大学物理实验:超声声速测定
超声波测声速实验报告

超声波测声速实验报告摘要:本实验通过使用超声波的特性,利用测量声波在不同介质中传播速度的方法,来实验测量声速的准确性和可行性。
通过实验结果可以得出声速的数值,并与理论值进行比较,验证实验结果的准确性。
引言:声速是声波在介质中传播的速度,是一个重要的物理量。
测量声速的方法有许多种,其中一种方法是使用超声波。
超声波频率高,传播距离远,传播损耗小,因此被广泛应用于医学、工业、地质等领域。
本实验通过测量超声波在不同介质中传播的时间,来计算声速。
实验仪器和材料:1. 超声波发生器2. 超声波接收器3. 示波器4. 高频电缆5. 水槽6. 介质样品(例如水、酒精等)实验步骤:1. 准备工作:将超声波发生器和接收器连接至示波器,并将示波器调至适当的测量范围。
2. 将水槽填满水,并将介质样品分别倒入水槽中,确保样品平整且不产生气泡。
3. 以超声波发生器为源,将超声波发射至介质中,通过示波器观察超声波的波形。
4. 通过调节示波器的时间基准,测量超声波在不同介质中的传播时间。
5. 根据声速的计算公式,计算超声波在不同介质中的声速。
实验结果与分析:通过实验测量得到的声速数值如下:- 对于水介质,声速为1500 m/s;- 对于酒精介质,声速为1200 m/s。
通过与理论值进行比较,可以发现实验结果与理论值相符合,证明了本实验的准确性和可行性。
不同介质的声速差异是由介质的密度、弹性模量等因素决定的。
声速与介质的物理性质密切相关。
实验误差分析:在实验过程中,可能存在一些误差导致测量结果不够准确。
可能的误差来源包括:1. 实验仪器的精度限制:示波器的时间基准可能存在一定的误差,影响到测量结果的准确性。
2. 介质的温度变化:介质的温度变化会对声速产生一定影响,因此在实验过程中需要控制介质的温度稳定。
3. 实验操作的技巧:实验者的技巧和经验对实验结果可能会产生一定的影响。
结论:本实验通过测量超声波在不同介质中的传播时间,得出了水和酒精的声速数值,并验证了实验结果的准确性。
大学物理实验报告声速的测量

大学物理实验报告声速的测量声速是指声波在介质中传播的速度。
在大学物理实验中,测量声速是一项常见的实验项目。
本文将介绍如何进行声速的测量以及实验过程中的注意事项。
声速的测量可以通过多种方法进行,其中一种常用的方法是通过测量声波在空气中的传播时间来计算声速。
实验中需要用到一台发声器和一台示波器。
首先,将发声器放置在适当的位置,使声波能够在实验室中传播。
然后,将示波器连接到发声器上,并将示波器设置为触发模式。
触发模式可以确保示波器在接收到声波信号时才进行测量。
接下来,调整发声器的频率,使其产生一个明显的声波信号。
然后,打开示波器,并调整示波器的垂直和水平刻度,使声波信号能够在示波器屏幕上清晰可见。
现在,我们可以开始测量声速了。
首先,选择一个起始点,并用示波器的游标功能标记下来。
然后,等待声波信号到达示波器的起始点,并用示波器的游标功能再次标记下来。
通过测量两个标记点之间的时间差,我们可以得到声波在空气中传播的时间。
为了提高测量的准确性,可以进行多次测量,并计算平均值。
此外,还应注意排除外界因素对测量结果的影响。
例如,确保实验室中的环境噪音较小,并避免其他声源的干扰。
在进行实验时,还应注意一些实验技巧。
首先,要确保示波器的触发模式正确设置,以确保测量结果的准确性。
其次,要使用适当的测量工具,如游标功能,以提高测量的精确度。
最后,要注意对实验数据进行记录和分析,以便后续的数据处理和结果推导。
通过以上实验步骤和技巧,我们可以准确测量声速并得到实验结果。
在实验报告中,除了记录实验步骤和结果外,还可以进行一些讨论和分析。
例如,可以比较实验结果与理论值的差异,并探讨可能的误差来源。
此外,还可以讨论声速在不同介质中的差异,并对实验结果进行进一步的解释和应用。
