概率论习题一
概率论习题

第一章 习题一.选择题1 设A B ⊂,则下面正确的等式是 。
A )(1)(A P AB P -=; B )()()(A P B P A B P -=-;C )()|(B P A B P =;D )()|(A P B A P = 2 设A 和B 是两个随机事件,则下列关系式中成立的是( )A P (A )≥P (A |B ) B P (A )≤P (A |B )C P (A )≥P (A+B )D P (A )≤P (AB )3.在下列四个条件中,能使)()()(B P A P B A P -=-一定成立是( ) A 、B A ⊂ B 、A 、B 独立 C 、A 、B 互不相容 D 、A B ⊂4.设在每次试验中,事件A 发生的概率为)10(<<p p ,p q -=1,则在n 次独立重复试验中,事件A 至少发生一次的概率是( )A 、n pB 、n qC 、n p -1D 、n q -15.设C B A ,,三个事件两两独立,则C B A ,,相互独立的充分必要条件是( ) A 、A 与BC 独立 B 、AB 与C A 独立 C 、AB 与BC 独立 D 、B A 与C A 独立6 设每次试验成功的概率为)10(<<p p ,重复进行试验直到第n 次才取得)1(n r r ≤≤ 次成功的概率为 . A rn rr n p p C ----)1(11; B rn r r n p p C --)1(;C 1111)1(+-----r n r r n p pC ;D r n r p p --)1(.二.填空题1 设随机事件A ,B 互不相容,且3.0)(=A P ,6.0)(=B P ,则=)(A B P .2 随机事件A和B 相互独立, 且P (A )=0.6, P(A-AB)=0.3, 则P(B)=______P(A ∪B)=_________3 设 样 本 空 间 U = {1, 2, 10 }, A ={2, 3, 4, }, B={3, 4, 5, } ,C={5, 6, 7}, 则 ()C B A 表 示 的 集 合 =______________________4 设C B A ,,为三个事件,则“C B A ,,中至少有一个发生”可表示为5 一批电子元件共有100个, 次品率为0.05. 连续两次不放回地从中任取一个, 则第二次才取到正品的概率为 . 6设,A B 为两随机事件,已知8.0)(,)(3.07.0)(=⋃+==B A P B P A P ,则(|)P A A B =三 计算题1 为了防止意外,矿井内同时装有A 与B 两两种报警设备, 已知设备 A 单独使用时有效的概率为0.92, 设备 B 单独使用时有效的概率为0.93, 在设备 A 失效的条件下, 设备B 有效的概率为 0.85, 求发生意外时至少有一个报警设备有效的概率.2 甲、乙.丙三人同时对一架飞机进行射击,设甲.乙.丙三人击中飞机的概率分别为0. 4,0.5 和0.7,飞机被一人击中而被击落的概率为0.3,飞机被两人同时击中而被击落的概率为0.6,飞机被三人击中而被击落的概率为0.9,求飞机被击落的概率.3 已知一批产品中96 %是合格品. 检查产品时,一合格品被误认为是次品的概率是0.02;一次品被误认为是合格品的概率是0.05. 求在被检查后认为是合格品的产品确实是合格品的概率.4 某厂卡车运送防“非典”用品下乡,顶层装10个纸箱,其中5箱民用口罩、2箱医用口罩、3箱消毒棉花. 到目的地时发现丢失1箱,不知丢失哪一箱. 现从剩下9箱中任意打开2箱,结果都是民用口罩,求丢失的一箱也是民用口罩的概率.5 两台车床加工同样的零件,第一台出现废品概率为0.03,第二台出现废品的概率是0.02;加工出来的零件放在一起。
概率论第一章习题

Hi)
1 7 3 30
8 30
5 30
2 9
q
P( A1
A2 )
P( A1A2 ) P( A2 )
2 9
61 90
20 61
补充练习题
1. 假设事件A和B满足P(B|A)=1,则( )
(A) 事件A是必然事件 (B)P(A/B)=0
(C) A B
(D)B A
答案:D
解析:由于P(A|B)=P(AB)/P(A)=1,可知P(AB)=P(A).从而 有A B.
此箱玻璃杯中,确实没有次品的概率.
解:设 A={顾客买下所查看的一箱},
Bi={箱中恰好有 i 件次品}, i=0, 1, 2.
由题设可知:P(B0)=0.8, P(B1)=0.1, P(B2)=0.1,
P(A|B0)=1
P(A|B1)=
C149|B2)=
C148
C
4 20
12 19
m n1
n m
n
C
2 n
C2 m n1
m2 mn2
4. 设玻璃杯整箱出售, 每箱20个, 各箱含0, 1, 2个次品的概率
分别为 0.8, 0.1, 0.1,某顾客欲购买一箱玻璃杯, 由售货员任取
一箱, 经顾客开箱随机查看 4个. 若无次品, 则买一箱玻璃杯,
否则不买. 求: (1)顾客买此箱玻璃杯的概率;(2)在顾客买的
2. 设 P(A)=0.3, P(B)=0.4,P(A|B)=0.5, 求 P(B|A), P(B| A∪B), P( A∪B | A∪B).
[答案] 0.2, 0.8, 0.6
3. 一袋中装有m(m3)个白球和 n个黑球,今丢失一 球,不知其色. 先随机从袋中摸取两球,结果都是白 球,球丢失的是白球的概率.
