中职数学基础模块下册《直线的一般式方程》word练习题
(完整版)直线的一般式方程(附答案)

直线的一般式方程[学习目标] 1.掌握直线的一般式方程.2.了解关于x 、y 的二元一次方程Ax +By +C =0(A 、B 不同时为0)都表示直线,且直线方程都可以化为Ax +By +C =0的形式.3.会进行直线方程不同形式的转化.知识点 直线的一般式方程1.在平面直角坐标系中,对于任何一条直线,都有一个表示这条直线的关于x ,y 的二元一次方程;任何关于x ,y 的二元一次方程都表示一条直线.方程Ax +By +C =0(其中A 、B 不同时为0)叫做直线方程的一般式.2.对于直线Ax +By +C =0,当B ≠0时,其斜率为-A B ,在y 轴上的截距为-C B ;当B =0时,在x 轴上的截距为-C A ;当AB ≠0时,在两轴上的截距分别为-C A ,-CB .3.直线一般式方程的结构特征 (1)方程是关于x ,y 的二元一次方程.(2)方程中等号的左侧自左向右一般按x ,y ,常数的先后顺序排列. (3)x 的系数一般不为分数和负数.(4)虽然直线方程的一般式有三个参数,但只需两个独立的条件即可求得直线的方程. 思考 (1)当A ,B 同时为零时,方程Ax +By +C =0表示什么? (2)任何一条直线的一般式方程都能与其他四种形式互化吗?答 (1)当C =0时,方程对任意的x ,y 都成立,故方程表示整个坐标平面; 当C ≠0时,方程无解,方程不表示任何图象.故方程Ax +By +C =0,不一定代表直线,只有当A ,B 不同时为零时,即A 2+B 2≠0时才代表直线.(2)不是.当一般式方程中的B =0时,直线的斜率不存在,不能化成其他形式;当C =0时,直线过原点,不能化为截距式.但其他四种形式都可以化为一般式.题型一 直线的一般形式与其他形式的转化例1 (1)下列直线中,斜率为-43,且不经过第一象限的是( )A.3x +4y +7=0B.4x +3y +7=0C.4x +3y -42=0D.3x +4y -42=0(2)直线3x -5y +9=0在x 轴上的截距等于( ) A. 3 B.-5 C.95 D.-33答案 (1)B (2)D解析 (1)将一般式化为斜截式,斜率为-43的有:B 、C 两项.又y =-43x +14过点(0,14)即直线过第一象限,所以只有B 项正确. (2)令y =0则x =-3 3.跟踪训练1 一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,求此直线方程.解 设所求直线方程为x a +yb =1,∵点A (-2,2)在直线上,∴-2a +2b =1.①又∵直线与坐标轴围成的三角形面积为1, ∴12|a |·|b |=1.② 由①②可得⎩⎪⎨⎪⎧ a -b =1,ab =2,或⎩⎪⎨⎪⎧a -b =-1,ab =-2. 解得⎩⎪⎨⎪⎧ a =2,b =1,或⎩⎪⎨⎪⎧a =-1,b =-2.第二个方程组无解.故所求直线方程为x 2+y 1=1或x -1+y-2=1,即x +2y -2=0或2x +y +2=0.题型二 直线方程的应用例2 已知直线l 的方程为3x +4y -12=0,求满足下列条件的直线l ′的方程: (1)过点(-1,3),且与l 平行; (2)过点(-1,3),且与l 垂直.解 方法一 l 的方程可化为y =-34x +3,∴l 的斜率为-34.(1)∵l ′与l 平行,∴l ′的斜率为-34.又∵l ′过点(-1,3),由点斜式知方程为y -3=-34(x +1),即3x +4y -9=0.(2)∵l ′与l 垂直,∴l ′的斜率为43,又l ′过点(-1,3),由点斜式可得方程为y -3=43(x +1),即4x -3y +13=0.方法二 (1)由l ′与l 平行,可设l ′的方程为3x +4y +m =0.将点(-1,3)代入上式得m =-9.∴所求直线的方程为3x +4y -9=0.(2)由l ′与l 垂直,可设l ′的方程为4x -3y +n =0. 将(-1,3)代入上式得n =13. ∴所求直线的方程为4x -3y +13=0.跟踪训练2 a 为何值时,直线(a -1)x -2y +4=0与x -ay -1=0. (1)平行;(2)垂直.解 当a =0或1时,两直线既不平行,也不垂直;当a ≠0且a ≠1时,直线(a -1)x -2y +4=0的斜率为k 1=-1+a2,b 1=2;直线x -ay -1=0的斜率为k 2=1a ,b 2=-1a .(1)当两直线平行时,由k 1=k 2,b 1≠b 2, 得1a =-1+a 2,a ≠-12, 解得a =-1或a =2.所以当a =-1或2时,两直线平行. (2)当两直线垂直时,由k 1·k 2=-1, 即1a ·(-1+a )2=-1,解得a =13. 所以当a =13时,两直线垂直.题型三 由含参一般式方程求参数的值或取值范围例3 (1)若方程(m 2+5m +6)x +(m 2+3m )y +1=0表示一条直线,则实数m 满足______. (2)当实数m 为何值时,直线(2m 2+m -3)x +(m 2-m )y =4m -1.①倾斜角为45°;②在x 轴上的截距为1. (1)答案 m ≠-3解析 若方程不能表示直线,则m 2+5m +6=0且m 2+3m =0.解方程组⎩⎪⎨⎪⎧m 2+5m +6=0,m 2+3m =0,得m =-3,所以m ≠-3时,方程表示一条直线. (2)解 ①因为已知直线的倾斜角为45°, 所以此直线的斜率是1, 所以-2m 2+m -3m 2-m=1,所以⎩⎪⎨⎪⎧m 2-m ≠0,2m 2+m -3=-(m 2-m ), 解得⎩⎪⎨⎪⎧m ≠0且m ≠1,m =-1或m =1.所以m =-1.②因为已知直线在x 轴上的截距为1, 令y =0得x =4m -12m 2+m -3,所以4m -12m 2+m -3=1,所以⎩⎪⎨⎪⎧2m 2+m -3≠0,4m -1=2m 2+m -3,解得⎩⎨⎧m ≠1且m ≠-32,m =-12或m =2.所以m =-12或m =2.跟踪训练3 已知直线l :5ax -5y -a +3=0. (1)求证:不论a 为何值,直线l 总经过第一象限; (2)为使直线l 不经过第二象限,求a 的取值范围. (1)证明 直线方程变形为y -35=a ⎝⎛⎭⎫x -15, 它表示经过点A ⎝⎛⎭⎫15,35,斜率为a 的直线. ∵点A ⎝⎛⎭⎫15,35在第一象限,∴直线l 必过第一象限.(2)解 如图所示,直线OA 的斜率k=35-015-0=3.∵直线不过第二象限, ∴直线的斜率a ≥3. ∴a 的取值范围为[3,+∞).一般式求斜率考虑不全致误例4 设直线l 的方程为(m 2-2m -3)x +(2m 2+m -1)y -(2m -6)=0,若此直线的斜率为1,试确定实数m 的值.分析 由直线方程的一般式,可转化为斜截式,利用斜率为1,建立方程求解,但要注意分母不为0.解 由题意,得⎩⎪⎨⎪⎧-m 2-2m -32m 2+m -1=1,①2m 2+m -1≠0. ② 由①,得m =-1或m =43.当m =-1时,②式不成立,不符合题意,故应舍去; 当m =43时,②式成立,符合题意.故m =43.1.若方程Ax +By +C =0表示直线,则A 、B 应满足的条件为( ) A.A ≠0 B.B ≠0 C.A ·B ≠0 D.A 2+B 2≠02.已知ab <0,bc <0,则直线ax +by =c 通过( ) A.第一、二、三象限 B.第一、二、四象限 C.第一、三、四象限 D.第二、三、四象限3.过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A.x -2y -1=0B.x -2y +1=0C.2x +y -2=0D.x +2y -1=04.