中考数学二轮专题复习专题二图表信息问题课件
中考数学第二轮专题复习图表信息型问题和阅读理解型问题 新人教版

中考数学冲刺第二轮专题复习——图表信息型问题和阅读理解型问题一、图表信息型问题1、图表信息型问题的特点:由图象(表)来获取信息.从而达到解题目的的题型。
2、图表信息型问题的主要类型:(1)图像信息型,即教材介绍的基本函数图象(如直线、双曲线、抛物线);(2)图形信息型,主要是几何问题;(3)统计图表型,即结合实际情境描绘的不规则图象(如折线型、统计图表等).这种题型一般是由图象给出的数据信息,探求两个变量之间的关系,进行数、形之间的互换.题型可涉及填空、选择和解答。
3、图表信息型考我们什么?(1)注重考查数形之间的转化能力,(2)考察发现问题、解决问题的能力4、解答图表信息型问题的步骤:(1)观察图像,获取有效信息;(2)对获取的信息进行整理,理清各量之间的关系;(3)通过建模解决问题。
第一种类型:图像信息型,即教材介绍的基本函数图象(如直线、双曲线、抛物线)【例1】(2012 绍兴)小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原速度返回家,父亲在报亭看了10分钟报纸后,用15分钟返回家,则表示父亲、母亲离家距离与时间之间的关系是(只需填序号).第二种类型:图形信息型,主要是几何问题【例2】(2011 绍兴)取一张矩形纸片按照图1、图2中的方法对折,并沿图3中过矩形顶点的斜线(虚线)剪开,把剪下的①这部分展开,平铺在桌面上.若平铺的这个图形是正六边形,则这张矩形纸片的宽和长之比为.【例3】(2010 绍兴)如图为某机械装置的截面图,相切的两圆⊙O1,⊙O2均与⊙O的弧AB 相切,且O1O2∥l1(l1为水平线),⊙O1,⊙O2的半径均为30mm,弧AB的最低点到l1的距离为30mm,公切线l2与l1间的距离为100mm.则⊙O的半径为()A.70mm B.80mm C.85mm D.100mm【例4】(2011 贵阳)用长度一定的不锈钢材料设计成外观为矩形的框架(如图①②③中的一种)设竖档AB=x米,请根据以上图案回答下列问题:(题中的不锈钢材料总长度均指各图中所有黑线的长度和,所有横档和竖档分别与AD、AB平行)(1)在图①中,如果不锈钢材料总长度为12米,当x为多少时,矩形框架ABCD的面积为3平方米?(2)在图②中,如果不诱钢材料总长度为12米,当x为多少时,矩形架ABCD的面积S最大?最大面积是多少?(3)在图③中,如果不锈钢材料总长度为a米,共有n条竖档,那么当x为多少时,矩形框架ABCD的面积S最大?最大面积是多少?第三种类型:统计图表型,即结合实际情境描绘的不规则图象(如折线型、统计图表等)【例5】(2011 衢州)下列材料来自2006年5月衢州有关媒体的真实报道:有关部门进行民众安全感满意度调查,方法是:在全市内采用等距抽样,抽取32个小区,共960户,每户抽一名年满16周岁并能清楚表达意见的人,同时,对比前一年的调查结果,得到统计图如下:写出2005年民众安全感满意度的众数选项是;该统计图存在一个明显的错误是.【例6】(2011 湖州)班主任张老师为了了解学生课堂发言情况,对前一天本班男、女生发言次数进行了统计,并绘制成如下频数分布折线图(图1).(1)请根据图1,回答下列问题:①这个班共有名学生,发言次数是5次的男生有人、女生有人;②男、女生发言次数的中位数分别是次和次;(2)通过张老师的鼓励,第二天的发言次数比前一天明显增加,全班发言次数变化的人数的扇形统计图如图2所示,求第二天发言次数增加3次的学生人数和全班增加的发言总次数.二、阅读理解型问题1、阅读理解型的主要题型:(1)阅读特殊范例,推出一般结论;(2)阅读解题过程,总结解题思路和方法;(3)阅读新知识,研究新问题等。
2013年中考数学二轮专题复习 专题二 图表信息问题课件

行驶距离s(米) 0
10 10.8 …
(1)根据这些数据在给出的坐标系中画出相应的点;
(2)选择适当的函数表示s与t之间的关系,求出相应
的函数解析式;
(3)①刹车后汽车行驶了多长距离才停止?