概率论习题试题集

11. 将8本书任意放到书架上,求其中3本数学书恰排在一起的概率。
12. 某人买了大小相同的新鲜鸭蛋,其中有a只青壳的,b只白壳的,他准备将青壳蛋加工成咸蛋,故将鸭蛋一只只从箱中摸出进行分类,求第k次摸出的是青壳蛋的概率。
13. 某油漆公司发出17桶油漆,其中白漆10桶,黑漆4桶,红漆3桶,在搬运中所有标签脱落,交货人随意将这些油漆发给顾客。
问一个订货为4桶白漆、3桶黑漆,2桶红漆的顾客,能按所定颜色如数得到订货的概率是多少?14. 将12名新技工随机地平均分配到三个车间去,其中3名女技工,求:(1)每个车间各分配到一名女技工的概率;(2)3名女技工分配到同一车间的概率。
15.从6双不同的手套中任取4只,求其中恰有两只配对的概率。
16.从0,1,2,......,9十个数中随机地有放回的接连取三个数字,并按其出现的先后排成一列,求下列事件的概率:(1)三个数字排成一奇数;(2)三个数字中0至多出现一次;(3)三个数字中8至少出现一次;(4)三个数字之和等于6。
(利用事件的关系求随机事件的概率)17. 在1~1000的整数中随机地取一个数,问取到的整数既不能被4整除,又不能被6整除的概率是多少?18. 甲、乙两人先后从52张牌中各抽取13张,(1)若甲抽后将牌放回乙再抽,问甲或乙拿到四张A的概率;(2)若甲抽后不放回乙再抽,问甲或乙拿到四张A的概率。
19. 在某城市中发行三种报纸A,B,C,经调查,订阅A报的有45%,订阅B报的有35%,订阅C报的有30%,同时订阅A及B的有10%,同时订阅A及C的有8%,同时订阅B及C的有5%,同时订阅A,B,C 的有3%。
试求下列事件的概率:(1)只订A报的;(2)只订A及B报的;(3)恰好订两种报纸。
20.某人外出旅游两天,据预报,第一天下雨的概率为0.6,第二天下雨的概率为0.3,两天都下雨的概率为0.1,试求:(1)至少有一天下雨的概率;(2)两天都不下雨的概率;(3)至少有一天不下雨的概率。
概率论与数理统计:概率论练习题1及答案

5 / 8概率论练习题1(本大题共 6 小题,每小题 3 分,共 18 分)1、若当事件A ,B 同时发生时,事件C 必发生,则下列选项正确的是( ) A .()()P C P AB =; B .()()P C P AB ≤; C .()()P C P AB ≥; D .以上答案都不对.2、设随机变量()~X E λ,则下列选项正确的是( )A .X 的密度函数为(),00,0x e x f x x λ-⎧>=⎨≤⎩;B .X 的密度函数为(),00,0x e x f x x λλ-⎧>=⎨≤⎩;C .X 的分布函数为(),00,0x e x F x x λλ-⎧>=⎨≤⎩;D .X 的分布函数为()1,00,0x e x F x x λλ-⎧->=⎨≤⎩.3、设相互独立的连续型随机变量1X ,2X 的概率密度函数分别()1f x ,()2f x ,分布函数分别为()1F x ,()2F x ,则下列选项正确的是( ) A .()()12f x f x +必为某一随机变量的概率密度函数; B .()()12f x f x ⋅必为某一随机变量的概率密度函数; C .()()12F x F x +必为某一随机变量的分布函数; D .()()12F x F x ⋅必为某一随机变量的分布函数.4、设()~,X B n p ,()2~,Y N μσ,则下列选项一定正确的是( ) A .()E X Y np μ+=+; B .()E XY np μ=⋅; C .()()21D X Y np p σ+=-+; D .()()21D XY np p σ=-⋅.5、设随机变量X 与Y 相互独立,且都服从()1,0.2B ,则下列选项正确的是( )6 / 8A .()1P X Y ==;B .()1P X Y ≤=;C .()1P X Y ≥=;D .以上答案都不对. 6、设12,,,,n X X X 为独立的随机变量序列,且都服从参数为()0λλ>的指数分布,当n 充分大时,下列选项正确的是( )A .21nii Xn nλλ=-∑近似服从()0,1N ; Bni X nλ-∑近似服从()0,1N ;C .21ni i X λλ=-∑近似服从()0,1N ; D .1ni i X nnλ=-∑近似服从()0,1N .二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)1、设事件A ,B ,C 相互独立,且()()()P A P B P C ==,()1927P A B C =,则()P A =.2、若()14P A =,()13P B A =,()12P A B =,则()P A B =.3、设()2~10,X N σ,且()10200.3P X <<=,则()010P X <<=.4、设随机变量X 与Y 相互独立,且()~100,0.3X B ,()~4Y P ,则()D X Y -=.5、设平面区域(){},01D x y x y =≤≤≤,二维随机变量(),X Y 在区域D 上服从均匀分布,则(),X Y 的联合分布密度函数为.6、若随机变量X 的分布律为()()2,0,1,2,k P X k ae k -+===,则常数a =.三、解答题(本大题共 6 小题,共 64 分)5 / 81、设盒一装有1支红色笔和2支黑色笔,盒二装有2支红色笔和1支黑色笔,盒三装有3支红色笔和3支黑色笔.现掷一枚匀质骰子,若掷出1点,则从盒一中任取一支笔,若掷出6点,则从盒三中任取一支笔,否则均从盒二中任取一支笔.求取出黑色笔的概率.(10分)2、一盒装有6只灯管,其中有2只次品,4只合格品,随机地抽取一只测试,测试后不放回,直到2只次品都被找出,求所需测试次数X 的概率分布及均值.(10分)3、设连续型随机变量X 的分布密度函数为(),13;0,ax b x f x +<<⎧=⎨⎩其他.,且{}{}23212P X P X <<=-<<,求常数a 和b 的值.(10分)6 / 84、设某工程队完成某项工程所需时间X (天)服从()100,25N .工程队若在100天内完工,可获奖金10万元;若在100~115天内完工,可获奖金3万元;若超过115天完工,则罚款5万元.求该工程队在完成工程时所获奖金的均值(要求用标准正态分布的分布函数值表示).(10分)5、设二维随机变量(),X Y 的概率密度函数为()8,01;,0,xy x y f x y <<<⎧=⎨⎩其他,求关于X 和Y 的边缘分布密度函数()X f x 和()Y f y ,并判别X 与Y 是否相互独立.(10分)5 / 86、设()~,X U a b ,且()0E X =,()13D X =.