行列式《行列式按行(列)展开》课件
合集下载
1-5行列式按行列展开ppt课件

a11 a22a33 a23a32 a12 a23a31 a21a33 a13 a21a32 a22a31
a11
a22 a32
a23 a33
a12
a21 a31
a23 a33
a13
a21 a31
a22 a32
在n 阶行列式中,把元素 aij 所在的第 i 行和第 j 列划去后,留下来的 n 1 阶行列式叫做元素aij 的余子式,记作 M ij .
记 Aij 1i j Mij, 叫做元素 a ij 的代数余子式.
例如
a11 a12 a13 a14
a11 a12 a14
a D a21 a22
2233 a24 M 23 a31 a32 a34
a31 a32 a33 a34
a41 a42 a44
a41 a42 a43 a44
A23 1 23 M 23 M 23 .
ai1, j1
ai 1,n
anj an, j1 ann
aij 0 0
1 i j2 ai1, j ai1, j1 ai1,n
anj an, j1 ann
aij 0 0
1 i j ai1, j ai1, j1 ai1,n
狼爪划到了左臂,厚实の衣裳不堪一击便撕裂了个大口子,血丝慢慢渗了出来,闻到这血腥味,黄狼更加兴奋地低嚎。
贺腾几次闪避开攻击,可每一次の涉险过关,身上便会多添道伤痕。突然黄狼又一高扑,他乘机一蹲身,抓住了一条狼腿,黄狼落地不稳一踉跄,匕首已刺进了它の肚子
3 行列式行列式的按行(列)展开

则根据归纳假设得证: Dn ( x 2 x1 )( x 3 x1 )( x n x1 ) ( x i x j )
( x i x j ).
n i j 1
n i j 2
作
业
P26 4(4), 9 补充: 利用范德蒙德行列式计算4阶行列式
1 1 1 1 16 8 2 4 D 81 27 3 9 256 64 4 16
D = ai 1 Ai 1 + ai 2 Ai 2 + = a1 j A1 j + a2 j A2 j + + ain Ain + anj Anj .
i , j 1,2,
, n
推论 行列式中任一行或列的元素与另一行对应元 素的代数余子式乘积之和为零。 ai 1 Aj 1 ai 2 Aj 2 ain Ajn 0, i j
1 1
例2 求解方程
1 x 0. x2
2 3 4 9
解
方程左端
D 3 x 2 4 x 18 9 x 2 x 2 12
x 2 5 x 6,
由 x 2 5 x 6 0 解得
x 2 或 x 3.
推论
行列式中任一行或列的元素与另一行 或列对应元素的代数余子式乘积之和 为零。即
a11 A11 a12 A12 a13 A13 a1 j A1 j
j 1
3
定理4 三阶行列式等于它的任一行或列的各元素 与其代数余子式乘积之和,即
D ai 1 Ai 1 ai 2 Ai 2 ai 3 Ai 3
a1 j A1 j a2 j A2 j a3 j A3 j ( j 1,2, 3)
第2讲 1.3行列式的性质 1.4行列式按行(列)展开

7 15 6 6 2. 5 38
记 交换 i、j 两行: ri rj ;交换i、j两列: ci c j
推论1 如果行列式有两行(列)完全相同,则此行
列式为零
证明 把相同的两行互换,有D=-D,所以 D=0
性质3 用数 k 乘行列式的某一行(列)中所有元素,等
于用数 k 乘此行列式
a11
a12
a1n
a11 a12
a1n
即 kas1 kas2
kasn k as1 as 2
asn
an1
an2
ann
an1 an2
ann
记 第 i 行乘以 k:kri;第j列乘以 k: kcj 推论1 若行列式D中某一行(列)的所有元素均为零,
则D=0.
推论2 行列式的某一行(列)中所有元素的公 因子 可以提到行列式符号的外面.
a 3a b 6a 3b c
d abcd 4a 3b 2c d 10a 6b 3c d
解 从第 4 行开始,后行减前行得,
r4 r3 a b
c
d
r3 r2 0 a a b a b c
r2 r1
D
0
a
2a b
3a 2b c
0 a 3a b 6a 3b c
r4 r3 a b c
a11 a12 a1n
s ai1 ai2 ain
s ai1 ai2 ain
t
k
kai1 kai2 kain
ai1 ai2 ain
0.
t
an1 an2 ann
an1 an2 ann
例1 设
a11 a12 a13
6a11 2a12 10a13
a21 a22 a23 1, 求 3a21 a22
线性代数第1章第4节行列式按行展开

a12 a22 a32
a14 a24 a34 a44
a13 a23 a33
a21 M 12 a31 a41
a23 a33 a43
a24 a34 a44
11 2 M 12 M12 A12
A44 1
4 4
M 44 a21 a31
M 44 M 44
注意:行列式的每个元素都分别对应着一个余子式 和一个代数余子式.
