飞控对比
飞控实验报告

飞控实验报告飞控实验报告引言:飞控系统是无人机的核心组成部分,它通过控制飞行器的各个部件,实现飞行器的稳定飞行。
本次实验旨在研究飞控系统的性能和控制算法,并通过实际操作验证其效果。
一、实验目的本次实验的主要目的是:1. 了解飞控系统的基本原理和结构;2. 研究不同控制算法在飞控系统中的应用效果;3. 通过实际操控飞行器,验证飞控系统的稳定性和精确性。
二、实验装置和方法1. 实验装置:使用一台无人机和相应的飞控系统,包括传感器、处理器和执行器等。
2. 实验方法:通过遥控器操控无人机,在不同环境条件下进行飞行实验,并记录相关数据。
三、飞控系统的基本原理飞控系统由传感器、处理器和执行器等组成。
传感器负责采集飞行器的状态信息,例如姿态、加速度等;处理器根据传感器采集的数据进行计算和控制;执行器则根据处理器的指令,控制飞行器的各个部件,例如电机、舵机等。
四、控制算法的选择与应用在飞控系统中,常用的控制算法包括PID控制、模糊控制和自适应控制等。
不同的算法适用于不同的飞行任务和环境条件。
本次实验将比较不同控制算法在飞行器的稳定性和精确性方面的表现。
五、实验结果与分析在实验过程中,我们分别采用PID控制、模糊控制和自适应控制算法进行飞行控制,并记录了相关数据。
通过对比分析,发现PID控制算法在飞行器的稳定性方面表现较好,能够快速响应外部干扰;模糊控制算法在飞行器的精确性方面表现较好,能够更准确地控制飞行器的姿态;自适应控制算法则在复杂环境下表现较好,能够根据环境变化自动调整控制参数。
六、实验总结与展望通过本次实验,我们深入了解了飞控系统的基本原理和结构,并研究了不同控制算法在飞行器中的应用效果。
实验结果表明,不同算法在不同方面有各自的优势。
未来,我们可以进一步研究和改进飞控系统,提高其性能和适用范围。
结语:飞控系统是无人机的核心技术之一,对于无人机的稳定飞行和精确控制起着重要作用。
本次实验通过实际操作验证了不同控制算法的效果,并为进一步研究和改进飞控系统提供了基础。
飞行控制系统简介

自动飞行控制系统飞行控制系统(简称飞控系统)的作用是保证飞机的稳定性和操纵性,提高飞机飞行性能和完成任务的能力,增强飞行的安全性和减轻驾驶员的工作负担。
深圳市瑞伯达科技有限公司,致力于成为全球无人机飞行器领导品牌,是智能化无人机飞行器及控制系统的研制开发的专业厂商,生产并提供各行业无人机应用的解决方案。
产品线涵盖各种尺寸多旋翼飞行器、专业航拍飞行器、无人机飞行控制系统、无人机地面站控制系统、高清远距离数字图像传输系统、专业级无线遥控器、高精飞行器控制模块及各类飞行器配件飞行器的自动飞行一、问题的提出早在重于空气的飞行器问世时,就有了实现自动控制飞行的设想。
1891年海诺姆.马克西姆设计和建造的飞行器上安装了用于改善飞行器纵向稳定性的飞行系统。
该系统中用陀螺提供反馈信号,用伺服作动器偏转升降舵。
这个设想在基本概念和手段上与现代飞行自动控制系统有惊人的相似,但由于飞机在试飞中失事而未能成为现实。
60年代飞机设计的新思想产生了,即在设计飞机的开始就考虑自动控制系统的作用。
基于这种设计思想的飞机称为随控布局飞行器(Control Configured Vehicle 简称CCV)。
这种飞机有更多的控制面,这些控制面协同偏转可完成一般飞机难以实现的飞行任务,达到较高的飞行性能。
飞控系统分类飞控系统分为人工飞行控制系统和自动飞行控制系统两大类。
由驾驶员通过对驾驶杆和脚蹬的操纵实现控制任务的系统,称为人工飞行控制系统。
最简单的人工飞行控制系统就是机械操纵系统。
不依赖于驾驶员操纵驾驶杆和脚蹬指令而自动完成控制任务的飞控系统,称为自动飞行控制系统。
自动驾驶仪是最基本的自动飞行控制系统。
飞控系统构成飞控系统由控制与显示装置、传感器、飞控计算机、作动器、自测试装置、信息传输链及接口装置组成。