总结起来,声速的测量是一项常见的大学物理实验。
通过合理的实验步骤和技巧,我们可以准确测量声速并得到实验结果。
在实验报告中,除了记录实验过程和结果外,还可以进行讨论和分析,以进一步理解声速的特性和应用。
[实用参考]大学物理实验超声波速测量实验报告.doc
![[实用参考]大学物理实验超声波速测量实验报告.doc](https://img.taocdn.com/s3/m/53b4008dda38376bae1fae13.png)
大学物理实验超声波速测量实验报告一实验目的1.了解超声波的物理特性及其产生机制;2.学会用相位法测超声波声速并学会用逐差法处理数据;3.测量超声波在介质中的吸收系数及反射面的反射系数;4.并运用超声波检测声场分布。
5.学习超声波产生和接收原理,6.学习用相位法和共振干涉法测量声音在空气中传播速度,并与公认值进行比较。
7.观察和测量声波的双缝干涉和单缝衍射二实验条件HLD-SV-II型声速测量综合实验仪,示波器,信号发生仪三实验原理1、超声波的有关物理知识声波是一种在气体。
液体、固体中传播的弹性波。
声波按频率的高低分为次声波(f<20Hz)、声波(20Hz≤f≤20kHz)、超声波(f>20kHz)和特超声波(f≥10MHz),如下图。
声波频谱分布图振荡源在介质中可产生如下形式的震荡波:横波:质点振动方向和传播方向垂直的波,它只能在固体中传播。
纵波:质点振动方向和传播方向一致的波,它能在固体、液体、气体中的传播。
表面波:当材料介质受到交变应力作用时,产生沿介质表面传播的波,介质表面的质点做椭圆的振动,因此表面波只能在固体中传播且随深度的增加衰减很快。
板波:在板厚与波长相当的弹性薄板中传播的波,可分为SH波与兰姆波。
超声波由于其波长短、频率高,故它有其独特的特点:绕射现象小,方向性好,能定向传播;能量较高,穿透力强,在传播过程中衰减很小,在水中可以比在空气或固体中以更高的频率传的更远,而且在液体里的衰减和吸收是比较低的;能在异质界面产生反射、折射和波形转换。
2、理想气体中的声速值声波在理想气体中的传播可认为是绝热过程,因此传播速度可表示为μrRT=V (1)式中R 为气体普适常量(R=8.314J/(mol.k)),γ是气体的绝热指数(气体比定压热容与比定容热容之比),μ为分子量,T 为气体的热力学温度,若以摄氏温度t 计算,则:t T T +=0K T 15.2730=代入式(1)得,00001V 1)(V T t T t T rRt T rR++⋅+===μμ(2) 对于空气介质,0℃时的声速0V =331.45m /s 。
超声波测量声速

实验原理 2 实验原理 声波是在弹性媒质中传播的一种机械波。当声波的振动频 率超过20kHz的时候称为超声波,它具有波长短、指向性好等 优点。超声波在科学研究、生产、生活中应用非常广泛,如 超声无损检测、超声波测距和定位、测量气体温度瞬间变化、 测液体流速、测材料弹性模量等等。 超声波在医学方面应用非常广泛,可以对物品进行杀菌消毒。
产生超声波
接受超声波
实验原理 2 实验原理 测声波频率 (可通过频率计测得)
测波长用公式
υ =λ f
因此本实验的主要任务是测超声波的波长。
测超声波的波长的方法
1 共振干涉法(驻波法) 2 相位比较法(行波法)
实验原理 2 实验原理
当换能器S1与S2的表面平行时,由换能器S1的震动产生的超声波在S1、S2两
。
(2)用逐差法计算共振干涉法测出的超声波波长:
2 共= L10 L5 L9 L4 L6 L1 25
V共=共 f
(4)将V共 与 V认 比较求相对误差:
(3)计算共振干涉法测出的超声波在空气中的传播速度:
E共
V共 -V认 V认
100%
(5)用逐差法计算计算位相比较法测出的超声波波长:
压电换能器是指利用压电 材料的正逆压电效应制成的换 能器,换能器顾名思义就是指 可以进行能量转换的器件。通 常我们所说的为电声换能器, 能够发射声波的换能器叫发射 器;用来接收声波的换能器叫 接收器。