若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m 等于( ) A.-1 B.1 C.12 D.-125.已知两条直线y =ax -2和3x -(a +2)y +1=0互相平行,则a =________.一、选择题1.直线x +y -3=0的倾斜角的大小是( ) A.45° B.135° C.1 D.-12.直线(2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角为45°,则m 的值为( ) A.-2 B.2 C.-3 D.33.直线l 的方程为Ax +By +C =0,若直线l 过原点和二、四象限,则( ) A.C =0,B >0 B.A >0,B >0,C =0 C.AB <0,C =0D.AB >0,C =04.直线ax +3my +2a =0(m ≠0)过点(1,-1),则直线的斜率k 等于( ) A.-3 B.3 C.13 D.-135.直线y =mx -3m +2(m ∈R )必过定点( ) A.(3,2) B.(-3,2) C.(-3,-2) D.(3,-2)6.若三条直线x +y =0,x -y =0,x +ay =3构成三角形,则a 的取值范围是( ) A.a ≠±1 B.a ≠1,a ≠2 C.a ≠-1D.a ≠±1,a ≠27.直线l 1:ax -y +b =0,l 2:bx -y +a =0(a ≠0,b ≠0,a ≠b )在同一坐标系中的图形大致是( )二、填空题8.已知直线l 1:ax +3y -1=0与直线l 2:2x +(a -1)y +1=0垂直,则实数a =_______.9.若直线mx+3y-5=0经过连接点A(-1,-2),B(3,4)的线段的中点,则m=______.10.直线l:ax+(a+1)y+2=0的倾斜角大于45°,则a的取值范围是______________.11.已知两条直线a1x+b1y+4=0和a2x+b2y+4=0都过点A(2,3),则过两点P1(a1,b1),P2(a2,b2)的直线方程为________________.三、解答题12.设直线l的方程为(a+1)x+y+2-a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围.13.(1)已知直线l1:2x+(m+1)y+4=0与直线l2:mx+3y-2=0平行,求m的值.(2)当a为何值时,直线l1:(a+2)x+(1-a)y-1=0与直线l2:(a-1)x+(2a+3)y+2=0互相垂直?当堂检测答案1.答案D解析 方程Ax +By +C =0表示直线的条件为A 、B 不能同时为0,即A 2+B 2≠0. 2.答案 C解析 由ax +by =c ,得y =-a b x +cb ,∵ab <0,∴直线的斜率k =-ab >0,直线在y 轴上的截距cb<0.由此可知直线通过第一、三、四象限. 3.答案 A解析 由题意,得所求直线斜率为12,且过点(1,0).故所求直线方程为y =12(x -1),即x -2y-1=0. 4.答案 B解析 由两直线垂直,得12×⎝⎛⎭⎫-2m =-1,解得m =1. 5.答案 -3或1解析 两条直线y =ax -2和3x -(a +2)y +1=0互相平行,所以a 3=1a +2≠-21,解得a =-3或a =1.课时精练答案一、选择题 1.答案 B解析 直线x +y -3=0,即y =-x +3,它的斜率等于-1,故它的倾斜角为135°,故选B. 2.答案 D 解析 由已知得m 2-4≠0,且2m 2-5m +2m 2-4=1,解得:m =3. 3.答案 D解析 通过直线的斜率和截距进行判断. 4.答案 D解析 由点(1,-1)在直线上可得a -3m +2a =0(m ≠0),解得m =a ,故直线方程为ax +3ay +2a =0(a ≠0),即x +3y +2=0,其斜率k =-13.5.答案 A解析 由y =mx -3m +2,得y -2=m (x -3).所以直线必过点(3,2). 6.答案 A解析 因为直线x +ay =3恒过点(3,0),所以此直线只需不和x +y =0,x -y =0两直线平行就能构成三角形.所以a ≠±1. 7.答案 C解析 将l 1与l 2的方程化为斜截式得: y =ax +b ,y =bx +a ,根据斜率和截距的符号可得选C. 二、填空题 8.答案 35解析 由两直线垂直的条件,得2a +3(a -1)=0,解得a =35.9.答案 2解析 线段AB 的中点为(1,1),则m +3-5=0,即m =2. 10.答案 (-∞,-12)∪(0,+∞)解析 当a =-1时,直线l 的倾斜角为90°,符合要求; 当a ≠-1时,直线l 的斜率为-aa +1,只要-a a +1>1或者-aa +1<0即可,解得-1<a <-12或者a <-1或者a >0.综上可知,实数a 的取值范围是 (-∞,-12)∪(0,+∞).11.答案 2x +3y +4=0解析 由条件知⎩⎪⎨⎪⎧2a 1+3b 1+4=0,2a 2+3b 2+4=0,易知两点P 1(a 1,b 1),P 2(a 2,b 2)都在直线2x +3y +4=0上,即2x +3y +4=0为所求.三、解答题12.解 (1)当直线过原点时,该直线在x 轴和y 轴上的截距都为0,当然相等,所以a =2,方程即为3x +y =0.当a ≠2时,截距存在且均不为0,所以a -2a +1=a -2,即a +1=1.所以a =0,方程即为x +y +2=0. (2)将l 的方程化为y =-(a +1)x +a -2,所以⎩⎪⎨⎪⎧ -(a +1)>0,a -2≤0或⎩⎪⎨⎪⎧-(a +1)=0,a -2≤0,所以a ≤-1.综上,a 的取值范围是a ≤-1.13.解 方法一 (1)由l 1:2x +(m +1)y +4=0, l 2:mx +3y -2=0知:①当m =0时,显然l 1与l 2不平行. ②当m ≠0时,l 1∥l 2,需2m =m +13≠4-2.解得m =2或m =-3,∴m 的值为2或-3. (2)由题意知,直线l 1⊥l 2.①若1-a =0,即a =1时,直线l 1:3x -1=0与直线l 2:5y +2=0显然垂直. ②若2a +3=0,即a =-32时,直线l 1:x +5y -2=0与直线l 2:5x -4=0不垂直.③若1-a ≠0,且2a +3≠0,则直线l 1,l 2的斜率k 1,k 2都存在,k 1=-a +21-a ,k 2=-a -12a +3.当l 1⊥l 2时,k 1·k 2=-1, 即(-a +21-a )·(-a -12a +3)=-1,∴a =-1.综上可知,当a =1或a =-1时,直线l 1⊥l 2. 方法二 (1)令2×3=m (m +1), 解得m =-3或m =2.当m =-3时,l 1:x -y +2=0,l 2:3x -3y +2=0, 显然l 1与l 2不重合,∴l 1∥l 2.同理当m =2时,l 1:2x +3y +4=0,l 2:2x +3y -2=0, 显然l 1与l 2不重合,∴l 1∥l 2. ∴m 的值为2或-3. (2)由题意知直线l 1⊥l 2,∴(a +2)(a -1)+(1-a )(2a +3)=0, 解得a =±1,将a=±1代入方程,均满足题意.故当a=1或a=-1时,直线l1⊥l2.。
直线的一般式方程练习一