试确定X 的概率密度函数(6分)7、设随机变量X 服从标准正态分布,求2Y X =的概率密度函数()Y f y .(8分)6 / 8概率论练习题1参考答案一、单项选择题(本大题 6 小题,每小题 3 分,共 18 分) 1、C ; 2、B ; 3、D ; 4、A ; 5、D ; 6、B . 二、填空题(本大题 6 小题,每小题 3 分,共 18 分)1、13; 2、13; 3、0.3; 4、25; 5、()()2,,;,0,x y D f x y ∈⎧⎪=⎨⎪⎩其他.; 6、23e e ---.三、解答题(本大题 6 小题,共 64 分)1、解 设A 表示“取出黑色笔”,iB 表示“从盒i 中取笔”,1,2,3i =.……..2分则()()1316P B P B ==,()246P B =,()123P A B =,()213P A B =,()312P A B =,…………7分故由全概率公式,有()()()31124111563636212iii P A P B P A B ===⋅+⋅+⋅=∑.……………….10分2、解 由题意可知,X 的所有可能取值为2,3,4,5,6,…………….…….2 且{}1215P X ==,{}2315P X ==,{}145P X ==, {}4515P X ==,{}163P X ==,……..7分 所以 ()121411423456151551533E X =⨯+⨯+⨯+⨯+⨯=.……………………10分 3、解 由密度函数的性质()1f x dx +∞-∞=⎰,可得()31421ax b dx a b +=+=⎰,………..3分又由 {}{}23212P X P X <<=-<<,可得()()32212ax b dx ax b dx +=+⎰⎰,即02ab +=,…..7分联立方程,解得11,36a b ==-.………………………………………….10分4、解 方法1 由题设知工程队完成工程所需天数()~100,25X N .设所获奖金为Y 万元,Y 的可能取值为10,3,-5,Y 取各值的概率为()100100{10}{100}(100)00.55P Y P X F -⎛⎫==≤==Φ=Φ= ⎪⎝⎭, ()115100100100{3}{100115}(115)(100)30.555P Y P X F F --⎛⎫⎛⎫==<≤=-=Φ-Φ=Φ- ⎪ ⎪⎝⎭⎝⎭, 115100{5}{115}1(115)11(3)5P Y P X F -⎛⎫=-=>=-=-Φ=-Φ ⎪⎝⎭,…………….8分Y 因此 ()()()()100330.5513E Y =⨯Φ+Φ---Φ⎡⎤⎡⎤⎣⎦⎣⎦()()()100.5330.551383 1.5=⨯+Φ---Φ=Φ-⎡⎤⎡⎤⎣⎦⎣⎦.…………10分方法2 由题设知工程队完成工程所需天数()~100,25X N , 所获奖金10,100;3,100115;5,115.X Y X X ≤⎧⎪=<≤⎨⎪->⎩…………………………………………….2分5 / 8而()100100{10}{100}(100)00.55P Y P X F -⎛⎫==≤==Φ=Φ= ⎪⎝⎭, ()115100100100{3}{100115}(115)(100)30.555P Y P X F F --⎛⎫⎛⎫==<≤=-=Φ-Φ=Φ- ⎪ ⎪⎝⎭⎝⎭, 115100{5}{115}1(115)11(3)5P Y P X F -⎛⎫=-=>=-=-Φ=-Φ ⎪⎝⎭,…….8分因此 ()()()()100330.5513E Y =⨯Φ+Φ---Φ⎡⎤⎡⎤⎣⎦⎣⎦()()()100.5330.551383 1.5=⨯+Φ---Φ=Φ-⎡⎤⎡⎤⎣⎦⎣⎦.…………10分5、解 关于X 的边缘分布密度函数()Xf x :当0x ≤或1x ≥时,(,)0f x y =,所以()(),00Xf x f x y dy dy +∞+∞-∞-∞===⎰⎰,当01x <<时,()()()1212,8441Xxxf x f x y dy xydy xy x x +∞-∞====-⎰⎰,所以,()()241,01;0,X x x x f x ⎧-<<⎪=⎨⎪⎩其他. ………………………….4分关于Y 的边缘分布密度函数()Yf y :当0y ≤或1y ≥时,(,)0f x y =,所以()(),00Yf y f x y dx dx +∞+∞-∞-∞===⎰⎰,当01y <<时,()()230,844yyYf y f x y dx xydx yx y +∞-∞====⎰⎰,所以()34,01;0,Yy y f y ⎧<<⎪=⎨⎪⎩其他..……………………………………………8分于是()()()()32161,01,01;,0,X Y xy x x y f x f y f x y ⎧-<<<<⎪=≠⎨⎪⎩其他,所以X 与Y 不相互独立.……………………………………………10分 6、解 因为()~,X U a b ,所以()2a bE X +=,()()212b a D X -=,于是有()241,2123b a a b -+==,解得 1,3a b =-=,………….…..4分故X 的概率密度函数为()1,13;40,x f x ⎧-<<⎪=⎨⎪⎩其他..………………….6分7、22(0,1),(),.x X N x x ϕ-=-∞<<∞Y 的分布函数为2()()()Y F y P Y y P X y =≤=≤ ……………………2分 当0y ≤时,()()0Y F y P Y y =≤=,从而()0.Y f y = ……………………4分当0y>时,2()(){(YF y P X y P X=≤=≤≤=Φ-Φ…6分从而2()()(((Y Yyf y F yϕϕϕϕ-'''==Φ-Φ==+=7分所以20()0,0-⎧>=≤⎩yYyf yy……………………………………………8分6 / 8。
概率论习题一