实验原理 2 实验原理 压电换能器的工作原理 即如果在极化方向加上电压,电场强度的作用下会在极化该方向 产生应力,该应力使压电材料在极化方向的长度伸长或收缩。如果加 上的电压是频率 f 超过20kHz的交流电,压电材料就会产生频率为 f 的周期性纵向伸缩,从而压迫空气成为超声波的波源。同样,也可以 使声压的变化转变成电压的变化,用来接收信号。
大学物理实验报告声速的测量

实 验 报 告声速的测量【实验目的】1.学会用共振干涉法、相位比较法以及时差法测量介质中的声速2.学会用逐差法进行数据处理;3.了解声速与介质参数的关系。
【实验原理】由于超声波具有波长短,易于定向发射、易被反射等优点。
在超声波段进行 声速测量的优点还在于超声波的波长短,可以在短距离较精确的测出声速。
超声波的发射和接收一般通过电磁振动与机械振动的相互转换来实现,最常 见的方法是利用压电效应和磁致伸缩效应来实现的。
本实验采用的是压电陶瓷制 成的换能器(探头),这种压电陶瓷可以在机械振动与交流电压之间双向换能。
声波的传播速度与其频率和波长的关系为:v f λ=⋅ (1) 由(1)式可知,测得声波的频率和波长,就可以得到声速。
同样,传播速度亦可用 /v L t = (2) 表 示,若测得声波传播所经过的距离L 和传播时间t ,也可获得声速。
1. 共振干涉法实验装置如图1所示,图中和为压电晶体换能器,作为声波源,它被低频信号发生器输出的交流电信号激励后,由于逆压电效应发生受迫振动,并向空气中定向发出以近似的平面声波;为超声波接收器,声波传至它的接收面上时,再被反射。
当和的表面近似平行时,声波就在两个平面间来回反射,当两个平面间距L为半波长的整倍数,即(3)时,发出的声波与其反射声波的相位在处差(n=1,2 ……),因此形成共振。
因为接收器的表面振动位移可以忽略,所以对位移来说是波节,对声压来说是波腹。
本实验测量的是声压,所以当形成共振时,接收器的输出会出现明显增大。
从示波器上观察到的电信号幅值也是极大值(参见图2)。
图中各极大之间的距离均为,由于散射和其他损耗,各级大致幅值随距离增大而逐渐减小。
我们只要测出各极大值对应的接收器的位置,就可测出波长。
由信号源读出超声波的频率值后,即可由公式(1)求得声速。
2.相位比较法波是振动状态的传播,也可以说是位相的传播。
沿波传播方向的任何两点同相位时,这两点间的距离就是波长的整数倍。
大学物理实验超声波声速的测量(含数据)

大学物理实验超声波声速的测量(含数据)
一、实验目的
1、测量水中超声波的传播速度;
二、实验器材
2、水槽;
3、测量卡尺。
三、实验原理
超声波声速可以通过测量超声波在介质中传播的时间和距离来确定。
假设超声波在水中的传播速度为v,声波从超声波发射器发出后,在经过水中的传播距离L后,到达超声波接收器所需的时间为t,则有:
v = L/t
四、实验步骤与数据处理
1、将超声波发射器和接收器分别固定在水槽的两侧边缘,距离为L = 100.0 cm。
2、开始实验前,先开启超声波声速测量仪,待其进入正常工作状态后再进行后续步骤。
3、将水箱中的水注满,保证水面平整,不产生涟漪。
4、在超声波声速测量仪屏幕上调节并观察渐进式扫描波形直到找到超声波信号。
然后在屏幕上调节幅度使其在2/3波形范围内。
这个范围内的任何波形变化都可能导致声波时间测量误差。
5、在超声波声速测量仪屏幕上记录观察到的第一个波峰(应为正弦波的正向部分)的位置,这标志着声波的发射时刻。
7、重复实验三次,并将每组实验数据记录在下表中。
实验次数时间t(ms)
1 0.270
2 0.267
3 0.269
8、计算各次实验的平均时间t和超声波速度v:
t = (0.270 ms + 0.267 ms + 0.269 ms) / 3 = 0.269 ms
五、实验结论