控制及显示装置是驾驶员输入飞行控制指令和获取飞控系统状态信息的设备,包括驾驶杆、脚蹬、油门杆、控制面板、专用指示灯盘和电子显示器(多功能显示器、平视显示器等)。
PIXHAWK飞控概览

PIXHAWK飞控概览Pixhawk飞控的技术规格、接口分配、PWM,PPM-SUM和SBUS模式下的舵机与电调的连接方法、接口图,和与其他常见飞控的区别与选择。
技术规格•处理器32位 STM32F427 ARM Cortex M4 核心外加 FPU(浮点运算单元)168 Mhz/256 KB RAM/2 MB 闪存32位 STM32F103 故障保护协处理器•传感器Invensense MPU6000 三轴加速度计/陀螺仪ST Micro L3GD20 16位陀螺仪ST Micro LSM303D 14位加速度计/磁力计MS5611 MEAS 气压计•电源良好的二极管控制器,带有自动故障切换舵机端口7V高压与高电流输出所有的外围设备输出都有过流保护,所有的输入都有防静电保护•接口5个UART串口,1个支持大功率,两个有硬件流量控制Spektrum DSM/DSM2/DSM-X 卫星输入Futaba SBUS输入(输出正在完善中)PPM sum 信号RSSI(PWM或者电压)输入I2C, SPI, 2个CAN, USB3.3 与 6.6 ADC 输入•尺寸重量 38g宽 50 mm高 15.5 mm长 81.5 mmPixhawk 的接口分配PWM,PPM-SUM和SBUS模式下的舵机与电调的连接方法Pixhawk 接口图上图中针脚1在右边串口 1 (Telem 1),串口 2 (Telem 2) ,串口 (GPS) 针脚: 6 = GND, 5 = RTS, 4 = CTS, 3 = RX, 2 = TX, 1 = 5V.选择哪款飞控? APM 、PX4,还是 PIXHAWK•APM2.5与2.6是传统ardupilot飞控的最新(也是最终)版本:APM25 与 26 概览•PX4FMU与PX4IO 是这个新飞控家族的最初两个版本:Px4FMU 概览与 Px4IO 概览•Pixhawk是根据我们的需要,结合PX4FMU / PX4IO改进而开发出的PX4飞控的单块电路板版本。
民用飞机电传飞控系统浅析

民用飞机电传飞控系统浅析摘要:电传飞行控制系统是从上世纪80年代开始在民用飞机上逐步推广使用的飞行控制系统,它取代了以钢索传动为特征的机械操纵系统,重量更轻,安全性更高。
阐述了电传飞控系统的优点及以B777与A380飞机飞控系统为代表的两种典型的电传飞控系统的架构,并简单地分析和对比了两种飞控系统的计算机系统架构。
希望为大型客机电传飞行控制系统的自主设计和研制提供参考与借鉴。
关键词:余度;可靠性;安全性;架构0 引言电传飞行控制系统(fly—by—wire control system)是取代机械操纵系统的电飞行控制系统。
它实质上是一种全权限的控制增稳系统。
驾驶员通过操纵装置(驾驶盘、驾驶杆或侧杆、脚蹬)发出控制指令,由指令传感器将驾驶员的机械指令转换成电信指令,并由电缆传输到飞控计算机,通过作动器驱动舵面偏转,控制飞机飞行。
电传飞行控制系统主要由指令装置、传感器、飞控计算机和作动器等组成。
一般电传操纵系统都采用余度备份系统。
余度设计是为完成规定功能而设置的重复架构、备件等,以备局部发生失效时,整机或系统仍然不至于发生丧失规定功能的设计。
1 电传飞控系统相对机械操纵系统的优势1.1 电传飞控系统带来的收益1.1.1减轻重量一架电传飞控的飞机可能比常规控制的飞机设计得轻,这一部分是因为系统部件的总重量更低的原因,另一部分是因为可以放宽飞机的固有气动稳定性,这意味着作为飞机结构的一部分起稳定性作用的活动面可以被做得更小。
这包括一般位于飞机尾部的水平安定面与垂直安定面。
如果可以减小这些结构的大小,也就可以减轻飞机的重量。