第一章(A)A、AB互斥B、A、B互斥C A、B互斥D A、B互斥2、以A表示事件“甲种产品畅销,乙种产品滞销”,则A表示(C)A甲种产品滞销,乙种产品畅销B、甲乙两种产品均畅销C甲产品滞销或乙产品畅销D甲乙两种产品均滞销3、设A、B为两个事件,若AB,则一定有(B)A P(AB)=P(B)B、P(AB)=RB)CP(B|A)=P(B)D、P(A|B)=P(B)4、设AB为两个随机事件,则p(AB),P(AB),P(A)+P(B)由小到大的顺序是(A) AP(AB)<p(AB)<P(A)+P(B)BP(A)+P(B)<P(AB)<p(AB)Cp(AB»<P(AB)<P(A)+P(B)DP(AB)<P(A)+P(B)<p(AB)5、设AB为两个事件,且0<P(A)<1,RB)>0,P(B|A)=P(B|A),则必有(C)A、P(A|B)=P(A|B)RP(A|B)乎P(A|BCP(A|B)=P(A)D、P(A|B)=P(B)6、设A、B、C为三个相互独立的随机事件,且有0<P(C)<1,则下列事件不相互独立的是(A)A AC与CB AB与C C A B与CD A B与C7、在一次实验中,事件A发生的概率为p(0<p<1),进行n次独立重复试验,则事件A 之多发生一次的概率为(D)A1p n B p n C11P N D1p n np1p n18、对飞机连续射击三次,每次发射一枚炮弹,事件A(i=1,2,3)表示第i次射击击中飞机,则“至少有一次击中飞机”可表示为A,A2A3,“至多击中一次”表示为A〔A2A3A,2A3A1A2A3AA2A39、设A、B为随机事件,则ABAB=B10、若事件A、B互不相容,则PAB=P(A),PBA=RB),若事件A、B相互独立,则PAB=P(A)P(B),PBA=P(B)P(A)11、已知P(A)=0.5,P(B)=0.4,P(B|A)=0.6,则PAB=0.6,PAB0.75.12、已知P(A)=0.5,P(B)=0.4,若A、B相互独立,则PAB=0.7.13、根据调查所知,一个城镇居民三口之家每年至少用600元买粮食的概率是0.5,至少用4000元买副食的概率是0.64,至少用600元买粮食同时用4000元买副食的概率为0.27,则一个三口之家至少用600元买粮食或至少用4000元买副食的概率为。
概率论习题全部

概率论习题全部概率论习题全部1习题⼀习题⼀1. ⽤集合的形式写出下列随机试验的样本空间与随机事件A:(1)掷两枚均匀骰⼦,观察朝上⾯的点数,事件A表⽰“点数之和为7”;(2)记录某电话总机⼀分钟内接到的呼唤次数,事件A表⽰“⼀分钟内呼唤次数不超过3次”;(3)从⼀批灯泡中随机抽取⼀只,测试它的寿命,事件A表⽰“寿命在2 000到2 500⼩时之间”.2. 投掷三枚⼤⼩相同的均匀硬币,观察它们出现的⾯.(1)试写出该试验的样本空间;(2)试写出下列事件所包含的样本点:A={⾄少出现⼀个正⾯},B={出现⼀正、⼆反},C={出现不多于⼀个正⾯};(3)如记A={第i枚硬币出现正⾯}(i=1,2,i3),试⽤123A A A表⽰事件A,B,C.,,3. 袋中有10个球,分别编有号码1~10,从中任取1球,设A={取得球的号码是偶数},B={取得球的号码是奇数},C={取得球的号码⼩习题⼀ 2 于5},问下列运算表⽰什么事件:(1)A B ;(2)AB ;(3)AC ;(4)AC ;(5)C A ;(6)B C ;(7)A C -. 4. 在区间上任取⼀数,记112A x x ??=<≤,1342B x x ??=≤≤,求下列事件的表达式:(1)A B ;(2)AB ;(3)AB ,(4)A B .5. ⽤事件A ,B ,C 的运算关系式表⽰下列事件:(1)A 出现,B ,C 都不出现;(2)A ,B 都出现,C 不出现;(3)所有三个事件都出现;(4)三个事件中⾄少有⼀个出现;(5)三个事件都不出现;(6)不多于⼀个事件出现;(7)不多于⼆个事件出现;(8)三个事件中⾄少有⼆个出现.6. ⼀批产品中有合格品和废品,从中有放回地抽取三个产品,设表⽰事件“第次抽到废品”,试⽤的运算表⽰下列各个事件:(1)第⼀次、第⼆次中⾄少有⼀次抽到废品;(2)只有第⼀次抽到废品;(3)三次都抽到废品;]2,0[i A i iA习题⼀3 (4)⾄少有⼀次抽到合格品;(5)只有两次抽到废品.7. 接连进⾏三次射击,设={第i 次射击命中}(i =1,2,3),试⽤表⽰下述事件:(1)A ={前两次⾄少有⼀次击中⽬标};(2)B ={三次射击恰好命中两次};(3)C ={三次射击⾄少命中两次};(4)D ={三次射击都未命中}.8. 盒中放有a 个⽩球b 个⿊球,从中有放回地抽取r 次(每次抽⼀个,记录其颜⾊,然后放回盒中,再进⾏下⼀次抽取).记={第i 次抽到⽩球}(i =1,2,…,r ),试⽤{}表⽰下述事件:(1)A ={⾸个⽩球出现在第k 次};(2)B ={抽到的r 个球同⾊},其中1k r ≤≤.*9. 试说明什么情况下,下列事件的关系式成⽴:(1)ABC =A ;(2)A B C A =.iA 321,,A A A iA iA习题⼆ 3习题⼆1. 从⼀批由45件正品、5件次品组成的产品中任取3件产品,求其中恰有1件次品的概率.2. ⼀⼝袋中有5个红球及2个⽩球.从这袋中任取⼀球,看过它的颜⾊后放回袋中,然后,再从这袋中任取⼀球.设每次取球时⼝袋中各个球被取到的可能性相同.求:(1)第⼀次、第⼆次都取到红球的概率;(2)第⼀次取到红球、第⼆次取到⽩球的概率;(3)两次取得的球为红、⽩各⼀的概率;(4)第⼆次取到红球的概率.3. ⼀个⼝袋中装有6只球,分别编上号码1~6,随机地从这个⼝袋中取2只球,试求:(1)最⼩号码是3的概率;(2)最⼤号码是3的概率.4. ⼀个盒⼦中装有6只晶体管,其中有2只是不合格品,现在作不放回抽样.接连取2次,每次随机地取1只,试求下列事件的概率:(1)2只都是合格品;(2)1只是合格品,⼀只是不合格品;(3)⾄少有1只是合格品.4习题⼆5. 从某⼀装配线上⽣产的产品中选择10件产品来检查.假定选到有缺陷的和⽆缺陷的产品是等可能发⽣的,求⾄少观测到⼀件有缺陷的产品的概率,结合“实际推断原理”解释得到的上述概率结果.6. 某⼈去银⾏取钱,可是他忘记密码的最后⼀位是哪个数字,他尝试从0~9这10个数字中随机地选⼀个,求他能在3次尝试之中解开密码的概率.7. 掷两颗骰⼦,求下列事件的概率:(1)点数之和为7;(2)点数之和不超过5;(3)点数之和为偶数.8. 把甲、⼄、丙三名学⽣随机地分配到5间空置的宿舍中去,假设每间宿舍最多可住8⼈,试求这三名学⽣住在不同宿舍的概率.9. 总经理的五位秘书中有两位精通英语,今偶遇其中的三位秘书,求下列事件的概率:(1)事件A={其中恰有⼀位精通英语};(2)事件B={其中恰有两位精通英语};(3)事件C={其中有⼈精通英语}.10. 甲袋中有3只⽩球,7只红球,15只⿊球,⼄袋中有10只⽩球,6只红球,9只⿊球,习题⼆ 5 现从两个袋中各取⼀球,求两球颜⾊相同的概率.11. 有⼀轮盘游戏,是在⼀个划分为10等份弧长的圆轮上旋转⼀个球,这些弧上依次标着0~9⼗个数字.球停⽌在那段弧对应的数字就是⼀轮游戏的结果.数字按下⾯的⽅式涂⾊:0看作⾮奇⾮偶涂为绿⾊,奇数涂为红⾊,偶数涂为⿊⾊.事件A ={结果为奇数},事件B ={结果为涂⿊⾊的数}.求以下事件的概率:(1))(A P ;(2))(B P ;(3)()P A B ;(4))(AB P .12. 设⼀质点⼀定落在xOy 平⾯内由x 轴,y 轴及直线x +y =1所围成的三⾓形内,⽽落在这三⾓形内各点处的可能性相等,即落在这三⾓形内任何区域上的可能性与这区域的⾯积成正⽐,计算这质点落在直线x =的左边的概率. 