本实验测量得到的水中超声波的传播速度为3.72 km/s。
实验结果和实际值(约为1.5 km/s)存在较大的偏差,可能是由于实验误差和水中的水质、温度等因素的影响。
大学物理实验报告声速的测量 (1)

大学物理实验报告声速的测量 (1)
实验目的:
测量声速的值
实验原理:
声速是指声波在介质中传播的速度。
在一定温度下,介质固有性质决
定了声速的大小。
本实验采用了共振法,即利用管内的声波共鸣现象
来测量声速。
实验步骤:
1. 实验装置:
需要的装置包括波形发生器、音叉、水垫管、水桶、尺子、万用表等。
2. 测量流程:
(1)用水桶加水到水垫管内,以保证管内始终保持一定水位高度;(2)在波形发生器上调节频率,将音叉产生的声波频率调节至水垫管
中的空气柱谐振;
(3)记录音叉频率、空气柱长度;
(4)将水桶上升/下降5-10cm,使得空气柱长度改变,重新测量共振
频率和空气柱长度;
(5)重复(4),共测量三组数据;
(6)根据公式计算声速的值。
实验数据处理:
根据实验数据,可采用如下公式计算声速的值:
v=2lf
其中,v为声速,l为空气柱长度,f为共振频率。
最后取三次测量的平均数作为实验结果。
实验注意事项:
1. 调节频率时,注意保持频率稳定不要超出音叉的工作范围;
2. 测量频率时,取多次测量的平均值,减小误差;
3. 水垫管的水位高度需要保持一定的高度,否则会影响声波的传播;
4. 实验结束后及时清理实验装置,尤其是水垫管内的水务必要清理干净。
实验总结:
本实验采用共振法测量声速值,实验数据相对较便捷且精度较高。
在实验中需注意保持实验装置的干净及频率的稳定。
通过实验,不仅加深了对声学知识的理解,更加锻炼了实验操作能力。
大学物理实验报告-声速的测量

实验报告声速的测量【实验目的】1.学会用共振干涉法、相位比较法以及时差法测量介质中的声速2.学会用逐差法进行数据处理;3.了解声速与介质参数的关系。
【实验原理】由于超声波具有波长短,易于定向发射、易被反射等优点。
在超声波段进行 声速测量的优点还在于超声波的波长短,可以在短距离较精确的测出声速。
超声波的发射和接收一般通过电磁振动与机械振动的相互转换来实现,最常 见的方法是利用压电效应和磁致伸缩效应来实现的。
本实验采用的是压电陶瓷制 成的换能器(探头),这种压电陶瓷可以在机械振动与交流电压之间双向换能。
声波的传播速度与其频率和波长的关系为:v f λ=⋅(1) 由(1)式可知,测得声波的频率和波长,就可以得到声速。
同样,传播速度亦可用/v L t =(2)表 示,若测得声波传播所经过的距离L 和传播时间t ,也可获得声速。
1. 共振干涉法实验装置如图1所示,图中S 1和S 2为压电晶体换能器,S 1作为声波源,它被低频信号发生器输出的交流电信号激励后,由于逆压电效应发生受迫振动,并向空气中定向发出以近似的平面声波;S 2为超声波接收器,声波传至它的接收面上时,再被反射。
当S 1和S 2的表面近似平行时,声波就在两个平面间来回反射,当两个平面间距L 为半波长的整倍数,即L =n ×λ2, n =0,1,2, (3)时,S 1发出的声波与其反射声波的相位在S 1处差2nπ(n=1,2 ……),因此形成共振。
因为接收器S 2的表面振动位移可以忽略,所以对位移来说是波节,对声压来说是波腹。
本实验测量的是声压,所以当形成共振时,接收器的输出会出现明显增大。
从示波器上观察到的电信号幅值也是极大值(参见图2)。
图中各极大之间的距离均为λ/2,由于散射和其他损耗,各级大致幅值随距离增大而逐渐减小。
我们只要测出各极大值对应的接收器S 2的位置,就可测出波长。
由信号源读出超声波的频率值后,即可由公式(1)求得声速。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超声声速测定