1.1.2可靠性由于使用导线代替了机械传动的传动杆、钢索等,使得系统的结构重量减轻、体积减少、节约了空间、容易安装、维护方便,设计飞机时布局也更加灵活,提高了飞行操纵系统的可靠性和生存性。
1.1.3维护性其次是消除了机械操纵系统的摩擦、滞后等现象,使飞机操纵性得到改善,并且杜绝了机械操纵系统易受弯曲、热膨胀等飞机结构变形的影响。
空客A320真机与模拟机的电传操纵对比

电传操纵
电传操纵(Fly-ByWire)是航空领域中 一种将航空器驾驶员 的操纵输入,通过转 换器转变为电信号, 经计算机或电子控制 机器处理,再通过电 缆传输到执行机构一 种操纵系统。它省掉 了传统操纵系统中的 机械传动装置和液压 管路。
A320飞行控制系统概述-F/CTL 舵面
电传操作简图
史都华平台
空客A320真机与
模拟机的电传操 纵对比
飞机的飞控系统
飞行控制系统(Aircraft flight control system) 是由控制面、驾驶舱操控装置、铰链以及必要 的机械机构组成,用以控制飞机飞行。
机械式
最基本的飞行控 制系统。常见于 空气动力不是很 强的早期飞机或 现代的小型飞机。 这类飞控系统利 用各种机械部件 如杆、绳索、滑 轮甚至链条将飞 行员的操纵力从 驾驶舱操纵装置 传递到控制面上
3部SEC(扰流板升降舵计算机) 提供:扰流板控制、备用升降舵和安定面控制
2部FAC(飞行增稳计算机) 提供方向舵电动控制
2部FCDC 飞行操纵数据集中器(FCDU)从ELAC和SEC获得数据 并将数据送至电子仪表系统(EIS)和中央故障显示系统 (CFDS)
部件安装位置
Motion Base
飞行控制系统概述-F/CTL 计算机
F/CTL 计算机的配置
2 个 EALC 升降舵副翼计算机 3 个 SEC 扰流板升降舵计算机 2 个 FACห้องสมุดไป่ตู้飞行增稳计算机 2 个 SFCC 襟缝翼计算机
系统简介
2部ELAC(升降舵副翼计算机) 提供:正常升降舵和安定面控制、副翼控制
国内外比较好的几款飞控系统介绍和性能配置

国内外几款比较好的飞控产品(1)零度智控的YS09飞控套件主要参数:开发板硬件资源介绍电源芯片LM2596-5,允许输入7~20V电压,为电路板提供稳定5V;LM2677,为舵机、接收机提供6V电压,统一供电。
中央处理器CPU ATMEL公司的AT91RM9200,工业级,主频200MHZ。
外部动态存储器1片SDRAM,HY57V641620E。
FLASH 1片512K的DATAFLASH;可扩充32M的FLASH,RC28F320J3C-125。
串口4个全双工串口,包含1个DBG口。
调试及下载接口一个标准10芯JTAG口。
FPGA ALTERA公司的CYCLONE系列EP1C3T100。
LED指示灯两个贴片LED,可由程序及FPGA代码控制点亮与熄灭。
GPS模块UBLOX的LEA-4S,支持4HZ刷新率。
压力计集成IMU 两个MS5534A气压传感器,数字SPI总线,精度0.1mba,可获得气压高度与空速。
Analog Devices公司新推出的3轴加速度计与3轴陀螺仪集成器件ADIS16355,IMU整体解决方案,消除正交误差。
电压转换芯片一片AD7998,8个独立通道,12位转换精度,TWI总线。
其它留有系统扩展接口,输出到舵机的信号全部由驱动芯片74LVC16245进行了隔离。
图13 YS09飞控正视图图14 YS09飞控后视图(2)北京普洛特无人飞行器科技有限公司的UP30/40飞控系统UP30性能参数:集成3轴MEMS加速度计、速率陀螺,GPS,空速传感器,及更高精度的全数字气压高度计供电范围扩展为4~26V,很多电动飞机的动力电可以直接给其供电体积相对UP20更小巧,仅为40X100X12mm3,重量26g外部接口和任务功能灵活且可以定制可内置3轴电子罗盘,支持3轴云台控制具备GPS/INS惯性导航功能,满足在丢星情况下返回起飞点舵机扩展到10~24个,分别可以执行飞行控制和其他任务支持国产低速通讯电台(最低波特率至1200bps),使得通讯距离更远、更可靠、误码率更低 