直线的一般式方程练习一1. 已知直线过A(3,m+1),B(4,2m+1)两点且倾斜角为56π,则m的值为()A.−√3B.√3C.−√33D.√332. 直线l:y=√3x+1的倾斜角为()A.π3B.π6C.π4D.5π123. 过点(1, −3)且垂直于直线x−2y+3=0的直线方程为()A.x−2y−7=0B.2x+y+1=0C.x−2y+7=0D.2x+y−1=04. 已知直线过点(1, 2),且纵截距为横截距的两倍,则直线l的方程为()A.2x−y=0B.2x+y−4=0C.2x−y=0或x+2y−2=0D.2x−y=0或2x+y−4=05. 已知直线kx−y+1−3k=0,当k变化时,所有的直线恒过定点________.6. 已知直线l1:ax+4y−1=0,l2:x+ay−12=0,若l1 // l2,则实数a=________.7. 设直线l1:(3+m)x+4y=5−3m与l2:2x+(5+m)y=8,若l1 // l2,则m=________;若l1⊥l2,则m=________.8. 直线ax+2y+6=0与直线x+(a−1)y+a2−1=0平行,则a=________.9. 过点(−1, 2)且在两坐标轴上截距相等的直线方程为________.10. 直线AB的方程为x−√3y+√3=0,则直线AB的倾斜角为()A.30∘B. 45∘C. 60∘D. 120∘11. 已知两条直线l1:ax−by+4=0和l2:(a−1)x+y+b=0,若l1⊥l2且l1过点(−3, −1),求a,b的值.12. 已知直线l过点P(3, 2).(1)若直线l在两坐标轴上的截距相等,求直线l的方程;(2)若直线l与x轴、y轴的正半轴分别交于A、B两点,如图所示,求△ABO的面积的最小值及此时直线l的方程.13. 设直线l的方程为(a+1)x+y+2−a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围.14. 分别求经过下列两点的直线的斜率:(1)(−3, 2),(2, −1);(2)(2, 0),(0.−4);(3)(2, 1),(3, 1);(4)(a, a),(a−1, a+3).15. 直线l过点P(−2, 1)且斜率为k(k>1),将直线l绕P点按逆时针方向旋转45∘得直线m,若直线l和m分别与y轴交于Q,R两点.(1)用k表示直线m的斜率;(2)当k为何值时,△PQR的面积最小?并求出面积最小时直线l的方程.参考答案与试题解析直线的一般式方程练习一一、选择题(本题共计 4 小题,每题 5 分,共计20分)1.【答案】C【考点】直线的斜率直线的倾斜角【解析】根据题意,由直线的倾斜角可得直线AB的斜率,又由AB的坐标结合两点间连线的斜率公式可得k的值,分析可得答案.【解答】解:根据题意,直线AB的倾斜角为56π,则其斜率k=tan56π=−√33,又因为A(3,m+1),B(4,2m+1),则AB的斜率k=(2m+1)−(m+1)4−3=m,则有m=−√33.故选C.2.【答案】A【考点】直线的倾斜角【解析】此题暂无解析【解答】解:设直线l的倾斜角为θ,由题意知k=tanθ=√3,∴ θ=π3.故选A.3.【答案】B【考点】直线的一般式方程与直线的垂直关系直线的点斜式方程【解析】设与直线x−2y+3=0垂直的直线的方程为2x+y+c=0,把点(1, −3)的坐标代入求出c值,即得所求的直线的方程.【解答】解:设所求的直线方程为2x+y+c=0,把点(1, −3)的坐标代入得2−3+c=0,∴c=1,故所求的直线方程为2x+y+1=0.故选B.4.【答案】D【考点】直线的截距式方程【解析】此题暂无解析【解答】此题暂无解答二、填空题(本题共计 5 小题,每题 5 分,共计25分)5.【答案】(3, 1)【考点】过两条直线交点的直线系方程【解析】化直线方程为点斜式,由点斜式的特点可得答案.【解答】直线方程kx−y+1−3k=0可化为y−1=k(x−3),由直线的点斜式可知直线过定点(3, 1);6.【答案】−2【考点】直线的一般式方程与直线的平行关系【解析】利用直线平行的性质求解.【解答】解:∵直线l1:ax+4y−1=0,l2:x+ay−12=0,∴a1=4a≠−1−12,解得a=−2.故答案为:−2.7.【答案】−7,−133【考点】直线的一般式方程与直线的垂直关系直线的一般式方程与直线的平行关系【解析】由直线的平行和垂直关系分别可得m的方程,解方程验证可得.【解答】解:∵两直线l1:(3+m)x+4y=5−3m与l2:2x+(5+m)y=8,∴若l1 // l2,则(3+m)(5+m)−4×2=0,解得m=−1或m=−7,当m=−1时两直线重合应舍去,∴m=−7;若l1⊥l2,则2(3+m)+4(5+m)=0,解得m=−133.故答案为:−7;−133.8.【答案】−1【考点】直线的一般式方程与直线的平行关系【解析】根据两直线平行,直线方程中一次项系数之比相等,但不等于常数项之比,由此求得a 的值.【解答】解:∵直线ax+2y+6=0与直线x+(a−1)y+a2−1=0平行,∴a1=2a−1≠6a2−1,解得a=−1.故答案为:−1.9.【答案】2x+y=0或x+y−1=0【考点】直线的截距式方程【解析】分直线过原点和不过原点两种情况讨论,直线过原点时直接求出斜率得直线方程;不过原点时设出直线方程,代入点的坐标得答案.【解答】解:当直线过原点时,直线的斜率k=−2,直线方程为y=−2x,即2x+y=0;当直线不过原点时设直线方程为x+y=a,代入点(−1, 2)得:−1+2=a,即a=1.∴直线方程为:x+y−1=0.∴过点(−1, 2)且在两坐标轴上截距相等的直线方程为2x+y=0或x+y−1=0.故答案为:2x+y=0或x+y−1=0.三、解答题(本题共计 6 小题,每题 5 分,共计30分)10.【答案】A【考点】直线的倾斜角【解析】此题暂无解析【解答】解:由题意可得,直线的斜率k=√33,设直线的倾斜角为α,则tanα=√33.因为α∈[0∘,180∘),所以α=30∘.故选A.11.【答案】解:由l1⊥l2,得:a(a−1)−b=0①;由l1过点(−3, −1),得−3a−b+4=0②;由①②解方程组得:a=−1+√5,b=7−3√5;或a=−1−√5,b=7+3√5.【考点】直线的一般式方程与直线的垂直关系【解析】由l1⊥l2,得a(a−1)−b=0①;l1过点(−3, −1),得−3a−b+4=0②;由①②组成方程组,解方程组即可.【解答】解:由l1⊥l2,得:a(a−1)−b=0①;由l1过点(−3, −1),得−3a−b+4=0②;由①②解方程组得:a=−1+√5,b=7−3√5;或a=−1−√5,b=7+3√5.12.【答案】解:(1)当直线经过原点时,可得直线方程为y=23x.当直线不经过原点时,可设直线方程为x+y=a,把点(3, 2)代入可得3+2=a,可得a=5.∴直线方程为x+y=5.综上可得直线方程为:y=23x,x+y=5.(2)设直线的方程xa +yb=1,把点P(3, 2)代入可得3a+2b=1.∴1≥2√3a ×2b,化为ab≥24,当且仅当3a=2b=12,即a=6,b=4时取等号.∴△ABO的面积的最小值为12ab=12,此时直线l的方程为x6+y4=1.【考点】直线的截距式方程【解析】(1)当直线经过原点时,可得直线方程为y=23x.当直线不经过原点时,可设直线方程为x+y=a,把点(3, 2)代入即可得出;(2)设直线的方程xa +yb=1,把点P(3, 2)代入可得3a+2b=1.利用基本不等式的性质即可得出.【解答】解:(1)当直线经过原点时,可得直线方程为y=23x.当直线不经过原点时,可设直线方程为x+y=a,把点(3, 2)代入可得3+2=a,可得a=5.∴直线方程为x+y=5.综上可得直线方程为:y=23x,x+y=5.(2)设直线的方程xa +yb=1,把点P(3, 2)代入可得3a+2b=1.∴1≥2√3a ×2b,化为ab≥24,当且仅当3a=2b=12,即a=6,b=4时取等号.