化为2
m 与2
n 比较大小就容易多了。

βα2sin 1,2sin 122+=+=n m ,又 2
220π
βα<
<<,故βα2s i n 2s i n <,
22n m <∴
0,>n m ,n m <∴
六、函数思想
函数思想就是在解决问题的过程中,把变量之间的关系抽象成函数关系,把具体问题转化为函数问题,通过对函数相应问题的解决,达到解决变量之间具体问题的目的。

例6.已知1sin sin sin 2
2
2
=++γβα,求证:222sin 2sin 2sin ≤++γβα 解析:由1sin sin sin 2
2
2
=++γβα得2cos cos cos 2
2
2
=++γβα,构造函数:
()()()()()2
sin sin 2sin cos sin cos sin cos sin 22
2
2
+++-=-+-+-=x x x x x x f λβαγγββαα 显

()0
≥x f ,故
()0
8s i n s i n 2s i n 2
≤-++=∆γβα,即得
222s i n 2s i n 2s i n ≤++γβα
七、逆向思想
逆向思想通常是指从问题的反向进行思考,运用于正面考虑繁琐或难以进行时的一种解题思维策略,正确使用这种策略,往往能问题绝处逢生,找到求解的新途径。

例7.将函数()x x f y sin =的图像向右平移
4
π
个单位后,再作关于x 轴的对称变换,得到函数x y 2
sin 21-=的图像,求()x f 的解析式。

解析:我们可以采用倒推的方法,即将整个变化过程逆过来考虑。

x x y 2cos sin 212=-= 关于x 轴的对称变换为x y 2cos -=,然后再向左平移
4
π
个单位得x x x x y s in cos 22s in 42cos ⋅==⎪⎭


⎛+
-=π,对照比较原函数()x x f y s in =得,()x x f cos 2=。

相关文档
最新文档