②当t分别为t1,t2(t1<t2)时,对应s的值分别为s1, s2,请比较与的大小,并解释比较结果的实际意
思路分析 解决这类题的基本思路是“细读图表→分析→理 清关系→解决问题”,具体做法: 1.细读图表:(1)通过整体阅读,搜索有价值的信 息;(2)重视数据变化;(3)注意图表细节.这些 细节往往起提示作用. 2.理清关系:对已获取的信息加工、整合,理清 各变量之间的关系. 3.选择适当的数学工具,通过建立数学模型,解 决问题.
点C(x2,m)分别代入两直线方程,依妈妈比小明早 10分钟到达乙地列式求解. 解 (1)由图象,得:小明骑车速 度: 10÷0.5=20(km/ h). 在甲地游玩的时间是 1-0.5=0.5(h).
(2)妈妈驾车速度:20×3=60(km/h)
如图,设直线BC解析式为y=20x+ b1,
把点 B(1,10)代入得 b1=-10. ∴直线 BC 解析式为 y=20x-10 ①. 设直线 DE 解析式为 y=60x+b2, 4 把点 D3,0代入得 b2=-80. ∴直线 DE 解析式为 y=60x-80 ②. 联立①②,得 x=1.75,y=25. ∴交点 F(1.75,25). ∴小明出发 1.75 小时(105 分钟)被妈妈追上, 此时离家 25 km.
2 s2 -5t2+15t2 = =-5t2+15,∵t1<t2 t2 t2 s1 s2 ∴ - =-5t1+15-(-5t2+15)=5(t2-t1)>0 t1 t2 s1 s2 ∴ > . t1 t2
中考数学复习常考图表信息类题型解析(题目类型解析+真题反馈)(共19张PPT)

2019/3/9
请根据图中提供的信息,解答下列问题: (1) 在这次抽样调查中,共调查了___________名学生; (2) 补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的 度数; (3) 根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与” 的人数。
2019/3/9
各类情况条形统计图 人数 240 200 160 120 80 40 240
2019/3/9
a元,蓝色地砖每块b元, 解: (1)设红色地砖每块 4000a 6000b 0.9 86000,
答:红色地砖每块8元,蓝色地砖每块10元. (2)设购置蓝色地砖x块,则购置红色地砖(12000-x)块,所需的总费用为 y元. 由题意知x≥(12000-x),得x≥4000,又x≤6000, ∴ 4000≤x≤6000. 当4000≤x<5000时,y=10x+8×0.8(12000-x),即y=76800+3.6x, ∴ x=4000时,y有最小值91200; 当5000≤x≤6000时,y=0.9×10x+8×0.8(12000-x)=2.6x+76800. ∴ x=5000时,y有最小值89800. ∵89800<91200,∴购买蓝色地砖5000块,红色地砖7000块,费用最少,
2019/3/9
典例选讲
例1 实数a,b,c在数轴上的对应点的位置如图所示,则正确 的结论是 (B )
A. a>4
B.c-b>0
C.ac>0
D.a+c>0
2019/3/9
典例选讲
例2 利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系 统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表 示0.将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生 所在班级序号,其序号为a×23+b×22+c×21+d×20.如图2第一行数字从 左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示 该生为5班学生.表示6班学生的识别图案是 ( B )
沪科版九年级数学上册《专题二 二次函数图象信息题归类》课件(共17张PPT)

类型之二:由抛物线的位置确定代数式的符号或未知数的值 4.如图所示,在二次函数 y=ax2+bx+c 的图象中,王刚同学观 察得出下面四条信息:①b2-4ac>0;②c>1;③2a-b<0;④a+b +c<0,其中错误的有( A ) A.1 个 B.2 个 C.3 个 D.4 个
5.已知二次函数 y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b <0;②4a+2b+c<0;③a-b+c>0;④(a+b)2<b2.其中正确的是( C )
6.二次函数y=ax2+bx+c(a≠0)的图象如图所示,若M=a+b-c,N =4a-2b+c,P=2a-b,则M,N,P中,值小于0的数有( A )
A.3个 B.2个 C.1个 D.0个
7.二次函数y=2x2+mx+8的图象如图所示,则m的值是( B ) A.-8 B.8 C.±8 D.6
类型之三:利用二次函数图象求二次函数的解析式 8.已知抛物线y=-x2+bx+c如图所示,则此抛物线的解析式为 __y_=__-__x_2_+__2_x_+__3__.