13. 甲、⼄两艘轮船都要在某个泊位停靠6h ,假定它们在⼀昼夜的时间段中随机地到达,试求这两艘船中⾄少有⼀艘在停靠泊位时必须等待的概率.14. 已知B A ?,4.0)(=A P ,6.0)(=B P ,求:(1))(),(B P A P ;(2)()P A B ;(3))(AB P ;(4))(),(B A P A B P ;(5))(B A P .316习题⼆15. 设A,B是两个事件,已知P(A)=0.5,P(B)=0.7,()P A B=0.8,试求:P(A-B)与P (B-A).*16. 盒中装有标号为1~r的r个球,今随机地抽取n个,记录其标号后放回盒中;然后再进⾏第⼆次抽取,但此时抽取m个,同样记录其标号,这样得到球的标号记录的两个样本,求这两个样本中恰有k个标号相同的概率.习题三 5习题三1. 已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P 及条件概率8.0)(=A B P ,试求)(AB P 及)(B A P .2. ⼀批零件共100个,次品率为10%,每次从中任取⼀个零件,取出的零件不再放回去,求第三次才取得正品的概率.3. 某⼈有⼀笔资⾦,他投⼊基⾦的概率为0.58,购买股票的概率为0.28,两项投资都做的概率为0.19.(1)已知他已投⼊基⾦,再购买股票的概率是多少?(2)已知他已购买股票,再投⼊基⾦的概率是多少?4. 罐中有m 个⽩球,n 个⿊球,从中随机抽取⼀个,若不是⽩球则放回盒中,再随机抽取下⼀个;若是⽩球,则不放回,直接进⾏第⼆次抽取,求第⼆次取得⿊球的概率.5. ⼀个⾷品处理机制造商分析了很多消费者的投诉,发现他们属于以下列出的6种类型:习题三6如果收到⼀个消费者的投诉,已知投诉发⽣在保质期内,求投诉的原因是产品外观的概率.6. 给定5.0)(=A P ,3.0)(=B P ,15.0)(=AB P ,验证下⾯四个等式:)()(A P B A P =;)()(A P B A P =;)()(B P A B P =;)()(B P A B P =.7. 已知甲袋中装有6只红球,4只⽩球,⼄袋中装有8只红球,6只⽩球.求下列事件的概率:(1)随机地取⼀只袋,再从该袋中随机地取⼀只球,该球是红球;(2)合并两只⼝袋,从中随机地取1只球,该球是红球.8. 设某⼀⼯⼚有A ,B ,C 三间车间,它们⽣产同⼀种螺钉,每个车间的产量,分别占该⼚⽣产螺钉总产量的25%、35%、40%,每个车间成品中次货的螺钉占该车间出产量的百分⽐分别为5%、4%、2%.如果从全⼚总产品中抽取⼀件产品,(1)求抽取的产品是次品的概率;(2)已知得到的是次品,求它依次是车间A ,B ,C ⽣产的概率.9. 某次⼤型体育运动会有1 000名运动员参加,其中有100⼈服⽤了违禁药品.在使⽤者中,假定有90⼈的药物检查呈阳性,⽽在未使⽤者中也有5⼈检验结果显⽰阳性.如果⼀个运习题三 7 动员的药物检查结果是阳性,求这名运动员确实使⽤违禁药品的概率.10. 发报台分别以概率0.6和0.4发出信号“*”和“—”.由于通信系统受到⼲扰,当发出信号“*”时,收报台未必收到信号“*”,⽽是分别以概率0.8和0.2收到信号“*”和“—”.同样,当发出信号“—”时,收报台分别以概率0.9和0.1收到信号“—”和“*”.求:(1)收报台收到信号“*”的概率;(2)当收报台收到信号“*”时,发报台确是发出信号“*”的概率.*11. 甲袋中有4个⽩球6个⿊球,⼄袋中有4个⽩球2个⿊球.先从甲袋中任取2球投⼊⼄袋,然后再从⼄袋中任取2球,求从⼄袋中取到的2个都是⿊球的概率.12. 设事件B A ,相互独⽴.证明:B A ,相互独⽴,B A ,相互独⽴. 13. 设事件A 与B 相互独⽴,且p A P =)(,q B P =)(.求下列事件的概率:(),(),().P A B P A B P A B14. 已知事件A 与B 相互独⽴,且91)(=B A P ,)()(B A P B A P =.求:)(),(B P A P .15. 三个⼈独⽴破译⼀密码,他们能独⽴译出的概率分别为0.25,0.35,0.4,求此密码被译习题三8 出的概率.16. 设六个相同的元件,如下图所⽰那样安置在线路中.设每个元件不通达的概率为p ,求这个装置通达的概率.假定各个元件通达、不通达是相互独⽴的.*17. (配对问题)房间中有n 个编号为1~n的座位.今有n 个⼈(每⼈持有编号为1~n 的票)随机⼊座,求⾄少有⼀⼈持有的票的编号与座位号⼀致的概率.(提⽰:使⽤概率的性质5的推⼴,即对任意n 个事件12,,,n A A A ,有1121111111()()(1)()(1)().)k k n n k k i j k i j n k k n i i n i i i n P A P A P A A P A A P A A =≤<≤=--≤<<<≤??=-+ +-++-∑∑∑ *18. (波利亚(Pólya )罐⼦模型)罐中有a 个⽩球,b 个⿊球,每次从罐中随机抽取⼀球,观察其颜⾊后,连同附加的c 个同⾊球⼀起放回罐中,再进⾏下⼀次抽取.试⽤数学归纳法证明:第k 次取得⽩球的概率为a a b+(1k ≥为整数).(提习题三 9 ⽰:记{}k A k 第次取得⽩球,使⽤全概率公式1111()=()()+()()k k k P A P A P A A P A P A A 及归纳假设.)19. 甲⼄两⼈各⾃独⽴地投掷⼀枚均匀硬币n 次,试求:两⼈掷出的正⾯次数相等的概率.20. 假设⼀部机器在⼀天内发⽣故障的概率为0.2,机器发⽣故障时全天停⽌⼯作.若⼀周五个⼯作⽇⾥每天是否发⽣故障相互独⽴,试求⼀周五个⼯作⽇⾥发⽣3次故障的概率.21. 灯泡耐⽤时间在1 000 h 以上的概率为0.2,求:三个灯泡在使⽤1 000 h 以后最多只有⼀个坏了的概率.22. 某宾馆⼤楼有4部电梯,通过调查,知道在某时刻T ,各电梯正在运⾏的概率均为0.75,求:(1)在此时刻所有电梯都在运⾏的概率;(2)在此时刻恰好有⼀半电梯在运⾏的概率;(3)在此时刻⾄少有1台电梯在运⾏的概率.23. 设在三次独⽴试验中,事件A 在每次试验中出现的概率相同.若已知A ⾄少出现⼀次的概率等于2719,求事件A 在每次试验中出现的概率)(A P .10习题三*24. 设双胞胎中为两个男孩或两个⼥孩的概率分别为a及b.今已知双胞胎中⼀个是男孩,求另⼀个也是男孩的概率.25. 两射⼿轮流打靶,谁先进⾏第⼀次射击是等可能的.假设他们第⼀次的命中率分别为0.4及0.5,⽽以后每次射击的命中率相应递增0.05,如在第3次射击⾸次中靶,求是第⼀名射⼿⾸先进⾏第⼀次射击的概率.26. 