∴△ABO的面积的最小值为12ab=12,此时直线l的方程为x6+y4=1.13.【答案】解:(1)由题意可知,若2−a=0,解得a=2,化为3x+y=0.若a+1=0,解得a=−1,化为y+3=0,舍去.若a≠−1,2,化为:x a−2a+1+ya−2=1,令a−2a+1=a−2,化为a+1=1,解得a=0,可得直线l的方程为:x+y+2=0.综上所述直线l的方程为:x+y+2=0或3x+y=0.(2)y=−(a+1)x+a−2,∵l不经过第二象限,∴{−(a+1)≥0,a−2≤0,解得:a≤−1.∴实数a的取值范围是(−∞, −1].【考点】直线的截距式方程直线的斜截式方程直线的图象特征与倾斜角、斜率的关系【解析】(1)对a分类讨论,利用截距式即可得出;(2)y =−(a +1)x +a −2,由于l 不经过第二象限,可得{−(a +1)≥0a −2≤0,解出即可得出.【解答】解:(1)由题意可知,若2−a =0,解得a =2,化为3x +y =0.若a +1=0,解得a =−1,化为y +3=0,舍去.若a ≠−1,2,化为:x a−2a+1+y a−2=1,令a−2a+1=a −2,化为a +1=1,解得a =0,可得直线l 的方程为:x +y +2=0.综上所述直线l 的方程为:x +y +2=0或3x +y =0.(2)y =−(a +1)x +a −2,∵ l 不经过第二象限,∴ {−(a +1)≥0,a −2≤0,解得:a ≤−1.∴ 实数a 的取值范围是(−∞, −1].14.【答案】由斜率公式得:k =2−(−1)−3−2=−35; 由斜率公式得:k =0−(−4)2−0=2; 由斜率公式得:k =1−12−3=0;由斜率公式得:k =a−(a+3)a−(a−1)=−3.【考点】直线的斜率【解析】利用斜率公式即可求解.【解答】由斜率公式得:k =2−(−1)−3−2=−35; 由斜率公式得:k =0−(−4)2−0=2; 由斜率公式得:k =1−12−3=0;由斜率公式得:k =a−(a+3)a−(a−1)=−3.15.【答案】设直线l的倾斜角为α,则直线m的倾斜角为α+45∘,k m=tan(45+α)=1+tanα1−tanα=1+k1−k,∴直线l的方程为y−1=k(x+2),直线m的方程为y−1=1+k1−k(x+2)令x=0,得y Q=2k+1,y R=3+k1−k,∴S△PQR=12|y Q−y R|⋅|x P|=|2(k2+1)k−1|∵k>1,∴S△PQR=|2(k2+1)k−1|=2⋅k2+1k−1=2[(k−1)+2k−1+2]≥4(√2+1)由k−1=2k−1得k=√2+1(k=1−√2舍去),∴当k=√2+1时,△PQR的面积最小,最小值为4(√2+1),此时直线l的方程是(√2+1)x−y+2√2+3=0.【考点】直线的图象特征与倾斜角、斜率的关系【解析】(1)用点斜式求出m和l的方程,利用直线l绕P点按逆时针方向旋转45∘得直线m求出直线m的倾斜角为α+45∘;进而得到直线m的斜率;(2)求出R,Q两点的坐标,计算△PQR的面积,变形后应用基本不等式求出它的最小值.【解答】设直线l的倾斜角为α,则直线m的倾斜角为α+45∘,k m=tan(45+α)=1+tanα1−tanα=1+k1−k,∴直线l的方程为y−1=k(x+2),直线m的方程为y−1=1+k1−k(x+2)令x=0,得y Q=2k+1,y R=3+k1−k,∴S△PQR=12|y Q−y R|⋅|x P|=|2(k2+1)k−1|∵k>1,∴S△PQR=|2(k2+1)k−1|=2⋅k2+1k−1=2[(k−1)+2k−1+2]≥4(√2+1)由k−1=2k−1得k=√2+1(k=1−√2舍去),∴当k=√2+1时,△PQR的面积最小,最小值为4(√2+1),此时直线l的方程是(√2+1)x−y+2√2+3=0.。
中职数学基础模块下册第八章直线和圆的方程单元测试卷含参考答案

中职数学基础模块下册第八章直线和圆的方程单元测试卷含参考答案一、选择题:(每题3分,共30分)1.已知点M(2,-3)、N(-4,5),则线段MN 的中点坐标是( )A .(3,-4)B .(-3,4)C .(1,-1) D.(-1,1)2.直线过点A( -1,3)、B(2,-2),则直线的斜率为( )A .-53B .-35C . -1 D. 13.下列点在直线2x-3y-6=0上的是( )A.(2,-1)B. (0,2)C. (3,0)D.(6,-2)4.已知点A(2,5),B(-1,1),则|AB |=( )A .5B .4 C. 3 D .175.直线x+y+1=0的倾斜角为( )A. 45º B ,90º C .135º D .180º6.直线2x+3y+6=0在y 轴上的截距为( ).A .3B .2C .-3D .-27.经过点P(-2,3),倾斜角为45º的直线方程为( )A. x+y+5=0B.x-y+5=0C .x-y-5=0 D. x+y-5=08.如果两条不重合直线1l 、2l 的斜率都不存在,那么( )A .1l 与2l 重合B .1l 与2l 相交C .1l //2l D.无法判定9.已知直线y= -2x-5与直线y=ax-4垂直,则a =( )A .-2B . -21C .2D .2110.下列直线与3x-2y+5=0垂直的是( );A . 2x-3y-4=0B .2x+3y-4=0 C.3x+2y-7=0 D .6x-4y+8=011.直线2x-y+4=0与直线x-y+5=0的交点坐标为( ).A .(1,6)B .(-1,6)C .(2,-3)D .(2,3)12.点(5,7)到直线4x-3y-1=0的距离等于( )A .52B .252C .58 D .8 13.已知圆的一般方程为0422=-+y y x ,则圆心坐标与半径分别是( )A. (0,2), r=2 B .(0,2), r=4C .(0,-2), r=2D .(0,-2), r=414.直线x+y=2与圆222=+y x 的位置关系是( )A.相交 B .相切 C .相离 D .不确定15.点A(l ,3),B (-5,1),则以线段AB 为直径的圆的标准方程是( )A .10)2()2(22=-++y xB .10)2()2(22=-++y xC. 10)3()1(22=-+-y x D .10)3()1(22=-+-y x16.若点P(2,m)到直线3x-4y+2=0的距离为4,则m 的值为( )A. m=-3 B . m=7 C . m=-3或m=7 D . m=3或m=7二、填空题17.平行于x 轴的直线的倾斜角为 ;18.平行于y 轴的直线的倾斜角为 ;19.倾斜角为60º的直线的斜率为 ;20.若点(2,-3)在直线mx-y+5 =0上,则m= ;21.过点(5,2),斜率为3的直线方程为:22.在y 轴上的截距为5,且斜率为4的直线方程为:23.将y-4=31(x —6)化为直线的一般式方程为:24.过点(-1,2)且平行于x 轴的直线方程为25.过点(O ,-3)且平行于直线2x+3y-4=0的直线方程是26.两条平行直线3x+4y-2=0和3x+4y+3=0的距离是27.已知直线1l :mx+2y-1=0与直线2l :x-y-l=0互相垂直,则m= ;28.圆心在点(0,2)且与直线x-2y+9 =0相切的圆的方程为29.圆086422=++-+y x y x 的圆心坐标为 ,半径为 。
(完整word版)职高数学基础模块下册第八章直线与园练习题(word文档良心出品)