专题二 二次函数图象信息题归类
类型之一:由某一函数的图象确定其他函数图象的位置
1.二次函数 y=ax2+bx 的图象如图所示,那么一次函数 y=ax+b 的图象大致是( C )
2.函数 y=ax2+a 与 y=ax(a≠0)在同一坐标系中的图象可能是 ( D)
3.已知正比例函数 y=ax 与反比例函数 y=kx在同一坐标系中的图 象如图所示,判断二次函数 y=ax2+k 在坐标系中的大致图象是( B )
解:由直线 y=-x-2,令 x=0,则 y=-2,∴点 B 的坐标为(0,-2); 令 y=0,则 x=-2,∴点 A 的坐标为(-2,0).∵抛物线的顶点为 A,所以设 抛物线的解析式为 y=a(x+2)2.∵抛物线过点 B,∴-2=4a,解得 a=-12.∴抛 物线的解析式为 y=-12(x+2)2,即 y=-12x2-2x-2
年初中数学中考总复习全优设计专题图表信息题PPT课件

考向2
考向3
考向4
热点问题探究
命题热点例析
解析:因为抛物线开口向下,所以(1)正确;因为抛物线与 y 轴的交 点在(0,1)的上方,所以(2)正确;因为抛物线的对称轴在 y 轴的右侧,且 开口向下,所以(3)正确;因为直线 x=1 与抛物线的交点在 x 轴的上方, 所以(4)正确;因为直线 x=-1 与抛物线的交点在 x 轴的下方,所以(5) 错误.故选 C.
是解题的关键.同时对基本几何图形性质的熟练掌握又是解题的基 础.
15
考向1
考向2
考向3
考向4
热点问题探究
命题热点例析
统计图表信息题——从统计图表中获取对象信息
统计研究的对象是数据,统计研究的常用方法是通过对数据的 收集、整理和分析,从中获取信息,从而指导人们的实践活动.统计图 表信息题的基本特征是给出了某实际问题的研究结果——绘制出了 统计图或统计表,解题时需要根据问题的实际背景进行分析,从中获 取所需信息,得出相关结论,即“用数据说话”.
12
考向1
考向2
考向3
考向4
热点问题探究
命题热点例析
解题规律解题时要注意分析多组信息中隐含的等量或不
等量关系,从方程、不等式、函数等数学的角度分析问题是解题的关 键.
13
考向1
考向2
考向3
考向4
热点问题探究
命题热点例析
图形信息题——学会阅读几何图形
此类问题的基本特征是由几何图形呈现问题信息,解题时要仔 细分析所给几何图形,找到图形中蕴含的线段、角度之间的大小关 系.
14
考向1
考向2
考向3
考向4
热点问题探究
命题热点例析
【例 3】 如图,将一副七巧板拼成一只小猫,则图中∠AOB= .