袋中有2n-1个⽩球和2n个⿊球,今随机(不放回)抽取n个,发现它们是同⾊的,求同为⿊⾊的概率.*27. 3个外形相同但可辨别的球随机落⼊编号1~4的四个盒⼦,(1)求恰有两空盒的概率;(2)已知恰有两空盒,求有球的盒⼦的最⼩编号为2的概率.习题四 8习题四1. 下列给出的数列,哪些可作为随机变量的分布律,并说明理由.(1)15ii p =(0,1,2,3,4,5)i =;(2)6)5(2i p i -=(0,1,2,3)i =;(3)251+=i p i (1,2,3,4,5)i =.2. 试确定常数C ,使i C i X P 2)(== (0,1,2,3,4)i =成为某个随机变量X 的分布律,并求:(1)(2)P X >;(2)1522P X ??<<;(3)(3)F (其中F (·)为X 的分布函数).3. ⼀⼝袋中有6个球,在这6个球上分别标有-3,-3,1,1,1,2这样的数字.从这⼝袋中任取⼀球,设各个球被取到的可能性相同,求取得的球上标明的数字X 的分布律与分布函数.4. ⼀袋中有5个乒乓球,编号分别为1,2,3,4,5.从中随机地取3个,以X 表⽰取出的3个球中最⼤号码,写出X 的分布律和分布函数.5. 在相同条件下独⽴地进⾏5次射击,每次射击时击中⽬标的概率为0.6,求击中⽬标的9习题四次数X的分布律.6. 从⼀批含有10件正品及3件次品的产品中⼀件⼀件地抽取产品.设每次抽取时,所⾯对的各件产品被抽到的可能性相等.在下列三种情形下,分别求出直到取得正品为⽌所需次数X的分布律:(1)每次取出的产品⽴即放回这批产品中再取下⼀件产品;(2)每次取出的产品都不放回这批产品中;(3)每次取出⼀件产品后总以⼀件正品放回这批产品中.7. 设随机变量X),6(==XP,XP(=)1B,已知)5~p(求p与)2P的值.(=X8. ⼀张试卷印有⼗道题⽬,每个题⽬都为四个选项的选择题,四个选项中只有⼀项是正确的.假设某位学⽣在做每道题时都是随机地选择,求该位学⽣未能答对⼀道题的概率以及答对9道以上(包括9道)题的概率.9.市120接听中⼼在长度为t的时间间隔内收到的紧急呼救的次数X服从参数为0.5t的泊松分布,⽽与时间间隔的起点⽆关(时间以⼩时计算):习题四10 求:(1)某天中午12点⾄下午3点没有收到紧急呼救的概率;(2)某天中午12点⾄下午5点⾄少收到1次紧急呼救的概率.10.某商店出售某种物品,根据以往的经验,每⽉销售量X服从参数4=λ的泊松分布.问在⽉初进货时,要进多少才能以99%的概率充分满⾜顾客的需要?11. 有⼀汽车站有⼤量汽车通过,每辆汽车在⼀天某段时间出事故的概率为0.000 1.在某天该段时间内有1 000辆汽车通过,求事故次数不少于2的概率.12. 设鸡下蛋数X服从参数为λ的泊松分布,但由于鸡舍是封闭的,我们只能观察到从鸡舍输出的鸡蛋.记Y为观察到的鸡蛋数,即Y的分布与给定>0X的条件下X的分布相同,今求Y 的分布律.(提⽰:()(0),1,2,.对于)P Y k P X k X k===>=13. 袋中有n把钥匙,其中只有⼀把能把门打开,每次抽取⼀把钥匙去试着开门.试在:(1)有放回抽取;(2)不放回抽取两种情况下,求⾸次打开门时试⽤钥匙次数的分布律.习题四11 14. 袋中有a 个⽩球、b 个⿊球,有放回地随机抽取,每次取1个,直到取到⽩球停⽌抽取,X 为抽取次数,求()P X n ≥.15. 据统计,某⾼校在2010年上海世博会上的学⽣志愿者有6 000名,其中⼥⽣3 500名.现从中随机抽取100名学⽣前往各世博地铁站作引导员,求这些学⽣中⼥⽣数X 的分布律.16. 设随机变量X 的密度函数为2,()0,x f x ?=??0,x A <<其他,试求:(1)常数A ;(2))5.00(<17.设随机变量X 的密度函数为()e x f x A -=()x -∞<<+∞,求:(1)系数A ;(2))10(<(3)X 的分布函数. 18.证明:函数22e ,0,()0,0,xc x x f x c x -??≥=??可作为⼀个密度函数.19. 经常往来于某两地的⽕车晚点的时间X(单位:min )是⼀个连续型随机变量,其密度函数为23(25),55,()5000,x x f x ?--<X 为负值表⽰⽕车早到了.求⽕车⾄少晚点2min 的概率.习题四 1220. 设随机变量X 的分布函数为0()1(1)e x F x x -?=?-+?,0,,0,x x ≤>求X 的密度函数,并计算)1(≤X P 和)2(>X P .21. 设随机变量X 在(1,6)上服从均匀分布,求⽅程012=++Xt t 有实根的概率.22. 设随机变量X 在)1,0(上服从均匀分布,证明:对于0,0,1a b a b ≥≥+≤,()P a X b b a ≤≤=-,并解释这个结果.23. 设顾客在某银⾏的窗⼝等待服务的时间X (单位:min )是⼀随机变量,它服从51=λ的指数分布,其密度函数为51e ()50x f x -??=,0,,x >其它.某顾客在窗⼝等待服务,若超过10 min ,他就离开.(1)设某顾客某天去银⾏,求他未等到服务就离开的概率;(2)设某顾客⼀个⽉要去银⾏五次,求他五次中⾄多有⼀次未等到服务⽽离开的概率.24. 以X 表⽰某商店从早晨开始营业起直到第⼀个顾客到达的等待时间(单位:min ),X 的分布函数是0.21e ,0,()0,x x F x -?->=??其他.求:(1)X 的密度函数;(2)P (⾄多等待。
概率与数理统计习题一答案讲解

概率与数理统计习题⼀答案讲解概率论与数理统计第⼀章习题参考解答1、写出下列随机试验的样本空间。
(1)枚硬币连掷三次,记录正⾯出现的次数。
(2)记录某班⼀次考试的平均分数(百分制记分)(3)对某⼯⼚出⼚的产品进⾏检验,合格的记上“正品”,不合格的记上“次品”,如连续查出2个次品就停⽌检查,或检查4个产品就停⽌检查,记录检查的结果。
(4)在单位圆内任取⼀点,记录它的坐标。
解:(1){}3,2,1,0=S ,(2) S ={k/n: k=0,1,2,··· ,100n},其中n 为班级⼈数,(3){}1111,1110,1101,0111,1011,1010,1100,0110,0101,0100,100,00=S ,其中0表⽰次品,1表⽰正品。
(4)(){}1,22<+=y x y x S2、设A 、B 、C 为三事件,⽤A 、B 、C 的运算关系表⽰下列各事件(1)A 、B 、C 中⾄少有⼀个发⽣(2)A 、B 、C 中恰好有⼀个发⽣(3)A 、B 、C 都不发⽣(4)A 、B 、C 中不多于⼀个发⽣(5)A 、B 、C 中不多于两个发⽣解:(1)C B A ?? (2)C B A C B A C B A ??(3)C B A 错解C B A ABC =(4)即⾄少有两个不发⽣C B C A B A ??(5)即⾄少有⼀个不发⽣C B A ABC = 2、指出下列命题中哪些成⽴,哪些不成⽴。