第八章 直线和圆的方程1一、选择题1.已知点A(-12)到原点的距离为 ( )A.8B.-12C.12D.02.点A(12),B(-6)的中点的坐标是 ( )A.1B.-2C.3D.-43.不等式5<x 的解为( )A.X<5B. X>-5C. -5<X<5D.- X<-54.已知点A(2,0),B(-10,0),则=AB( )A.8B.-8C.12D.-12( )A.5B.-5C.2D.-27.点A(12,2),B(-6,-6)的中点坐标( )A.(-6,-2)B. (3,2)C. (3,-2)D. (6,2)8.点A (3,4)关于X 轴的对称点是( )A.(4,3)B. (3,-4)C.(-3,-4)D. (-3,4)9.点(-3,4)到原点的距离是( )A.5B.-5C.2D.-210.已知点A(4,-3),B(-2,5),则=AB ( ) A.5 B.10 C.13D.1511.已知△ABC 的顶点A(1,-2),B(-2,6),C(5,4),AC 边的中线长为 ( )A.5B.25C.10D.1212.X 轴所在的直线方程是 ( )A.X=0B. X=1C. Y=0D. Y=113.在直线012=+-y x 上的点是( )A.(1,1)B.(2,0)C.(-1,-1)D.(1,0)14.过(2,-2)且垂直于x 轴地直线方程是( )A.2=xB. 2-=xC. 2=yD. 2-=y 15.点到(-3,1)到x 轴的距离是 ( ) A.3 B.-3 C.1 D.-1 17.直线01=++y x 与直线01=--y x 的交点坐标是 ( )A.(1,0) B(-1,0) C. (0,1) D.(0,-1) 18. 直线1=x 的倾斜角的 ( ) A.00B.090 C.1800 D.450 19.如果直线的倾斜角是450,则它的斜率是 ( ) A.0 B.33C.3D.1 20.直线1=y 的斜率是 ( ) A.1 B.0 C.-1 D.不存在 21.直线的斜率是-1,则直线的倾斜角是 ( ) A.00 B 450 C 900 D 135023.下列说法正确的是 ( ) A.直线都有唯一的斜率 B 每一条直线都有唯一的倾斜角,也有唯一的斜率C 每一条直线都有唯一的倾斜角,但不一定有斜率D 倾斜角相同的直线一定是同一条直线24.直线斜率为-2,则倾斜角是( )A.锐角 B 钝角C 直角D 不确定25.直线12+-=x y 的斜率是( )A.-2 B 2 C 1 D -1 26.直线2-=x y 在y 轴上的截距是( ) A.1 B.-1 C.2 D.-2 27.直线2+=x y 的倾斜角是 ( )A.300B.450C.600D.135028.过点(0,-2)且斜率为-2的直线方程是 ( ) A.2+=x y B 22+-=x y C 2-=x y D 22--=x y 30.直线33-=x y 在y 轴上的截距是 ( ) A.1 B.-1 C.-3 D.3 31.过点A(2,-1)且倾斜角为450的直线的一般方程是 ( ) A.12+=-x y B 21-=+x y C 03=+-y x D 03=--y x 32.32.直线0132=+-y x 的斜率是 ( )A.32 B 23 C 32- D 23-33.过点(-2,6)且斜率为-4的直线的一般式方程是 ( )A.24--=x y B 024=--x y C 24+=x y D 024=++y x 36.若直11b k y x +=与直线22b k y x +=平行,则 A.21k k ≠B.2121b b k k ==且C.2121b b k k ≠=且D.2121b b k k ≠≠且37.直线012032=-+=+-y x y x 与直线的交点是 ( )A.(1,-1) B (2,-1) C.(-1,1) D.(-1,2)38.过点(2,4)且与直线03=+x 平行的直线方程是 ( ) A.2=x B.4=x C.2=y D.4=y40.若直线1l 的方程是0111=++C y B x A ,2l 的方程是0222=++C y B x A ,且2121B B A A ≠,则这两条直线的位置关系是( )A.相交 B 平行 C 重合 D 垂直41.直线02640132=-+=-+y x y x 与直线的位置关系是 ( )A 相交B 平行C 重合D 垂直 42.已知过点(-2,m )和(m ,4)的直线与直线012=-+y x 平行,则m 的值是 ( )A.0B.-8C.2D.1043.以A (1,3),B (-5,1)为端点的线段的垂直平分线方程是 ( )A.3x-y+8=0B.3x+y+4=0C.3x-y+6=0D.3x+y+2=044.直线012=+-y x 与直线012=++y ax 垂直,则a 的值是A.1B.-1C.4D.-445.过点(-1,2)且与直线0432=+-y x 垂直的直线方程是 ( )A.023=+y x B 0723=++y x C0532=+-y x D 0832=+-y x46.直线012=++y ax 与直线0)3(=+--a y x a 垂直,则a 的值是 ( )A.1B.2C.6D.1或247.点(0,1)到直线022=+-y x 的距离为 ( )A.55 B 554 C 33 D 515A.3 B 0.1 C 0.5 D 749 原点到直线052=-+y x 的距离为 ( )A.1B.3C.2D.5 50 已知点(3,m )到直线043=-+y x 的距离等于1,则m 等于 ( )A.3 B 3- C 33-D 3或33-56已知A (2,4),B (-4,0),则以AB 为直径的圆的方程是 ( )A. 13)2()1(22=-++y xB.13)2()1(22=+++y xC.13)2()1(22=-+-y xD.13)2()1(22=++-y x 57.圆心为(-2,2),半径为5的圆的标准方程为 ( )A.5)2()2(22=++-y xB.25)2()2(22=+++y xC.5)2()2(22=-++y xD.25)2()2(22=++-y x59.圆心为(3,4),且过点(4,6)的圆的方程是 ( ) A.3)4()3(22=++-y x B3)4()3(22=-+-y xC 5)4()3(22=-+-y x D5)4()3(22=-+-y x 60.圆04222=-++y x y x 的圆心坐标和半径分别是 ( ) A.(1,-2),5 B (1,-2),5 C 5),2,1(- D (-1,2),5 78.直线063=+-y x 的倾斜角是( )A.60°B.120° C 30° D.150°79.经过点A(-1,4),且在x 轴上的截距为3的直线方程是 ( )A. x+y+3=0 B x-y+3=0 Cx+y-3=0 D x+y-5=083.圆06222=-++y x y x 的圆心是( )A.(1,3) B (-1,-3)C (-1,3) D(1,-3)。
内蒙古准格尔旗世纪中学人教版高中数学必修二习题:3.2.3《直线的一般式方程》Word版含答案