九年级数学专题复习图表信息型问题

中考冲刺:图表信息型问题【中考展望】图表信息题是指通过图形、图象或图表及一定的文字说明来提供问题情景的一类试题,它是近几年全国各省市中考所展示的一种新题型,这类试题形式多样,取材广泛,可增加试题的灵活性和趣味性,其发展前景非常广阔.用好题中提供的信息,有利于提高学生分析、解决简单实际问题的能力,同时也是培养现代公民素质的一条重要途径.【方法点拨】1.图象信息题题型特点:这类题是中考试卷中出现频率较高的题型之一,它是通过图象呈现问题中两个变量之间的数量关系,主要考查学生对函数思想和数形结合思想的掌握程度.解题策略:解答这类问题,在弄清题意的基础上,弄清两坐标轴所代表的含义,并对图象的形状、位置、发展变化趋势等捕捉提炼有效信息,解决相关问题.2.图表信息题图表信息题是指通过图表的形式提供信息,这些信息一般以数据形式居多,其主要考查学生对图表数据的分析、比较、判断和结论的归纳能力,要求学生有较强的定量分析和定性概括能力.图表信息题是中考常见的一种题型,它是通过图象、图形及表格等形式给出信息的一种新题型,在解决图表信息题的时候要注意以下几点:1、细读图表:(1)注重整体阅读.先对材料或图表资料等有一个整体的了解,把握大体方向.要通过整体阅读,搜索有效信息;(2)重视数据变化.数据的变化往往说明了某项问题,而这可能正是这个材料的重要之处;(3)注意图表细节.图表中一些细节不能忽视,它往往起提示作用,如图表下的“注”“数字单位”等.2、审清要求:图表题往往对答题有一定的要求,根据考题要求进行回答,才能有的放矢.题目要求包往往括字数句数限制、比较对象、变化情况等.3、准确表达解答图表题需要用简明的语言进行概括.解答前,要正确分析图表中所列内容的相互联系,从中找出规律性的东西,再归纳概括为一个结论.在表述时要有具体的数据比较、分析,要客观地反映图表包含的信息,特别要注意题目中的特殊限制.【典型例题】类型一、图象信息题例1.如图,⊙O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发(P点与O点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大致是()A.B. C.D.例2.甲、乙两人骑车前往A地,他们距A地的路程S(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两人的速度各是多少?(2)求甲距A地的路程S与行驶时间t的函数关系式.(3)直接写出在什么时间段内乙比甲距离A地更近?(用不等式表示)举一反三:【变式】如图,已知抛物线P:y=ax2+bx+c(a≠0) 与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:(1) 求A、B、C三点的坐标;(2) 若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;(3) 当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k·DF,若点M不在抛物线P 上,求k的取值范围.类型二、图表信息题例3.为减少环境污染,自2008年6月1日起,全国的商品零售场所开始实行“塑料购物袋有偿使用制度”(以下简称“限塑令”).某班同学于6月上旬的一天在某超市门口采用问卷调查的方式,随机调查了“限塑令”实施前后,顾客在该超市用购物袋的情况,以下是根据100位顾客的100份有效答卷画出的统计图表的一部分:请你根据以上信息解答下列问题:(1)补全图,“限塑令”实施前,如果每天约有2000人次到该超市购物.根据这100位顾客平均一次购物使用塑料购物袋的平均数,估计这个超市每天需要为顾客提供多少个塑料购物袋?(2)补全图,并根据统计图和统计表说明,购物时怎样选用购物袋,塑料购物袋使用后怎样处理,能对环境保护带来积极的影响.例4.在某次人才交流会上,应聘人数和招聘人数分别居前5位的行业列表如下:如果用同一行业应聘人数与招聘人数比值的大小来衡量该行业的就业情况,那么根据表中数据,对上述行业的就业情况判断正确的是( )A .计算机行业好于其他行业B .贸易行业好于化工行业C .机械行业好于营销行业D .建筑行业好于物流行业举一反三:【变式】下表为抄录北京奥运会官方票务网公布的三种球类比赛的部分门票价格,某公司购买的门票种类、数量绘制的条形统计图如下图.依据上列图、表,回答下列问题:(1)其中观看男篮比赛的门票有 张;观看乒乓球比赛的门票占全部门票的 %; (2)公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地等完全相同且充分洗匀),问员工小亮抽到男篮门票的概率是 ;(3)若购买乒乓球门票的总款数占全部门票总款数的81,试求每张乒乓球门票的价格.类型三、从表格、数字中寻求规律例5.我市某工艺厂为配合北京奥运,设计了一款成本为20元/件的工艺品投放市场进行试销.经过调查,得到如下数据:(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y 与x的函数关系,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得利润最大?最大利润多少?(利润=销售总价-成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得利润最大?