(1)成⽴,(2)不成⽴,(3)不成⽴,(4)成⽴(5)成⽴,(6)成⽴(7)成⽴(8)成⽴ 4、把C B A ??表⽰为互不相容事件的和。
解:()()()ABC CA C BC B AB A ?-?-?- 答案不唯⼀5、设A 、B 是两事件,且P (A )=0.6,P(B)=0.7。
问(1)在什么条件下P (AB )取到最⼤值?最⼤值是多少?(2)在什么条件下P (AB )取到最⼩值?最⼩值是多少?(1)B A ?时,6.0)(=AB P 为最⼤值,因为A 、B ⼀定相容,相交所以A 和B 重合越⼤时P (AB )越⼤(2)S B A =?时,P (AB )=0.3为最⼩值6、若事件A 的概率为0.7,是否能说在10次实验中A 将发⽣7次?为什么?答:不能。
概率论第一章习题

5.一个宿舍中住有6位同学,计算下列事件的概率:
(1)6人中至少有1人生日在10月份;
(2)6人中恰有4人生日在10月份;
(3)6人中恰有4人生日在同一月份。
6.假设一批产品中一、二、三等品各占60%,30%、10%,从中任取一件,结果不是三等品,求取到的是一等品的概率。
达到目的地后,各机独立轰炸,每机炸中目标的概率为0.3,求目标被炸中的概率。
练习题答案
1.
(正,正),(正,反),(反,正),(反,反)
(正,正),(正,反) ;
(正,正),(反,反) ;
(正,正),(正,反),(反,正)
2.
;
3.解:设 ={所得直线恰好经过坐标原点}, , ,由古典概型
4.解:设 ={点 落在圆内}, ,由于事件 所含的点两个坐标值不能大于3且不同时等于3,于是 ,由古典概型
第一章练习题
1.将一枚均匀的硬币抛两次,事件 分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件 中的样本点。
2.在掷两颗骰子的试验中,事件 分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,试写出事件 中的样本点。
3.从集合 中任取3个元素分别作为直线 中的 ,求所得直线恰好经过坐标原点的概率。
7.为了防止意外发生,在矿井内同时装有两种报警系统I和II。当两种报警系统单独使用时,系统I和II有效的概率分别0.92和0.93,在系统I失灵的条件下,系统II仍有效的概率为0.85,求
(1)两种报警系统I和II都有效的概率;
(2)系统II失灵而系统I有效的概率;
(3)在系统II失灵的条件下,系统I仍有效的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章(A)1、设A,B为两个事件,若A⊃B,则下列结论(C )恒成立A、AB互斥B、A 、B互斥C、A、B互斥D、A、B互斥2、以A表示事件“甲种产品畅销,乙种产品滞销”,则A表示(C )A、甲种产品滞销,乙种产品畅销B、甲乙两种产品均畅销C、甲产品滞销或乙产品畅销D、甲乙两种产品均滞销3、设A、B为两个事件,若A⊂B ,则一定有(B )/A、P(AB)=P(B)B、P(A B)=P(B)C、P(B│A)=P(B)D、P(A│B)=P(B)4、设AB为两个随机事件,则p(A B),P(AB),P(A)+P(B)由小到大的顺序是( A )A P(AB)≤p(A B)≤P(A)+P(B)B P(A)+P(B)≤P(AB)≤p(A B)C p(A B)≤P(AB)≤P(A)+P(B)D P(AB)≤P(A)+P(B)≤p(A B)5、设AB为两个事件,且0<P(A)<1,P(B)>0,P(B│A)=P(B│A),则必有( C )A、P(A│B)=P(A│B)B、P(A│B)≠P(A│B)C、P(A│B)=P(A)D、P(A│B)=P(B)6、—7、设A 、B 、C 为三个相互独立的随机事件,且有0<P(C)<1,则下列事件不相互独立的是( A )A AC 与CB AB 与C C B A 与CD B A -与C 7、在一次实验中,事件A 发生的概率为p(0<p<1),进行n 次独立重复试验,则事件A 之多发生一次的概率为( D ) A n p -1 B n p C ()N P --11 D ()()111--+-n np np p8、对飞机连续射击三次,每次发射一枚炮弹,事件i A (i=1,2,3)表示第i 次射击击中飞机,则“至少有一次击中飞机”可表示为321A A A ,“至多击中一次”表示为321321321321A A A A A A A A A A A A 9、设A 、B 为随机事件,则()()B A B A =B10、若事件A 、B 互不相容,则()B A P -=P(A),()A B P -=P(B),若事件A 、B 相互独立,则()B A P -=)()(B P A P ,()A B P -=)()(A P B P 11、已知P(A)=,P(B)=,P(B │A)=,则()B A P =,()=B A P . 12、已知P(A)=,P(B)=,若A 、B 相互独立,则()B A P =.13、根据调查所知,一个城镇居民三口之家每年至少用600元买粮食的概率是,至少用4000元买副食的概率是,至少用600元买粮食同时用4000元买副食的概率为,则一个三口之家至少用600元买粮食或至少用4000元买副食的概率为_____。
14、\15、某校学生四级英语考试的通过率为90%,其中60%学生还通过了六级考试,则随意选出一名学生,该生通过六级考试的概率为.16、三次独立重复射击中,至少击中一次的概率为26/27,则每次射击命中的概率是2/3。
B1.随机抽检三件产品,设A 表示“三件中至少有一件是废品”,B 表示“三件中至少有两件是废品”,C 表示“三件都是正品”,问AC B A B A ,,,⋃各表示什么事件Φ==AC A B A B A 少两件正品。
:至多有一件废品或至是正品。
没有一件是废品或者全解:: 2.袋中有10个零件,其中6件一等品,4件二等品,无放回的抽三次,每次取1件,若用iA 表示“第i 次抽到一等品”(i=1,2,3),问如何表示以下各事件: (1)三件都是一等品 (2)三件都是二等品(3)按抽取顺序,前两件为一等品,最后一件为二等品(4)不计顺序,所取三件中,有两件为一等品,一件二等品。
]321321321321321321)4()3()2()1(A A A A A A A A A A A A A A A A A A 解:3.某产品设计长度为20厘米,规定误差不超过0.5厘米为合格品,今对一批产品进行测量,长度如下表:/试计算这批产品的合格率。
解:%858068768568==++4.掷3枚硬币,求出现3个正面的概率。