《直线的一般式方程》习题一、选择题1、直线 xcos α +ysin α +1=0, α(0, ) 的倾斜角为2A αB- αC - αD+α222、直线 l 上一点 (-1 , 2) ,倾斜角为 α ,且 tan1 ,则直线 l 的方程是22A 4 x +3y +10=0B 4 x -3 y -10=0C 4 x -3 y +10=0D 4x +3y -10=03、直线 y1ax的图象可能是ayyyyxooxxxABCD4、直线 l 过点 P (1 , 3) ,且与 x , y 轴正半轴围成的三角形的面积等于 6的直线方程 A 3 x +y -6=0 B x +3y -10=0 C 3 x - y =0Dx -3 y +8=05、直线 ax +by +c =0( ab ≠ 0) 在两坐标轴上的截距相等,则 a , b ,c 知足的条件是A a =bB | a |=| b |C a =b 且 c =0 Dc =0或 c ≠0且 a =b6、假如直线与坐标轴围成的三角形面积为 3,且在 x 轴和 y 轴上的截距之和为 5,那么这样的直线共有( ) 条A 4B 3C 2D 1二、填空题1、在 轴上的截距为 -6 ,且与 y 轴订交成 450角的直线方程是 _________;y2、直线 l 过点 P (-1 ,1) ,且与直线 l ’ :2 x - y +3=0及 x 轴围成底边在 x 轴上的等腰三角形,则直线的 方程为 ________;3、直线 l 过点 (4,3)且在x 轴、 y 轴上的截距之比为 1: 2,则直线 l 的方程 _______;P4、斜率为 3/4 ,且与两坐标轴围成的三角形的周长为 12的直线的方程为 ________.三、解答题1、直线 mx +ny -1=0 的倾斜角是直线 2x - y +1=0的倾斜角的 2倍,与两坐标轴围成的三角形的面积等于 6,试求 m 和 n 的值2、过点P(2 , 1) ,作直线l交x,y正半轴于 A,B两点,当 | P A| · | P B| 获得最小值时,求直线l 的方程答案一、 DCBADA二、 1、x- y-6=0 或x+y+6=0;2、 2x+y+1=0;3、 2x+y-11=0 ;4、 3x-4 y± 12=01 1m m三、 1、3或 31 1n n4 4 2、x+y-3=0。
直线的一般式方程参考答案

2.2.3 直线的一般式方程参考答案1.过点(2,1),斜率k =-2的直线方程为( )A .x -1=-2(y -2)B .2x +y -1=0C .y -2=-2(x -1)D .2x +y -5=0答案 D解析 根据直线方程的点斜式可得,y -1=-2(x -2),即2x +y -5=0.2.过点A (2,3)且垂直于直线2x +y -5=0的直线方程为( )A .x -2y +4=0B .2x +y -7=0C .x -2y +3=0D .x -2y +5=0 答案 A解析 过点A (2,3)且垂直于直线2x +y -5=0的直线的斜率为12,由点斜式求得直线的方程为y -3=12(x -2),化简可得x -2y +4=0,故选A. 3.直线l 1:ax -y +b =0,l 2:bx -y +a =0(a ≠0,b ≠0,a ≠b )在同一坐标系中的图象大致是( )答案 C解析 将l 1与l 2的方程化为l 1:y =ax +b ,l 2:y =bx +a .A 中,由图知l 1∥l 2,而a ≠b ,故A 错;B 中,由l 1的图象可知,a <0,b >0,由l 2的图象知b >0,a >0,两者矛盾,故B 错;C 中,由l 1的图象可知,a >0,b >0,由l 2的图象可知,a >0,b >0,故正确;D 中,由l 1的图象可知,a >0,b <0,由l 2的图象可知a >0,b >0,两者矛盾,故D 错.4.已知直线l 1:ax +(a +2)y +2=0与l 2:x +ay +1=0平行,则实数a 的值为( )A .-1或2B .0或2C .2D .-1答案 D解析 由l 1∥l 2知,a ×a =1×(a +2),即a 2-a -2=0,∴a =2或a =-1.当a =2时,l 1与l 2重合,不符合题意,舍去;当a =-1时,l 1∥l 2.∴a =-1.5.已知直线ax +by -1=0在y 轴上的截距为-1,且它的倾斜角是直线3x -y -3=0的倾斜角的2倍,则a ,b 的值分别为( )A .-3,-1 B.3,-1 C .-3,1 D.3,1答案 A解析 原方程化为x 1a +y 1b=1, ∴1b=-1,∴b =-1. 又∵ax +by -1=0的斜率k =-a b=a , 且3x -y -3=0的倾斜角为60°,∴k =tan 120°=-3,∴a =-3,故选A.6.(多选)三条直线x +y =0,x -y =0,x +ay =3构成三角形,则a 的取值可以是( )A .-1B .1C .2D .5答案 CD解析 直线x +y =0与x -y =0都经过原点,而无论a 为何值,直线x +ay =3总不经过原点,因此,要满足三条直线构成三角形,只需直线x +ay =3与另两条直线不平行,所以a ≠±1.7.斜率为2,且经过点A (1,3)的直线的一般式方程为________.答案 2x -y +1=0解析 由y -3=2(x -1)得2x -y +1=0.8.已知直线(a +2)x +(a 2-2a -3)y -2a =0在x 轴上的截距为3,则该直线在y 轴上的截距为________.答案 -415解析 把(3,0)代入已知方程,得(a +2)×3-2a =0,∴a =-6,∴直线方程为-4x +45y +12=0,令x =0,得y =-415. 9.设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ).(1)若l 在两坐标轴上的截距相等,求l 的方程;(2)若l 不经过第二象限,求实数a 的取值范围.解 (1)当直线l 过原点时,直线l 在x 轴和y 轴上的截距均为0,∴a =2,此时直线l 的方程为3x +y =0;当直线l 不过原点时,a ≠2,直线l 在x 轴和y 轴上的截距分别为a -2a +1,a -2, ∴a -2a +1=a -2,解得a =0或a =2(舍去), ∴直线l 的方程为x +y +2=0.综上所述,直线l 的方程为3x +y =0或x +y +2=0.(2)将l 的方程化为y =-(a +1)x +a -2,∵l 不经过第二象限,∴⎩⎪⎨⎪⎧-(a +1)≥0,a -2≤0,解得a ≤-1. 综上可知,实数a 的取值范围是(-∞,-1].10.已知在△ABC 中,点A 的坐标为(1,3),AB ,AC 边上的中线所在直线的方程分别为x -2y +1=0和y -1=0,求△ABC 各边所在直线的方程.解 设AB ,AC 边上的中线分别为CD ,BE ,其中D ,E 分别为AB ,AC 的中点, ∵点B 在中线BE :y -1=0上,∴设B 点坐标为(x ,1).又∵A 点坐标为(1,3),D 为AB 的中点,∴由中点坐标公式得D 点坐标为⎝⎛⎭⎫x +12,2.又∵点D 在中线CD :x -2y +1=0上,∴x +12-2×2+1=0,解得x =5, ∴B 点坐标为(5,1).同理可求出C 点的坐标是(-3,-1).故可求出△ABC 三边AB ,BC ,AC 所在直线的方程分别为x +2y -7=0,x -4y -1=0和x -y +2=0.11.直线x +(a 2+1)y +1=0的倾斜角的取值范围是( )A.⎣⎡⎦⎤0,π4 B.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π C.⎝⎛⎭⎫π2,πD.⎣⎡⎭⎫3π4,π答案 D解析 ∵k =-1a 2+1,∴-1≤k <0.∴倾斜角的取值范围是⎣⎡⎭⎫3π4,π.12.如果直线ax +(1-b )y +5=0和(1+a )x -y -b =0同时平行于直线x -2y +3=0,那么a ,b 的值分别为( )A .-12,0 B .2,0 C.12,0 D .-12,2 答案 A解析 ∵直线ax +(1-b )y +5=0和(1+a )x -y -b =0同时平行于直线x -2y +3=0,∴⎩⎪⎨⎪⎧ a 1=1-b -2≠53,1+a 1=-1-2≠-b 3,解得⎩⎪⎨⎪⎧a =-12,b =0. 13.若直线mx +4y -2=0与直线2x -y +n =0垂直,垂足为(1,p ),则实数n 的值为( )A .-2B .-4C .10D .8答案 A解析 由已知得⎩⎪⎨⎪⎧ 2m -4=0,m +4p -2=0,2-p +n =0,解得n =-2.14.