举一反三:【变式】某绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A、B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.【巩固练习】一、选择题1.如图,平行四边形ABCD的边长AD为8,面积为32,四个全等的小平行四边形对称中心分别在平行四边形ABCD的顶点上,它们的各边与平行四边形ABCD的各边分别平行,且与平行四边形ABCD相似.若平行四边形的一边长为x,且0<x≤8,阴影部分的面积和为y,则y与x之间的函数关系的大致图象是().A.B.C.D.2.物理知识告诉我们,一个物体所受到的压强P与所受压力F及受力面积S之间的计算公式为FPS .当一个物体所受压力为定值时,那么该物所受压强P与受力面积S之间的关系用图象表示大致为( ).3.某蓄水池的横断面示意图如图1所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出.下面的图象能大致表示水的深度h和放水时间t之间的关系的是 ( ).二、填空题4.将一个三角形纸板按如图所示的方式放置一个破损的量角器上,使点C落在半圆上,若点A、B处的读数分别为65°、20°,则∠ACB的大小为°.第4题第5题5.如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是 .6.如图1反映的过程是:矩形ABCD中,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,S△ABP=y.则矩形ABCD的周长是.三、解答题7. 小亮家最近购买了一套住房.准备在装修时用木质地板铺设居室,用瓷砖铺设客厅.经市场调查得知:用这两种材料铺设地面的工钱不一样.小亮根据地面的面积,对铺设居室和客厅的费用(购买材料费和工钱)分别做了预算,通过列表,并用x(m2)表示铺设地面的面积,用y(元)表示铺设费用,制成如图.请你根据图中所提供的信息,解答下列问题:(1)预算中铺设居室的费用为元/ m2,铺设客厅的费用为元/ m2.(2)表示铺设居室的费用y(元)与面积 x(m2)之间的函数关系式为,表示铺设客厅的费用y(元)与面积x(m2)之间的函数关系式为 .(3)已知在小亮的预算中,铺设1 m2的瓷砖比铺设1m2的木质地板的工钱多5元;购买1m2的瓷砖是购买1m2木质地板费用的34.那么,铺设每平方米木质地板、瓷砖的工钱各是多少元?购买每平方米的木质地板、瓷砖的费用各是多少元?8. 如图所示,A,B两地相距50千米,甲于某日下午1时骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车按同路从A地出发驶往B地,如图所示,图中的折线OPQ和线段MN分别表示甲、乙所行驶的路程S与该日下午时间t之间的关系.根据图象回答下列问题:(1)甲和乙出发的时间相差小时?(2)(填写“甲”或“乙”)更早到达B城?(3)乙出发大约小时就追上甲?(4)描述一下甲的运动情况;(5)请你根据图象上的数据,求出甲骑自行车在全程的平均速度.9.行驶中的汽车,在刹车后由于惯性的作用,还要继续向前滑行一段距离才停止,这段距离称为“刹车距离”.为了测定某种型号汽车的刹车性能(车速不超过140km/h),对这种汽车进行测试,测得数据如下表:刹车时车速(km/h) 0 10 20 30 40 50 60 刹车距离(m) 0 0.3 1.0 2.1 3.6 5.5 7.8(1)以车速为x轴,以车距离为y轴,在坐标系中描出这些数据所表示的点,并用平滑的曲线连结这些点,得到函数的大致图象;(2)观察图象,估计函数的类型,并确定一个满足这些数据的函数解析式;(3)该型号汽车在国道上发生了一次交通事故,现场测得刹车距离为46.5m,请推测刹车时的速度是多少?请问在事故发生时,汽车是超速行驶还是正常行驶?10.某果品公司急需将一批不易存放的水果从A市运到B市销售.现有三家运输公司可供选择,这三家运输公司提供的信息如下:运输单位运输速度(千米/小时)运输费用(元/千米)包装与装卸时间(小时)包装与装卸费用(元)甲公司60 6 4 1500乙公司50 8 2 1000丙公司100 10 3 700解答下列问题:(1)若乙、丙两家公司的包装与装卸及运输的费用总和恰好是甲公司的2倍,求A、B两市的距离(精确到个位);(2)如果A、B两市的距离为S千米,且这批水果在包装与装卸以及运输过程中的损耗为300元/小时,那么要使果品公司支付的总费用(包装与装卸费用、运输费用及损耗三项之和)最小,应选择哪家运输公司?。
数学中考复习《图表信息题》课件(14张ppt)

练习3 某气象研究中心观测一场沙尘暴从发生到结
束的全过程,开始时风速平均每小时增加2 千米/时,4小时后,沙尘暴经过开阔荒漠地,风速变为平 均每小时增加4千米/时,一段时间,风速保持不变,当沙 尘暴遇到绿色植被区时 ,其风速平均每小时减少1千米/时, 最终停止,结合风速y与时间x的图象如图,回答下列问题:
运输公司的甲、乙两种货车,已知过去两次租用这 种货车情况如下表(两种货车均为满载)
甲种货车辆数(辆) 乙种货车辆数(辆) 累计运输吨数(吨)
第一次 第二次
2
5
3
6
15.5 35
现租用该公司甲种货车5辆及乙种货车一辆刚好 运完这批货物,如果按每吨运费30元计算,货主应 付运费多少元?