声波特性的测量,如频率、波长、声速、声压衰减、相位等,是声波检测技术中的重要内容。
特别是声速的测量,不仅可以了解媒质的特性而且还可以了解媒质的状态变化,在声波定位、探伤、测距等应用中具有重要的实用意义。
例如,声波测井、声波测量气体或液体的浓度和比重、声波测量输油管中不同油品的分界面等等。
“声速的测量”是一个综合性声学实验。
实验中采用压电陶瓷超声换能器通过驻波法(共振干涉法)和相位比较法测量超声波在空气中的传播速度,这是一个非电量电测方法的应用。
通过这个实验可以重点学习如下内容:(1)实验方法:非电量的电测方法;测量声速的驻波法和相位比较法。
(2)测量方法:利用示波器测量电信号的极大值和观察李萨如图形测量相位差的方法。
(3)数据处理方法:求声波波长的逐差法。
(4)仪器调整使用方法:双踪示波器和函数信号发生器的正确调节和使用方法。
【实验目的】
1.学习用驻波共振法和相位比较法测量超声波在空气中的传播速度。
2.了解压电换能器的功能。
3.学习用逐差法处理数据。
【实验仪器】
SVX-5型声速测试仪信号源、SV-DH系列声速测试仪、双踪示波器等
【实验原理】
频率介于20Hz~20kHz的机械波振动在弹性介质中的传播就形成声波,介于20kHz~500MHz的称为超声波,超声波的传播速度就是声波的传播速度,而超声波具有波长短,易于定向发射和会聚等优点,声速实验所采用的声波频率一般都在20KHz~60kHz之间。
在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器、效果最佳。
根据声波各参量之间的关系可知f⋅
υ,其中υ为波速, λ为波长,f为频率。
=λ
图4-5-1共振法测量声速实验装置
在实验中,可以通过测定声波的波长λ和频率f求声速。
声波的频率f可以直接从低频信号发生器(信号源)上读出,而声波的波长λ则常用相位比较法(行波法)和共振干涉法(驻波法)来测量。
图4-5-2 相位比较法测量声速实验装置
1.相位比较法
实验装置接线如图4-5-2所示,置示波器功能于X -Y 方式。
当S1发出的平面超声波通过媒质到达接收器S2,合成振动方程为:
22见图长λ
L 不断变化。
显然,当S1、S2之间距离改变半个波长2/λ=∆L ,则ϕ∆=π。
2.共振干涉(驻波)法测声速
由声源S 1发出的声波(频率为f ),经介质(空气)传播到S 2,S 2在接收声波信号的同时反射部分声波信号。
如果接收面(S 2)与发射面(S 1)严格平行,入射波即在接收面上垂直反射,入射波与反射波相干涉形成驻波。
反射面处是位移的波节,声压的波腹。
改变接收器与发射源之间的距离L ,在一系列特定的距离上,空气中出现稳定的驻波共振现象。
此时L 等于半波长的整数倍,驻波的幅度达到极大;同时,在接收面上的声压波腹也相应地达到极大值。
通过压电转换,产生的电信号的电压值也最大(示波器显示波形的幅值最大)。
因此,若保持频率不变,通过测
E与T,S与U之间有简单的线性关系,因此我们就可以将正弦交流电信号变成压电材料纵向的长度伸缩,使压电陶瓷片成为超声波的波源。
即压电换能器可以把电能转
换为声能作为超声波发生器,反过来也可以使声压变化转化为电压变化,即用压电陶瓷片作为声频信号接收器。
因此,压电换能器可以把电能转换为声能作为声波发生器,也可把声能转换为电能作为声波接收器之用。
压电陶瓷换能器根据它的工作方式,可分为纵向(振动)换能器、径向(振动)换能器及弯曲振动换能器。
图4-5-4所示为纵向换能器的结构简图。
【实验内容及步骤】
1.声速测试仪系统的连接与调试
接通电源,信号源自动工作在连续波方式,选择的介质为空气的初始状态,预热15min。
声速测试仪和声速测试仪信号源及双踪示波器之间的连接如图4-5-2所示。
1)测试架上的换能器与声速测试仪信号源之间的连接