8
由性质2,行列式互换两行(列)行列式变号, 得,
aij
0
0
D ( 1)i j 2 ai 1, j ai 1, j 1 ai 1,n anj
i j
a n , j 1
i j
ann
( 1) aij M ij ( 1)
Aij
而
D a13 A13 a23 A23 a33 A33 a43 A43 .
15.
25
所以 D (1) 5 2 (3) 0 (7) 1 (4)
例:已知四阶行列式D中第一行上元素分别为1, 2, 0, -4;
第三行上元素的余子式依次为6, x, 19, 2.试求x 的值.
2
, j3 ,, jn )
a2 j a3 j anj
2 3
n
a2 j a3 j anj 恰是 M 11 的一般项.
2 3 n
所以,
D a11 M11
a11 ( 1)11 M 11
a11 A11
7
(2) 设 D 的第 i 行除了 a ij 外都是 0 .
a11 a1 j a1n D 0 aij 0 ann
a14 a24 a34 a44
a13 a23 a33
a21 M 12 a31 a41
a23 a33 a43
a24 a34 a44
11 2 M 12 M12 A12
A44 1
4 4
M 44 a21 a31
M 44 M 44
注意:行列式的每个元素都分别对应着一个余子式 和一个代数余子式.
8
由性质2,行列式互换两行(列)行列式变号, 得,
aij
0
0
D ( 1)i j 2 ai 1, j ai 1, j 1 ai 1,n anj
i j
a n , j 1
i j
ann
( 1) aij M ij ( 1)
Aij
而
D a13 A13 a23 A23 a33 A33 a43 A43 .
15.
25
所以 D (1) 5 2 (3) 0 (7) 1 (4)
例:已知四阶行列式D中第一行上元素分别为1, 2, 0, -4;
第三行上元素的余子式依次为6, x, 19, 2.试求x 的值.
2
, j3 ,, jn )
a2 j a3 j anj
2 3
n
a2 j a3 j anj 恰是 M 11 的一般项.
2 3 n
所以,
D a11 M11
a11 ( 1)11 M 11
a11 A11
7
(2) 设 D 的第 i 行除了 a ij 外都是 0 .
a11 a1 j a1n D 0 aij 0 ann
第一章 行列式 S3 行列式按行(列)展开

得
aaiijj
0
0
0
0
a1, j
a11
a1, j1
a1, j1
a1n
D (1)i1(1) j1 ai1, j ai1, j
ai1,1 ai1,1
ai1, j1 ai1, j1
ai1, j1 ai1, j1
ai1,n ai1,n
anj
an1
a a n, j1
n, j1
aij (1)(i j)2 Mij aij (1)i j Mij aij Aij
11
x2 xn
x
2 2
xn2
( xi x j ). (1)
ni j1
x1n1
x
n1 2
xnn1
证 用数学归纳法
1 D2 x1
1
x2
x2 x1
( xi x j ),
2i j1
当 n 2 时(1)式成立.
17
假设(1)对于 n 1阶范德蒙行列式成立,
对(1)式,由下而上依次从每一行减去上一行的x1倍,得
定理2 n(n≥2)阶行列式的任一行(列)元与另一行(列)对应 元的代数余子式乘积之和为零。即
ai1Ak1 ai2 Ak 2 或
a1 j A1t a2 j A2t
n
ain Akn ais Aks 0, (i k, i,k 1, 2, ,n) s1
n
anj Ant asj Ast 0, ( j t, j,t 1, 2, ,n) s1
3
a11 a12 a13 a14 D a21 a22 a23 a24 ,
a31 a32 a33 a34 a41 a42 a43 a44
a21 a23 a24 M12 a31 a33 a34 ,
线性代数课件14行列式按行列展开

ain
13
定理4(Laplace展开定理): 在行列式 D 中任意 取k(1 k n-1)行,则由这 k 行元素所组成 的所有 k 阶子式与它们的代数余子式乘积之和等 于行列式 D .