解:设甲乙两种货车满载时的载重量分别
y(千米/时)
(32)
(1)在y轴( ) 内填入相应的数值;
(8)
O 4 10
25
x(小时)
(2)沙尘暴从发生到结束,共经过了多少小时?
(2)沙尘暴从发生到结束,共经过了多少小时?
(3)求出当x≥25时,风速y(千米/时)与时间
x(小时)之间的函数关系式。
解3:2÷(12=)32由(题小意时得)(:32)y(千米B/时) C(25,32)
1 2
x+2
(2)观察图象,当x>-4 时,y> 0;
当x =-4 时,y=0;当x <-4 时,y<0;
(3)观察图象,当x=2时,y= 3 , y
当y=1时x= -2 ; 3
(4)不解方程,求
2 1
1 2
x+2=0的解;x=-4
1
-4 -3 -2 -1-1 o 1 2 3 x
中考数学复习课件:第36课时 图表信息题(共52张PPT)

第36课时 图表信息题
考点演练
考点四 函数图象信息型
方法归纳
在解答与函数及其图象有关的实际应用问题时,一定要先弄清横、 纵轴表示的实际意义分别是什么,再根据具体题目并结合函数和 图象的性质答题.
第36课时 图表信息题
考点演练
考点五 统计图信息型 例5 (2016·贵阳)某校为了了解该校九年级学生2016 年适应性考试数学成绩,现从九年级学生中随机抽取部分 学生的适应性考试数学成绩,按A、B、C、D四个等级进 行统计,并将统计结果绘制成如图所示的不完整的统计图,
A. 11 B. 12 C. 13 D. 14
第36课时 图表信息题
考点演练
考点一 图形信息型
思路点拨
由主视图可知右上角的盘子有5个,由左视图可知左下角的盘 子有3个,结合主视图和左视图可以知道左上角的盘子有4个, 则可求出总个数.
第36课时 图表信息题
考点演练
考点一 图形信息型
例题解析
∵ 右上角的盘子有5个,左下角的盘子有3个,左上角的盘子有4个, ∴ 3+4+5=12(个).故选B.
第36课时 图表信息题
专题解读
(1) 观察图象,获取有效信息; (2) 对已获得的信息进行加工、整理,理清各变量之间的关系; (3) 选择适当的数学工具,通过建模解决问题.
第36课时 图表信息题
专题解读
1. 图形信息型 图形信息型问题常常以图形来呈现信息(主要以图形本身具
有的特征及其性质来表现)或数量关系.解答时通常借助图形本身 的性质,结合推理、计算,甚至图形变换的方法来解决问题.
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)求小明骑车的速度和在甲地游玩的时间; (2)小明从家出发多少小时后被妈妈追上?此时离家 多远? (3)若妈妈比小明早10分钟到达乙地,求从家到乙地 的路程. 分析 (1)用路程除以时间即可得到速度;在甲地游 玩的时间是1-0.5=0.5小时. (2)求得线段BC所在直线的解析式和DE所在直线的 解析式后,求得交点坐标即可求得被妈妈追上的时 间.
中线段AB所示.
•1)小李到达甲地后,再经过_____小时小张到达 乙地;小张骑自行车的速度是______千米/小时.
•(2)小张出发几小时与小李相距15千米? •(3)若小李想在小张休息期间与他相遇,则他出 发的时间x应在什么范围?(直接写出答案)
• 【解析】(1)1 15 • (2)设EF的解析式是 • y1=k1x+b1, • AB的解析式是y2=k2x+b2. • 根据题意, •得
•∴车架档AD的长为75 cm.
•(2)过点E作EF⊥AB,垂足为点F,
•EF=AEsin75°
•=(45+20)sin75°≈62.783 5≈63(cm).
•∴车座点E到车架档AB的距离是63 cm.