垂直于直线3x -4y -7=0,且与两坐标轴围成的三角形的面积为6的直线l 的方程为______________.答案 4x +3y -12=0或4x +3y +12=0解析 由题意可设与直线3x -4y -7=0垂直的直线的方程为4x +3y +c =0(c ≠0),令y =0,得x =-c 4,令x =0,得y =-c 3, 则S =12⎪⎪⎪⎪-c 4·⎪⎪⎪⎪-c 3=6,得c 2=122,c =±12, ∴直线l 的方程为4x +3y -12=0或4x +3y +12=0.15.如图所示,在平面直角坐标系xOy 中,已知点A (0,2),B (-2,0),C (1,0),分别以AB ,AC 为边向外作正方形ABEF 与ACGH ,则直线FH 的一般式方程为____________________.答案 x +4y -14=0解析 过点H ,F 分别作y 轴的垂线,垂足分别为M ,N (图略). ∵四边形ACGH 为正方形,∴Rt △AMH ≌Rt △COA ,∵OC =1,MH =OA =2,∴OM =OA +AM =3,∴点H 的坐标为(2,3),同理得到F (-2,4),∴直线FH 的方程为y -34-3=x -2-2-2, 化为一般式方程为x +4y -14=0.16.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪ y -3x -2=a +1,B ={(x ,y )|(a 2-1)x +(a -1)y =15},当a 取何值时,A ∩B =∅?解 集合A ,B 分别为xOy 平面上的点集.集合A 表示l 1:(a +1)x -y -2a +1=0(x ≠2),集合B 表示l 2:(a 2-1)x +(a -1)y -15=0.由⎩⎪⎨⎪⎧(a +1)(a -1)=-1·(a 2-1),-1·(-15)≠(a -1)(-2a +1),得a =±1. ①当a =1时,B =∅,A ∩B =∅;②当a =-1时,集合A 表示直线y =3(x ≠2),集合B 表示直线y =-152,两直线平行.A ∩B =∅; ③由l 1可知(2,3)∉A ,当(2,3)∈B ,即2(a 2-1)+3(a -1)-15=0时,可得a =-4或a =52,此时A ∩B =∅.综上可知,当a 的值为-4,-1,1,52时,A ∩B =∅.。
(完整版)职高数学第八章直线和圆的方程及答案.docx

第 8 章直线和圆的方程练习 8.1两点间的距离与线段中点的坐标1.根据下列条件,求线段P P 的长度:1 2( 2) P ( -3, 1)、 P ( 2, 4)(1) P ( 0, -2)、P ( 3,0)121 2 (3) P ( 4, -2)、P ( 1,2)( 4) P ( 5, -2)、 P ( -1, 6)1 2122.已知 A(2,3) 、 B ( x , 1),且 |AB |= 13 ,求 x 的值。
3.根据下列条件,求线段 P 1P 2 中点的坐标:(1) P 1( 2, -1)、P 2( 3,4) ( 2) P 1( 0, -3)、P 2( 5,0) ( 3) P 1( 3, 2.5)、 P 2(4, 1.5)( 4) P 1( 6, 1)、P 2(3, 3)4.根据下列条件,求线段P 1P 2 中点的坐标:(1) P ( 3, -1)、P ( 3,5)( 2) P ( -3, 0)、 P ( 5,0)1 21 2(3) P 1( 3, 3.5)、 P 2(4, 2.5) ( 4) P 1( 5, 1)、 P 2(5, 3)参考答案:1.(1) 13 ;(2) 34 ;(3)5; (4)102.-1 或 53.(1) ( 5 , 3) ;(2) ( 5 ,3) ;(3) (7, 2) ; (4) (9, 2)222 222 4. (1)(3, 2) ;(2) (1,0) ;(3) (3.5,3) ; (4)(5, 2)练习 8.2.1 直线的倾斜角与斜率1.选择题(1)没有斜率的直线一定是()A. 过原点的直线B.垂直于 y 轴的直线C.垂直于 x 轴的直线D. 垂直于坐标轴的直线(2) 若直线 l的斜率为 -1,则直线 l 的倾斜角为( )A.90 B.0 C. 45D. 1352 已知直线的倾斜角,写出直线的斜率:(1) 30 , k ____ ( 2) (3)120 ,k____( 4)参考答案:1. ( 1) C( 2) D45 , k____150 , k____2. ( 1)3 3;(2) 1 ;(3) 3 ; (4)33练习 8.2.2 直线的点斜式方程与斜截式方程写出下列直线的点斜式方程(1)经过点 A (2,5),斜率是 4;(2)经过点 B ( 2,3),倾斜角为45;(3)经过点 C( -1,1),与 x 轴平行;(4)经过点 D (1,1),与 x 轴垂直。
直线的一般式方程练习题

3.2.3 直线的一般式方程练习一一、 选择题1、若点(4,a)到直线4x-3y=1的距离不大于3,则a 的取值范围是A 、[]010,B 、(0,10)C 、13313,⎡⎣⎢⎤⎦⎥ D 、(-∞,0?Y ?10,+∞) 2、过定点P(2,1)作直线l ,交x 轴和y 轴的正方向于A 、B ,使△ABC 的面积最小,那么l 的方程为 ( )A 、x-2y-4=0B 、x-2y+4=0C 、2x-y+4=0D 、x+2y-4=03、若直线Ax +By +C=0与两坐标轴都相交,则有A 、A ·B ?0 B 、A ?0或B ?0C 、C ?0D 、A 2+B 2=04、已知直线1:3x +4y=6和2:3x-4y=-6,则直线1和2的倾斜角是A 、互补B 、互余C 、相等D 、互为相反数5、直线(2m 2-5m-3)x-(m 2-9)y +4=0的倾斜角为π4,则m 的值是 A 、3 B 、2 C 、-2 D 、2与36、△ABC 的一个顶点是A(3,-1),∠B 、∠C 的平分线分别是x=0,y=x ,则直线BC 的方程是 ( )A 、y=2x+5B 、y=2x+3C 、y=3x+5D 、y=-252x + 7、直线kx -y=k -1与ky -x=2k 的交点位于第二象限,那么k 的取值范围是( )A 、k >1B 、0<k <21 C 、k <21 D 、21<k <1 8、直线(m+2)x+m y m m 2)32(2=--在x 轴上的截距是3,则实数m 的值是( )A 、52B 、6C 、- 52 D 、-6 二、填空题9、直线1l ,0111=++y b x a 直线2l ,0122=++y b x a 交于一点(2,3),则经过两点AB 的直线方程为10、设点P(a,b)在直线3x +4y=12上移动,而直线3ax +4by=12都经过点A,那么A 的坐标是 .