14
例:计算行列式 21000 12100
D 0 1 2 1 0 00121 00012
选第一、二两行,则它们所组成的二阶子式共有10个, 其中非零子式只有三个,
Sds绝对是假的
11
1
Dn
n
(ai
a1)
a2
a3
i2
a a n2
n2
2
3
an an2
n
n
(ai a1)Dn1 i2
以此类推,可以得到行列式的值
Dn
(a j ai )
1i jn
11
定理3:行列式的某一行(列)的元素与另一行 (列)的对应元素的代数余子式乘积之和等于 零。即
n
aik Ajk ai1 Ai1 ai2 Ai2
(1) 2
a11
a 22 a32
a 23 a33
( 1) 3
a12
a 21 a31
a 23 a33
(1) 4 a13
a 21 a31
a 22 a32
a11 A11 a12 A12 a13 A13
容易看出行列式的值等于第一行元素与它们对应的代数 余子式乘积之和,于是我们可以得到下面的定理。
5
定理2:n阶行列式 D 等于它的任意一行(列) 所有元素与它们对应的代数余子式的乘积之和, 即 D ai1Ai1 ai2 Ai2 ain Ain (i 1, 2, , n) 或 D a1 j A1 j a2 j A2 j anj Anj ( j 1, 2, , n)
13
定理4(Laplace展开定理): 在行列式 D 中任意 取k(1 k n-1)行,则由这 k 行元素所组成 的所有 k 阶子式与它们的代数余子式乘积之和等 于行列式 D .
14
例:计算行列式 21000 12100
D 0 1 2 1 0 00121 00012
选第一、二两行,则它们所组成的二阶子式共有10个, 其中非零子式只有三个,
Sds绝对是假的
11
1
Dn
n
(ai
a1)
a2
a3
i2
a a n2
n2
2
3
an an2
n
n
(ai a1)Dn1 i2
以此类推,可以得到行列式的值
Dn
(a j ai )
1i jn
11
定理3:行列式的某一行(列)的元素与另一行 (列)的对应元素的代数余子式乘积之和等于 零。即
n
aik Ajk ai1 Ai1 ai2 Ai2
(1) 2
a11
a 22 a32
a 23 a33
( 1) 3
a12
a 21 a31
a 23 a33
(1) 4 a13
a 21 a31
a 22 a32
a11 A11 a12 A12 a13 A13
容易看出行列式的值等于第一行元素与它们对应的代数 余子式乘积之和,于是我们可以得到下面的定理。
5
定理2:n阶行列式 D 等于它的任意一行(列) 所有元素与它们对应的代数余子式的乘积之和, 即 D ai1Ai1 ai2 Ai2 ain Ain (i 1, 2, , n) 或 D a1 j A1 j a2 j A2 j anj Anj ( j 1, 2, , n)
线性代数03-行列式按行(列)展开

1
3 4 c1 2c3 11
1
3 1
2 0 1 1 c4 c3
0010
1 5 3 3
5 5 3 0
511 (1)33 11 1 1
5 5 0
r2 r1
5 11 6 2 0 5 5 0
(1)13 6 2 40. 5 5
说明
定理3叫做行列式按行(列)展开法则, 利用这个法则降阶并结合行列式的性质, 可以简化行列式的计算.
思考 任意一个行列式是否都可以用较低阶的行列式表示?
在n 阶行列式中,把元素 aij 所在的第 i 行和第 j 列划去后,
留下来的n-1阶行列式叫做元素 aij 的余子式,记作Mij .
把 Aij 1 i j Mij 元素 aij 的代数余子式.
例如
a11 a12 a13 a14
D a21 a22 a23 a24 a31 a32 a33 a34
a41 a42 a43 a44
a11 a12 a14 M23 a31 a32 a34
a41 a42 a44
A23 1 23 M23 M23
结论 行标和列标是行列式中元素的唯一标识,有且仅有一 个余子式和一个代数余子式与行列式中每一个元素对应.
说明
(1)对于给定的 n 阶行列式 D det(aij ) ,元素
证明 我们以3阶行列式为例.
a11 a12 a13 a11 A11 a12 A12 a13 A13 a21 a22 a23
a31 a32 a33
把第1行的元素换成第2行的对应元素,则
a21 a22 a23
a21 A11 a22 A12 a23 A13 a21 a22 a23 0.