•3)由图象可知,小聪在30≤t≤45的时段内
•s是t的一次函数,设函数解析式为s=mt+n(m≠0), •代入(30,4),(45,0)得:
•答:当小聪与小明迎面相遇时,他们离学校的路程是3千米
• 4.(2010·玉溪中考)王芳同学为参加学校 • 组织的科技知识竞赛,她周末到新华书店 • 购买资料.如图,是王芳离家的距离与时 • 间的函数图象.若黑点表示王芳家的位置, • 则王芳走的路线可能是( )
• 解析】选B.根据题中所给函数图象可知: 开始王芳离家越来越远,然后离家的距离 不变,再离家越来越近,符合图象的路线 为B.
• 6.(2010·铁岭中考)小张骑自行车 • 匀速从甲地到乙地,在途中休息了 • 一段时间后,仍按原速行驶.他距 • 乙地的距离与时间的关系如图中折 • 线所示,小李骑摩托车匀速从乙地 • 到甲地,比小张晚出发一段时间,他距乙地的距离与时间的关系如图
中考数学二轮专题复习专题 二图表信息问题课件
•专 •题 •解 •读
•专 •题 •突 •破
•一、图象信息题
此类题目主要是运用函数图象(一次函数、二次函数 、反比例函数的图象等)表示物体的变化规律(体现 在两个变量之间的数量关系),考查数形结合的思想 和函数建模能力.解答时往往根据图象的形状、位 置、变化趋势等信息来判断、分析、解决问题.
【例题1】 (2012·浙江义乌)周末,小明骑自行车从家里 出发到野外郊游.从家出发0.5小时后到达甲地,游 玩一段时间后按原速前往乙地.小明离家1小时20分 钟后,妈妈驾车沿相同路线前往乙地,如图是他们 离家的路程y(km)与小明离家时间x(h)的函数图象. 已知妈妈驾车的速度是小明骑车速度的3倍.
• 【思路点x分,落在B区域得y分. • 根据题意,得 • ∴x+3y=9+3×7=30. • 答:小敏的四次总分为30分.
• 7.(2011·绍兴中考)为倡导“低碳生活”,常选择以自行车作为代步 工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45 cm,60 cm,且它们互相垂直,座杆CE的长为20 cm.点A,C,E在同一条 直线上,且∠CAB=75°,如图2.
解 (1)设等边三角形的一边为a,则a2+a2=2a2, ∴符合“奇异三角形”的定义.∴是真命题; (2)∵∠C=90°,则a2+b2=c2①, ∵Rt△ABC是奇异三角形,且b>a, ∴a2+c2=2b2②,
• 例3】(2010·吉林中考)在课外活动期间,小英、小丽和 小敏在操场上画出A、B两个区域,一起玩投沙包游戏.沙 包落在A区域所得分值与落在B区域所得分值不同.当每人 各投沙包四次时,其落点和四次总分如图所示.请求出小 敏的四次总分.
(3)2011年廉租房共有6 250×8%=500套, 500(1+10%)=550套, ∴2012年新开工廉租房550套.
•四、图文信息题
这类试题往往以图文形式提供一定的数学情景,让 学生通过对图画中的情景(或对话等)的分析和理解 ,抽象出数学本质,建立合理的数学模型解决问题 .
【例题4】 (2011·浙江宁波改编)阅读下面的情景对 话,然后解答问题:
分析 (1)描点作图即可. (2)首先判断函数为二次函数.用待定系数法,由所 给的任意三点即可求出函数解析式. (3)①将函数解析式表示成顶点式(或用公式求),即 可求得答案.
解 (1)描点如图所示:
(2)由散点图可知该函数为二次函数. 设二次函数的解析式为:s=at2+bt+c, ∵抛物线经过点(0,0),∴c=0. 又由点(0.2,2.8),(1,10)可得:
(3)设从家到乙地的路程为m km,则点E(x1,m), 点C(x2,m)分别代入两直线方程,依妈妈比小明早 10分钟到达乙地列式求解. •解 (1)由图象,得:小明骑车速度 :
•10÷0.5=20(km/ h). •在甲地游玩的时间是 •1-0.5=0.5(h). •(2)妈妈驾车速度:20×3=60(km/h) •如图,设直线BC解析式为y=20x+ b1,
• (1)求车架档AD的长; • (2)求车座点E到车架档AB的距离. • (结果精确到1 cm.参考数据:sin75°≈0.965 9,cos75° • ≈0.258 8,tan75°≈3.732 1)
•【解析】(1)AD= AD=
=75(cm),
•∴车架档AD的长为75 cm.