三、解答题11、在等腰直角三角形中,已知一条直角边所在直线的方程为2x -y =0,斜边的中点为A (4,2),求其它两边所在直线的方程12、直线l 过点(1,2)和第一,二,四象限,若l 的两截距之和为6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2.3 直线的一般式方程练习一一、 选择题1、若点(4,a)到直线4x-3y=1的距离不大于3,则a 的取值范围是A 、[]010,B 、(0,10)C 、13313,⎡⎣⎢⎤⎦⎥ D 、(-∞,0] [10,+∞) 2、过定点P(2,1)作直线l ,交x 轴和y 轴的正方向于A 、B ,使△ABC 的面积最小,那么l的方程为 ( )A 、x-2y-4=0B 、x-2y+4=0C 、2x-y+4=0D 、x+2y-4=03、若直线Ax +By +C=0与两坐标轴都相交,则有A 、A ·B ≠0 B 、A ≠0或B ≠0C 、C ≠0D 、A 2+B 2=04、已知直线1:3x +4y=6和2:3x-4y=-6,则直线1和2的倾斜角是A 、互补B 、互余C 、相等D 、互为相反数5、直线(2m 2-5m-3)x-(m 2-9)y +4=0的倾斜角为π4,则m 的值是 A 、3 B 、2 C 、-2 D 、2与36、△ABC 的一个顶点是A(3,-1),∠B 、∠C 的平分线分别是x=0,y=x ,则直线BC 的方程是 ( )A 、y=2x+5B 、y=2x+3C 、y=3x+5D 、y=-252x +7、直线kx -y=k -1与ky -x=2k 的交点位于第二象限,那么k 的取值范围是( )A 、k >1B 、0<k <21 C 、k <21 D 、21<k <18、直线(m+2)x+m y m m 2)32(2=--在x 轴上的截距是3,则实数m 的值是( )A 、52 B 、6 C 、- 52 D 、-6二、填空题9、直线1l ,0111=++y b x a 直线2l ,0122=++y b x a 交于一点(2,3),则经过两点AB 的直线方程为10、设点P(a,b)在直线3x +4y=12上移动,而直线3ax +4by=12都经过点A,那么A 的坐标是 .三、解答题11、在等腰直角三角形中,已知一条直角边所在直线的方程为2x -y =0,斜边的中点为A (4,2),求其它两边所在直线的方程12、直线l 过点(1,2)和第一,二,四象限,若l 的两截距之和为6。
求直线l 的方程13、若方程02222=++-y x my x 表示两条直线,求m 的值14、已知三角形的顶点是A(-5,0)、B(3,-3)、C(0,2) ,求这个三角形三边所在的直线方程15、一条直线从点A(3,2)出发,经过x 轴反射,通过点B(-1,6),求入射光线与反射光线所在的直线方程答案:一、选择题1、A ;2、D ;3、A ;4、A ;5、B ;6、A ;7、B ;8、D二、填空题9、2x+3y+1=010、(1,1)三、解答题11、另一直角边斜率为-21,设斜边斜率为k ,利用两直线夹角公式可求出k ,得斜边方程为3x +y -14=0或x -3y +2=0,再利用中点坐标公式可得另一直角边方程为:x +2y -2=0或x +2y -14=0.12、解:设直线l 的横截距为a,则纵截距为b-al 的方程为1=-+ab y a x点(1,2)在直线l 上 ∴1216a a+=- 即a 2-5a+6=0解得a 1=2 ,a 2=3当a=2时,方程142=+y x ,直线经过第一,二,四象限, 当a=3时直线的方程为133=+y x 直线l 经过第一,二,四象限综上知,直线l 的方程为2x+y-4=0或x=y-3=013、解:当m=0时,显然不成立当m0时,配方得m m y m x 11)1()1(22-+-=+ 方程表示两条直线,当且仅当有1-m 1=0,即m=1 14、解:由两点式得直线AB 方程为)5(3)5(030----=---x y 即3x+8y+15=0同理可得AC 所在的直线方程为2x-5y+10BC 所在的直线方程为5x+3y-6=015、解:点A(3,2)关于x 轴的对称点A(3,-2)由两点式可得直线A 'B 的方程为2x+y-4=0点B 关于x 轴的对称点B '(-1,-6)由两点式得直线A B '方程为313262---=---x y 即2x-y-4=0入射光线所在的直线方程为2x-y-4=0反射光线所在的直线方程为2x+y-4=0 3.2.3 直线的一般式式方程练习二一、 选择题1、如果两条直线2x+3y -m=0和x -my+12=0的交点在x 轴上,那么m 的值是( )A 、-24B 、6C 、±6D 、242、已知点(a,b)在直线2x+3y+1=0上,则16a 2+48ab+36b 2的值是 ( )A 、4B 、-4C 、0D 、123、两条直线ax+y=4和x -y=2的交点在第一象限,则实数a 的取值范围是( )A 、(-1,2)B 、(-1,+∞)C 、(-∞,2)D 、(-∞,-1)∪(2,+∞)4、△ABC 的三个顶点分别为A(0,3),B(3,3),C(2,0),如果直线x=a 将△ABC 分割成面积相等的两部分,则实数a 的值等于 ( )A 、3B 、1+22C 、1+33D 、2-22 5、两条直线l 1:y=kx+1+2k,l 2:y=-21x+2的交点在直线x -y=0的上方,则k 的取值范围是 ( )A 、(-21,101) B 、(-∞,-101)∪(21,+∞) C 、(-∞,-21)∪(101,+∞) D 、(-101,21)6、已知l 平行于直线3x+4y -5=0, 且l 和两坐标轴在第一象限内所围成三角形面积是24,则直线l 的方程是 ( )A 、3x+4y -122=0B 、3x+4y+122=0C 、3x+4y -24=0D 、3x+4y +24=07、由方程11-+-y x =1确定的曲线所围成的图形面积是 ( )A 、1B 、2C 、D 、4二、填空题8、过两点(5,7)(1,3)的直线方程为若点(a,12)在此直线上,则a=9、若直线l 的方程是y-m=(m-1)(x+1),且l 在y 轴上的截距是7,则实数m=10、经过点(-4,3),且斜率为-3的直线方程为三、解答题11、过点P (2,1)作直线l 交x 、y 轴正向于A 、B 两点,求l 的方程,使(1)S △AOB 最小; (2)PB PA ⋅最小。
12、△ABC 的顶点坐标分别为A (-3,0)、B (9,5)、C (3,9),直线l 过点C 且把三角形的面积分为1:2的两部分,求l 的方程13、求过点P(-5,-4)且与坐标轴围成的三角形面积为5的直线方程14、已知点A(2,5)与点B(4,-7),试在y 轴上求一点P,使及PB PA +的值为最小15、过点A(0,1)做一直线l ,使它夹在直线1l :x-3y+10=0和2l :2x+y-8=0间的线段被A 点平分,试求直线l 的方程答案:一、选择题1、A ;2、A ;3、A ;4、A ;5、C ;6、C ;7、A二、填空题8、x-y+2=0; 109、410、3x+y+9=0三、解答题11、(1)设l 的方程为1=+b y a x (a >0,b >0)依题意,⎪⎩⎪⎨⎧==+ab S b a 21112消去a 得b 2-Sb +S =0, 利用△=0,解得b ,a ,得l 的方程为:x +2y -4=0;(2)设∠BOA =θ,θθcos 2,sin 1==PB PA l 的方程为:x +y -3=0 12、17x +6y -105=0,11x -3y -6=013、设所求直线方程为1=+by a x 直线过点P(-5,-4) 即145=-+-ba 又由已知可得, 521=b a 即10=ab 联立方程解方程组得⎩⎨⎧=-=+1054ab ab b a 解得,⎪⎩⎪⎨⎧=-=425b a 或⎩⎨⎧-==25b a 故所求直线方程为1425=+-y x 或125=+y x 即,8x -5y+20=0或2x -5y -10=014、解:先求A 点关于y 轴的对称点A '(-2,5) 直线A 'B 的方程为424757---=++x y 即2x+y -1=0 A P '=PA ∴PB PA +最小,就是A P '+PB 最小 当A ',P,B 共线时, A P '+PB 最小在2x+y -1=0中,令x=0及y=1故所求P 点坐标为P(0,1)15、设所求的直线方程为y=kx+1解方程组⎩⎨⎧+==+-10103kx y y x 得P(13110,137---k k k ) 解方程组⎩⎨⎧+==-+1082kx y y x得Q(k k k +++228,27) A 为PQ 的中点 ∴7731202k k +++= 解得k=41- 直线l 的方程为y-1=41-x 即x+4y -4=0。