行列式按行(列)展开

a a a a a a a a a
D
xa
xa
c1 c2 cn
[ x ( n 2)a ] 1 x a 1 a
1 a
xa
xa
20
r2 r1 r3 r1 rn r1
1 [ x ( n 2)a ]0 0 0
ak 1 ak 2 akn an 2 ann
右端的行列式含有两个相同的行,值为 0 。
11
综上,得公式
D, (当k i) ak 1 Ai 1 ak 2 Ai 2 akn Ain 0,(当k i) D, (当l j) a1l A1 j a2 l A2 j anl Anj 0,(当l j)
a11 a12 a1n ai 1 0 0
a11 0
a12 a1n ai 2
a11 a12 a1n 0 ain
0 0
an1 an 2 ann
an1 an 2 ann
3 11
7 17 8
按第二列展开
7 25 8 0 3 0 11 5 2
1 ( 1)
2 2
0 3
5 9
5 2
按第二行展开
5 ( 1)
2 3
7 25 3 11
5(77 75) 10
19
例2:
xa a a a
a xa a a 1
a a a a
a a a
( xi a , i 1,2,3,4)
(可以化为箭形行列式)
r2 r1 r3 r1 r3 r1 r4 r1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
c4 c3
0 010
5 5 3 0
5 11 (1)33 11 1 1
5 5 0
r2 r1
5 11 6 2 0 5 5 0
(1)13 6
2 8
2 40.
5 5 0 5
例2 证明范德蒙德(Vandermonde)行列式
1 11
x1 Dn x12ຫໍສະໝຸດ x2 xnx22x
2 n
( xi x j ). (1)
a11 a12 a14
1 33 a33 a21 a22 a24 .
a41 a42 a44
证 当 aij 位于第一行第一列时,
a11 0 0
D
a21
a22
a2n
an1 an2 ann
即有 D a11M11.
又 A11 1 11 M11 M11,
从而 D a11A11.
在证一般情形, 此时
ni j1
x1n1 x2n1 xnn1
证 用数学归纳法
1 D2 x1
1
x2
x2 x1
( xi x j ),
2i j1
当 n 2 时(1)式成立.
假设(1)对于 n 1 阶范德蒙德行列式成立,
Dn
1
1
0
x2 x1
0 x2 ( x2 x1 )
0 x2n2 ( x2 x1 )
1
x3 x1
x3 ( x3 x1 )
x
n2 3
(
x3
x1 )
1
xn x1 xn ( xn x1 )
xnn2 ( xn x1 )
按第1列展开,并把每列的公因子 ( xi x1 ) 提出, 就有
1
( x2 x1 )( x3 x1 )( xn x1 )
x2
x
n2 2
n-1阶范德蒙德行列式
,
ai1 ain
第i行
相同
第 j行
当 i j 时,
an1 ann
ai1 Aj1 ai 2 Aj2 ain Ajn 0, (i j).
同理 a1i A1 j a2i A2 j ani Anj 0, (i j).
关于代数余子式的重要性质
n aki Akj
k 1
D ij
D ,当 i
D ai1 Ai1 ai2 Ai2 ain Ain i 1,2,, n
证
a11
a12
a1n
D ai1 0 0 0 ai2 0 0 0 ain
an1
an2
ann
a11 a12 a1n
a11 a12 a1n
ai1 0 0 0 ai2 0
例如
a a a a 11
12
13
14
D a21 a22 a23 a24
a a a a 31
32
33
34
a a a a 41
42
43
44
a11 a12 a14 M 23 a31 a32 a34
a41 a42 a44
A23 123 M 23 M 23 .
a11 a12 a13 a14 D a21 a22 a23 a24 ,
aiijj
0
0
D
1 i1
1
a j1 i1, j
ai1, j1
ai 1,n
anj an, j1 ann
aiijj
0
0
1 i j2 ai1, j ai1, j1 ai1,n
anj an, j1 ann
aij 0 0
1 i j ai1, j ai1, j1 ai1,n
证 把行列式 D det(aij ) 按第 j 行展开,有
a11 a1n
ai1 ain
a j1 Aj1 a jn Ajn
,
a j1 a jn
an1 ann
把 a jk 换成 aik (k 1,,n),可得
a11 a1n
ai1 ain
ai1 Aj1 ain Ajn
11
x3 xn
x3n2
x
n n
2
Dn ( x2 x1 )( x3 x1 )( xn x1 ) ( xi x j )
ni j2
( xi x j ).
ni j1
推论 行列式任一行(列)的元素与另一行(列) 的对应元素的代数余子式乘积之和等于零,即
a A i1 j1 a A i2 j2 a A in jn 0, i j .