解:()3215.某车间在2月份生产了44台合格冰箱,6台不合格冰箱,若对其进行质量检查,随机抽取3台进行检验,求所抽取的3台冰箱全不合格的概率。
解:35036C C6.一部小说,分上、中、下三册,随机地并排放在书架上,问自左至右或自右至左恰好按上、中。
下排列的概率是多少解:!327.10把要是中有3把能打开门,任取2把,求能打开门的概率。
解:210231713)(C C C C +8.-9.10件产品中有3个次品,任取5个,求其次品率分别为0,1,2,3的概率。
解:设i A =5件产品中次品个数,则121)3()(125)2()(125)1()(121)0()(510332735102337251013471510570================C C C X P A P C C C X P A P C C C X P A P C C X P A P10.两份信随机的投入4个邮筒,求前2个邮筒内没有信件的概率以及第一个邮筒内只有一份信的概率。
解:令A 表示“前2个邮筒内没有信件的概率”,则P(A)=22/24 令B 表示“第一个邮筒内只有一份信的概率”,则P(B)=2*3/2411.从1,2,……,9这九个数中任取一个,求这个数能被2或3除尽的概率。
解:令A 表示“1,2,……,9这九个数中任取一个,这个数能被2除尽的概率”,则P(A)=4/9 令B 表示“1,2,……,9这九个数中任取一个,这个数能被3除尽的概率”,则P(B)=3/9 令AB 表示“1,2,……,9这九个数中任取一个,这个数能被2和3同时除尽的概率”,则P(AB)=1/9 !()()()()3296919394==-+=-+=⋃AB P B P A P B A P 12.设A,B,C 为三个随机事件,已知P(A)=P(B)=P(C)=81)(,0)()(,41===AC P BC P AB P ,求A,B,C 至少一个发生的概率。
()()()()()()()()858143=-=+---++=⋃⋃ABC P AC P BC P AB P C P B P A P C B A P 解: 13.某射手连续打两枪,已知至少有一枪中靶的概率为,第一枪不中靶的概率是,第二枪不中靶的概率是,求:(1)两枪均未中靶的概率;(2)第一枪中靶,第二枪未中靶的概率。
解:令为第i 抢中靶 P()== P()+P() - P() P()= P()= P()= P()=P()=(1) P()=1-P()= (2) P()= P()- P()=13.某单位订阅甲、乙、丙三种报纸,据调查,职工中40%读甲报,26%读乙报,24%读丙报,8%兼读甲、乙报,5%兼读甲、丙报,4%兼读乙、丙报,2%兼读甲、乙、丙报。
现从职工中随机抽查一人,问该人至少读一种报纸的概率是多少不读报的概率是多少 :解:令A 为读甲报B 为读乙报C 为读丙报 则P(A)=40% P(B)=26% P(C)=24% P(AC)=5% P(AB)=8% P(BC)=4% P(ABC)=2% 因此P(A )=75% P()=25%14.设A ,B 独立,若已知P 6.0)(=⋃B A P ,P(A)=,求P(B). 解:P(A)= P(A)+ P(B)- P(A) P(B) P(B)=1/315.有长期统计资料得知,某地区在4月份下雨(记作事件A )的概率为).(,)(),(101157,154B A P A B P B A P B ,求为,既刮风又下雨的概率)的概率为刮风(记作事件解:P(AB)=1/10 P(A 丨B)===3/14 P(B 丨A)==3/8 P(A )= P(A)+ P(B)- P(A)P(B)=19/3016.期末要进行经济学和数学课程的考试,一个学生自己估计能通过数学考试的概率是,能通过经济学考试的概率是,至少通过两科之一的概率是,求他两科考试都能通过的概率,又若他提前知道了经济学已过,则他此时估计数学考试也能通过的概率是多少 —解:令A 为数学通过 B 为经济学通过 P(A)= P(B)= P(A)= 解得P(AB)=P(A 丨B)==5/717 18.19.三个人独立地破解一个密码,他们译出的概率分别为41,31,51,问能将此密码译出的概率是多少解:令为第i 人破译 P()=1/5 P()=1/3 P()=1/4 1- P()=1-(1-1/5)(1-1/3)(1-1/4)=20.一个工人看管独立工作的三台机床,在一小时内机床不需要工人照管的概率分别为:第一台,第二台,第三台,求在一小时内: (1)三台机床都不需要工人照管的概率 (2)、(3)三台机床中最多有一台需要人工照管的概率 (4)机床因无人照管而停工的概率。
解:令为第i 台需要照顾,i=1,2,3 则P()= P()= P()=(1)P()= (2)P()+ P()+ P() + P()=(3)1-( P()+ P()+ P() + P())=21.某工厂有甲、乙、丙三个车间,它们生产同一种螺钉,其产量分别占总产量的25%,35%,40%。
每个车间的产品中,次品分别占5%,4%,2%。
现从全部螺钉中任取一个,求恰为次品的概率。
解:P=25%*5%+35%*4%+40%*2%=%22.盒中有5个乒乓球,其中3个新的,2个旧的。
每次比赛从中任取一球,依次连续无放回的取两次。
求:(1)>(2)第一次取到新球的概率;(3)当第一次取到新球时,第二次取到新球的概率 (4)两次都取到新球的概率。
解:令为第i 次取到新球 (1) P()=3/5 (2) P()=1/2 (3) P()= =3/1023.在某配货运输站,一辆汽车可能到甲、乙、丙三地去拉水果,如果到这三地去的概率分别为,和。
而在三地拉到一级品水果的概率分别是,和。
求 (1)汽车拉到一级品水果的概率(2)已知汽车拉到一级品水果,求该车水果是乙地拉来的概率。
解:令为第i 地 B 为一级水果 (1) P(B)==*+*+*=(2) P(丨B)===30/67@24.两台机床加工同样的零件,第一台机床出废品的概率是3%,第二台机床出废品的概率是2%,加工出来的零件混合放在一起,又知第一台加工的零件是第二台加工零件的两倍。
求: (1)从混合产品中任取一个零件是合格品的概率(2)如果任取一个零件是废品,那么它是第二台机床加工的零件的概率有多大 解:2,1i i :.:t 台机床加工不合格的。
第台机床加工合格品第A i A i(1)P(A)=3/1*)(3/2*)(21A P A P +=292/300 (2)300/83/1*%23/2*%3)(=+=A P4/1)()()(22==A P A A P A A P25.电灯泡使用寿命在1000小时以上的概率是,求三个灯泡在使用1000小时后,最多只有一个坏了的概率。