2~6个10位AD,1路16位AD,充分满足任务数据采集需求大气数据探测能力,可以观测大气温压湿,以及风向风速具备UP20所具备的定时定距以及定点的航拍功能具备2路转速监测,特别适合于双发动机的无人机、无人飞艇的转速监测新的电气停车功能支持除了原来的磁电机发动机(如小松系列),还支持CDI点火的发动机(如3w等)支持全自动伞降;可连接超声波高度传感器实现全自动的滑跑降落,只需要在地面站上指定降落点与方向以及左右盘旋,飞控自动推算下滑航线。
Pixhawk飞控概览、快速入门

Pixhawk飞行控制器概览目录 [隐藏]• 1 Pixhawk飞行控制器概览• 2 技术规格• 3 Pixhawk 的接口分配• 4 PWM,PPM-SUM和SBUS模式下的舵机与电调的连接方法• 5 Pixhawk 接口图• 6 选择哪款飞控? APM 、PX4,还是 PIXHAWK•7 PIXHAWK 系统特性•8 Pixhawk飞控系统的组成部分:•9 PX4FMU / PX4IO与PIXHAWK的比较•10 PX4FMU / PX4IO与Pixhawk的主要区别•11 连接与断开DF13接头技术规格•处理器o32位 STM32F427 ARM Cortex M4 核心外加 FPU(浮点运算单元)o168 Mhz/256 KB RAM/2 MB 闪存o32位 STM32F103 故障保护协处理器•传感器o Invensense MPU6000 三轴加速度计/陀螺仪o ST Micro L3GD20 16位陀螺仪o ST Micro LSM303D 14位加速度计/磁力计o MS5611 MEAS 气压计•电源o良好的二极管控制器,带有自动故障切换o舵机端口7V高压与高电流输出o所有的外围设备输出都有过流保护,所有的输入都有防静电保护•接口o5个UART串口,1个支持大功率,两个有硬件流量控制o Spektrum DSM/DSM2/DSM-X 卫星输入o Futaba SBUS输入(输出正在完善中)o PPM sum 信号o RSSI(PWM或者电压)输入o I2C, SPI, 2个CAN, USBo 3.3 与 6.6 ADC 输入•尺寸o重量 38go宽 50 mm;高 15.5 mm ;长 81.5 mmPixhawk 的接口分配PWM,PPM-SUM和SBUS模式下的舵机与电调的连接方法Pixhawk 接口图上图中针脚1在右边串口 1 (Telem 1),串口 2 (Telem 2) ,串口 (GPS) 针脚: 6 = GND, 5 = RTS, 4 = CTS, 3 = RX, 2 = TX, 1 = 5V.选择哪款飞控? APM 、PX4,还是 PIXHAWK•APM2.5与2.6是传统ardupilot飞控的最新(也是最终)版本:APM25 与 26 概览•PX4FMU与PX4IO 是这个新飞控家族的最初两个版本:Px4FMU 概览与Px4IO 概览•Pixhawk是根据我们的需要,结合 PX4FMU / PX4IO改进而开发出的PX4飞控的单块电路板版本。
FPV知识----1、如何选_飞控_2、关于天线_3、视频采集4、图传

各种飞控简介觉得飞控的选择是一个非常头大的事吗,是因为我们平时了解的太少,在这里给模友一点点的归类和介绍,希望对你有用,呵呵,为了避免系统屏蔽,并让大家看的明白,产品名内加了空格。
【R E M Z I B I -OSD】中文界面,它只是一个OSD视频叠加系统,没有飞控板,如果不想让飞机在天上自主飞行,只是想看屏幕自己来操作飞机的,是个不错的选择。
飞行视频欣赏/v_show/id_XMjY3Mjg5NjA0.html连接电脑设置教程/archives/372【信鸽OSD模块】号称FPV最具性价比OSD模块,它也只是一个OSD视频叠加系统,没有飞控板。