0
,当
i
j, j;
n aik Ajk
k 1
D ij
D ,当 i
0
,当
i
j, j;
其中
1 ,当 i j, ij 0 ,当 i j.
3 5 3 例3 计算行列式 D 0 1 0
7 72
解 按第一行展开,得
1 0 0 0 0 1
D 3
5 3
7 2 72 7 7
27.
5 3 1 2 0 1 7 2 52 例4 计算行列式 D 0 2 3 1 0 0 4 1 4 0 0 2 3 50
1 j
.
1 0 0n
anj an, j1 ann
故得
aaiijj
0
0
D 1 i j ai1, j ai1, j1 ai1,n 1 i j aijMij .
anj an, j1 ann
二、行列式按行(列)展开法则
定理3 行列式等于它的任一行(列)的各元 素与其对应的代数余子式乘积之和,即
an1 an2 ann
an1 an2 ann
a11 a12 a1n
0 0 ain ai1 Ai1 ai2 Ai2 ain Ain
i 1,2,,n
an1 an2 ann
例1 3 1 1 2 5 1 3 4
D 2 0 1 1 1 5 3 3
5 1 1 1
c1 2c3 11 1 3 1
一、余子式与代数余子式
例如
a11 a12 a13 a21 a22 a23 a11a22a33 a12a23a31 a13a21a32 a31 a32 a33 a11a23a32 a12a21a33 a13a22a31,
a11 a22a33 a23a32 a12 a23a31 a21a33 a13 a21a32 a22a31
a11 a1 j a1n
D 0 aij 0
an1 anj ann
把D的第i行依次与第i 1行,第i 2行,第1行对调, 0 aaiijj 0
得 D 1 i1 ai1,1 ai1, j ai1,n
an1 anj ann
再把D的第j列依次与第j 1列,第j 2列,第1列 对调, 得
anj an, j1 ann
aij 0 0
元素aij在行列式ai1, j ai1, j1 ai1,n 中的
anj an, j1 ann
余子式仍然是aij在
a11 a1 j a1n
D 0 aij 0 中的余子式 Mij .
an1 anj ann
aiij 0 0
于是有 ai1, j ai1, j1 ai1,n aij Mij ,
20 42 12 1080.
三、小结
1. 行列式按行(列)展开法则是把高阶行列 式的计算化为低阶行列式计算的重要工具.
2.
n
aki Akj
k 1
D ij
D ,当 i
0
,当
i
j, j;
n aik Ajk
k 1
D ij
D ,当 i
0
,当
i
j, j;
其中
1 ,当 i j, ij 0 ,当 i j.
行列式的每个元素分别对应着一个余子式和一
个代数余子式.
引理 一个 n 阶行列式,如果其中第 i 行所有 元素除 aij外都为零,那末这行列式等于aij与它的 代数余子式的乘积,即 D aij A.ij
a11 a12 a13 a14 例如 D a21 a22 a23 a24
0 0 a33 0 a41 a42 a43 a44
a31 a32 a33 a34 a41 a42 a43 a44
a21 a23 a24 M12 a31 a33 a34 ,
a41 a43 a44
A12 112 M12 M12 .
a11 a12 a13
M44 a21 a22 a23 , A44 1 44 M44 M44 .
a31 a32 a33
a11
a22 a32
a23 a33
a12
a21 a31
a23 a33
a13
a21 a31
a23 a33
在n 阶行列式中,把元素 aij 所在的第 i 行和第 j 列划去后,留下来的 n 1 阶行列式叫做元素aij 的余子式,记作 M ij .
记 Aij 1i j Mij, 叫做元素 a ij 的代数余子式.
思考题
设n阶行列式 1 2 3n 1 2 0 0
Dn 1 0 3 0 1 0 0n
求第一行各元素的代数余子式之和 A11 A12 A1n .
思考题解答
解 第一行各元素的代数余子式之和可以表示成
11 11
1 2 0 0
A11 A12 A1n 1
0
3
0
n!1
n j2
5 3 1 2 0 1 7 2 52 解 D 0 2 3 1 0 0 4 1 4 0 0 2 3 50
5 3 1 2
1 25 2 0 2
3
1
r2
2r1
2
5
2 4
3 1
1 4
0 4 1 4 r3 r1
2 35