信号源面板上的发射端换能器接口(S1),用于输出相应频率的功率信号,接至测试架左边的发射换能器(S1);仪器面板上的接收端的换能器接口(S2),请连接测试架右边的接收换能器(S2)。
2)示波器与声速测试仪信号源之间的连接
信号源面板上的发射端的发射波形(Y1),接至双踪示波器的CH1(X),用于观察发射波形;信号源面板上的接收端的接收波形(Y2),接至双踪示波器的CH2(Y),用于观察接收波形。
2.共振频率的调试测量
只有当换能器S1和S2发射面与接收面保持平行时才有较好的接收效果;为了得到较清晰的接收波形,应将外加的驱动信号频率调节到发射换能器S1谐振频率点处,才能较好地进行声能与电能的相互转换,提高测量精度,以得到较好的实验效果。
超声换能器工作状态的调节方法如下:各仪器都正常工作以后,首先调节声速测试仪信号源输出电压(100mV~500mV之间),调节信号频率(在25~45kHz),观察频率调整时接收波的电压幅度变化,在某一频率点处(34.5~37.5kHz之间)电压幅度最大,同时声速测试仪信号源的信号指示灯亮,此频率即是压电换能器S1、S2相匹配的频率点,记录频率ν
,改变S1和S2之间的距离,适当选择位置(即:至示波器屏上呈现出最大电压波形幅度i
时的位置),再微调信号频率,如此重复调整,再次测定工作频率,共测5次,取平均值ν0 。
3.用相位比较法(李萨如图形)测量波长
1) 将测试方法设置到连续波方式,连好线路,把声速测试仪信号源调到最佳工作频率f。
2)调节示波器:把“扫描时间”旋扭旋至“X-Y”方式;
3)移动S2,依次记下示波器上波形由图3中(a)变为图4-5-3中(e)时,读数标尺位置的读数L1、L2…共10个值;
4)记下室温t;
5)用逐差法处理数据。
4.干涉法(驻波法)测量波长
1) 按图4-5-1所示连接好电路;
2) 将测试方法设置到连续波方式,把声速测试仪信号源调到共振工作频率(根据共振特点观察波幅变化进行调节)。
3) 在共振频率下,将S2移近S1处,依次记下各振幅最大时的读数标尺位置L1、L2…共10个值;
4) 记下室温t ;
5) 用逐差法处理数据。
【数据记录及处理】
1.驻波法
t= 0C v0=331.45m/s f= Hz
5
∑
∆=
∆i
l l 5
2l
∆⨯=λ
λυ⋅=f 15
.273100t
v +
=υ 0υυυ-=∆ %1000
⨯∆=υυ
υE
2. 相位法
t= 0C =0v 331.45m/s
f = Hz
5
∑∆=
∆i
l l
5
2l ∆⨯
=λ λυ⋅=f 15
.273100t
v +
=υ 0υυυ-=∆ %1000
⨯∆=
υυ
υE
【预习要求】
1、理解驻波法和相位比较法测量声速的基本原理。
2、了解形成驻波和李萨如图形的基本理论。
3、了解函数信号发生器和示波器的调整和使用方法。
4、理解测量波长的驻波法和相位比较法。
5、熟悉实验的具体内容。
6、列出测量数据记录表。
【注意事项】
1、必须仔细阅读教材中各仪器说明书,熟悉各个旋钮的功能,方可进行调节。
2、信号发射器的信号输出幅度不要过大,避免仪器过热而损坏。
3、调节仪器旋钮要轻缓,以免损坏。
4、实验时要使函数信号发生器的输出频率等于换能器的谐振频率,并且在实验过程中保持不变。
5、使用游标尺测量移动距离时,必须轻而缓慢地调节,手勿压游标尺。
6、换能器发射面和接受面要保持相互平行。
【思考题】
1、驻波法测量声速的原理和方法是什么?
2、相位比较法测量声速的原理和方法是什么?
3、实验中信号发生器和示波器各起什么作用?
4、实验中通过什么来发射和接收声波?
5、实验中为什么要在压电换能器谐振状态下测量空气中的声速?
6、实验时怎样找到超声换能器的谐振频率?
7、实验中为什么要使换能器发射面和接受面要保持相互平行?
8、实验中怎样才能知道接收换能器接收面的声压为极大值?
9、实验中为什么要记录室温?
10、本实验采用逐差法处理数据有什么好处?
如有侵权请联系告知删除,感谢你们的配合!。