飞行视频欣赏/v_show/id_XMTg1OTk3ODg0.html信鸽OSD使用说明书下载:/pigeon/V2/ ... 20MODULE%20V2.0.pdf【决不退棋OSD】中文提示功能,自称以重量轻为特色,它也只是一个OSD视频叠加系统。
【A R K B I R D飞控】号称最好调试的飞控,可根据空间随意放置,如果两个飞控配合还可以实现编队飞行很有特色,很多模友青莱此作品。
视频欣赏/search_video/q_arkbird智能编队模式,一控飞双机,跟踪拍摄:/v_show/id_XMzQxMDc5MjI4.html【江南飞控】以配置来看,非常超值的飞控,集成三轴陀螺,三轴加速度,三轴磁阻,气压计,使用ARM处理器,按价位如此配置在平民飞控中目前无人能及。
未得到提供的链接,更多视频和信息可以自行搜索。
【独眼龙飞控】使用红外平衡仪,具备4个不同OSD叠加界面,含起飞点的8个3D航点功能,老牌了,功能很强大。
未得到提供的链接,更多视频和信息可以自行搜索。
【S k y l a r k】使用红外平衡仪,其提供的介绍并不多,网上相关内容很容易搜到,另外其出品的地面跟踪云台看上去很不错。
未得到提供的链接,更多视频和信息可以自行搜索。
【老鹰树飞控】国外老牌产品,提供非常丰富的可设定参数,三航点,长时间不动控返航功能,能玩转功能很强大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单价
999元 姿态稳定,高度锁定支持6轴及以下多轴飞行器,不支持8轴及自定义安装方向确定,安装位置固定提供LED指示灯支持多种遥控器,可进行遥控器校准两种控制模式 — 手动模式、姿态模式自驾参数可调试两轴云台增稳 失控保护,遥控器回中自稳,超时自动降落电压保护电压一级保护为LED闪灯报警二级为自动降落D-Bus, 支持S-Bus 支持远程调参 启动方式同WK-M 支持参数导入导出支持在线升级单价
1999一体设计,6轴陀螺仪组合器件独立电源模块大疆第四代全新姿态算法支持九种不同机型(八轴不支持大震动机架)多种飞行模式自行切换(只有三种)gps模块精度《2.5米,高低《0.8米智能方向控制失控保护,低电压保护掰杆启动及掰杆停止模式 四通道和四通道以上的接收机均可支持iosd(航拍时显示姿态)Zenmuse GoPro云台(控制俯仰2轴云台)蓝牙调参单价
5999功能
在大风环境下的精确定位悬停增稳达到一个更高的境界热点环绕功能遥控器触发自动返航功能免费激活单点地面站增加对PPM接收机的支持云台舵机输出频率范围:400hz,200hz,100hz和50hz 云台舵机横滚与俯仰限位放宽至90°gps模块精度《2.5米,高低《0.8米面向商用及工业用多旋翼平台的飞控系统扩展功能
大疆对所有接口封装,只能换自己的配件不适合开发,适合商业运行支持市面上最常见的第三方电调单价
1200(自己的代码,不存在侵权问题)功能15种飞行模式
多种翼型(各种多旋翼,包括大震动八轴)和车辆控制支持市面上所有常见电调
gps模块精度《1.0米,高低《0.5米(优化的双GPS差分定位法)全新的姿态算法
wookong-m 我们开发的开源飞控naza-m lite 功能
扩展功能
naza-m v2功能
扩展功能
整合型 3 轴角速度和 3 轴加速度传感器
气压传感器
光流传感器(室内飞行定位)
自主设计的超低功耗无线收发模块
优化的强大的地面站功能,摆脱遥控束缚,电脑鼠标控制飞行轨迹
四通道和四通道以上的接收机均可支持
可脱离摇控飞行
最多可支持256个航点
扩展功能支持市面上3轴云台
航拍功能(飞行超稳定)
apk安卓手机控制,强于大疆的地面站
D飞行,一键返航,定点、定高飞行,绕点飞行,执行巡航任务,自动导航,精确定位,低电压自动返航,遥控器失效保护,自
航,遥控器失效保护,自动降落,跟随飞行(使用者携带gps设备)等。