•
=75(cm),
经检验,其余各点均在s=-5t2+15t上. ∴二次函数的解析式为:s=-5t2+15t.
其实际意义是刹车后到t2时间内的平均速度小于到t1 时间内的刹车后平均速度.
•三、统计图表信息题
此类题是通过常见的统计图表(频数分布表、频率分 布直方图、条形统计图、折线统计图、扇形统计图 等)给出数据信息和变化规律的常考题型.考查读图 、识图能力和分析数据、处理数据的能力,同时考 查学生“用数据说话”的应用意识.
(3)设从家到乙地的路程为m km,
• 【例2】(2010·宁波中考) • 小聪和小明沿同一条路同时 • 从学校出发到宁波天一阁查 • 阅资料,学校与天一阁的路 • 程是4千米,小聪骑自行车, • 小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折
线O-A-B-C和线段OD分别表示两人离学校的路程s(千米)与所经过的时 间t(分钟)之间的函数关系,请根据图象回答下列问题:
【例题3】 (2012·浙江衢州)据衢州市2011年国民经济和 社会发展统计公报显示,2011年衢州市新开工的住 房有商品房、廉租房、经济适用房和公共租赁房四 种类型.老王对这四种新开工的住房套数和比例进 行了统计,并将统计结果绘制成下面两幅统计图, 请你结合图中所给信息解答下列问题:
(1)求经济适用房的套数,并补全频数分布直方图; (2)假如申请购买经济适用房的对象中共有950人符 号购买条件,老王是其中之一.由于购买人数超过 房子套数,购买者必须通过电脑摇号产生.如果对 2011年新开工的经济适用房进行电脑摇号,那么老 王被摇中的概率是多少? (3)如果2012年新开工廉租房建设的套数比2011年增 长10%,那么2012年新开工廉租房有多少套?
【例题2】 (2012·浙江台州)某汽车在刹车后行驶的距离s( 单位:米)与时间t(单位:秒)之间的关系的部分数据如 下表:
•(1)根据这些数据在给出的坐标系中画出相应的点 ; •(2)选择适当的函数表示s与t之间的关系,求出相应 的函数解析式;
(3)①刹车后汽车行驶了多长距离才停止? ②当t分别为t1,t2(t1<t2)时,对应s的值分别为s1,s2 ,请比较S1/t1与s2/t2的大小,并解释比较结果的实 际意义.
(1)根据“奇异三角形”的定义,请你判断小华提出的 命题:“等边三角形一定是奇异三角形”是真命题还 是假命题? (2)在Rt△ABC中,∠C=90°,AB=c,AC=b, BC=a,且b>a,若Rt△ABC是奇异三角形,求 a∶b∶c; 分析 (1)根据“奇异三角形”的定义与等边三角形的 性质,求证即可; (2)根据勾股定理与奇异三角形的性质,可得a2+b2 =c2与a2+c2=2b2,用a表示出b与c,即可求得答案 .
•∴y1=-15x+135,y2=60x-360, •|y1-y2|=15,得 •所以,当小张出发 小时或 小时时与小李相距15千米.
•(3)3≤x≤4
•二、表格信息题
以表格的形式给出数据信息是这类信息题的特征, 分析表中的数据,能从表格中发现两个量之间存在 规律,归纳出相应的关系式是解决此类问题的关键.
分析 (1)根据扇形统计图中公租房所占比例以及条 形图中公租房数量即可得出衢州市新开工的住房总 数,从而得出经济适用房的套数.
(3)根据2011年廉租房共有6 250×8%=500套,得出 500(1+10%)=550套,即可得出答案.
解 (1)∵1 500÷24%=6 250, 6 250×7.6%=475, ∴经济适用房的套数有475套. 补全频数分布直方图如下:
•1)小聪在天一阁查阅资料的时间为______ 分钟,小聪返回学校的速度为______千米/ 分钟. •(2)请你求出小明离开学校的路程s(千米) 与所经过的时间t(分钟)之间的函数关系. •(3)当小聪与小明迎面相遇时,他们离学校 的路程是多少千米?
•【自主解答】(1)15, •(2)由图象可知,s是t的正比例函 数. •设所求函数的解析式为s=kt(k≠0) , •代入(45,4)得:4=45k,解得: k= •∴s与t的函数关系式s= t