北师大版2019-2020学年七年级上学期科学期中考试试卷B卷
七年级上册数学第一单元测试卷及答案B卷北师大版

七年级上册数学第一单元测试卷及答案B 卷北师大版一、选择题(每小题2分,共30分)1. 长方形的长为6厘米,宽为4厘米,若绕着它的宽旋转一周得到的圆柱的体积为( )立方厘米.(A)36(B )72(C )96(D )1442. 下面是某物体的三视图,则这个物体是().正视图右视图 俯视图(A)圆锥 (B)棱锥 (C)三棱锥 (D)三棱柱3. 将长方形截去一个角,剩余几个角( ).(A ) 三个角(B ) 四个角(C ) 五个角 (D)不能确定4. 下面的四个图形,能折叠成三棱柱的有( )个.(A)1(B)2(C)3 (D)45. 下列几何体的截面是( ).6. 从上面看下图,能看到的结果是图形( ).7. 下图是( )的平面展开图.ππππ(A )(B )(C)(D )(C )(A )(B )(D )(A)六棱柱(B)五棱柱(C)四棱柱(D)五棱锥8. 下列各图中,( )是四棱柱的侧面展开图.(A) (B) (C) (D)9. 下列四个圆,哪个是左边圆锥的俯视图().(A) (B)(C) (D)10. 指出图中几何体截面的形状符号 ( )(A)(B)(C)(D)11. 一个平面去截一只篮球,截面是().(A)圆(B)三角形(C)正方形(D)非圆的曲线12. ().(A)(B) (C)(D)13. 对于一个多面体来说,欧拉公式是指( ).(A)顶点数+棱数-面数=2 (B)顶点数+面数-棱数=2(C)棱数+面数-顶点数=2 (D)不同于ABC的结论14. 下列图形中是正方体的展开图的是( )(A) (B)(C)(D)15. 指出图中几何体截面的形状符号 ( )(A)(B)(C)(D)二、填空题(每小题2分,共30分)1. 从_____,_____和______三个不同的方向看一个物体,得到的图形称为______图.2. 如图是一个正方体的展开图,和C 面的对面是______面.3. 一个三棱柱,它由个三角形和 个形围成.4. 如图所示的圆锥,从它的前面、上面、左面三个方向看到的图形分别是 、 、 .5. 竖直放置的三棱柱,用水平的平面去截,所得截面是 .6. 柱体包括____,_____,锥体包括____,_____.7. 圆柱是由 个底面和 个曲面所组成的,它的侧面展开图是 .8. 一个圆柱体的侧面展开图的边为4πcm 的正方形,则它的表面积为______cm2.9. 举出主视图是圆的三个物体的例子.com/tiku/10. 雨点从高空落下形成的轨迹说明了 ;车轨快速旋转时看起来象个圆面,这说明了 ;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明了 .11. 下列图形中是柱体的是_____(,_______是棱柱.12. 若棱柱的底面是一个8边形,则它的侧面必有_____个长方形,它一共有_____面..( ) ( ) ( ) ( ) ( )14.每一个多边形都可以分割成若干个_____形,一个n 边形,至少可以将它分成____个三角形.三角,(n-2)15. 长方体是由____个面围成的,它有_____个顶点,经过每个顶点有____条边.三、解答题(每小题4分,共40分)1.如图所示是由几个小立方块所搭的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,请画出相应几何体的主视图和左视图:2.用平面截一个正方体,能截出梯形截面吗?若能在图上画一画;若不能,请说明理由.3.用平面去截一个几何体,如果截面是正方形,你能想像出原来的几何体可能是什么吗?如果截面是圆呢?4. 请问右图是一个什么几何体的展开图?5. 在下图中,有多少个不同的四边形?此图看起来有点像什么?6. 下列物体与哪些立体图形类似,并说明理由.(1)数学课本(2)易拉罐(3)金字塔(4)日光灯(5)八角亭(6)大喇叭(7) 乒乓球(8)足球7. 如图所示的立体图形,画出它的主视图、左视图和俯视图.8. 画出蓝球的三视图.9. 至少找出下列几何体的4个共同点参考答案一、选择题(每小题2分,共30分)1. D2. C3. D4. C5. A6. D7. B8. D9. D10. B11. A12. C13. B14. D15. D二、填空题(每小题2分,共30分)1. 正面,侧面,上面,三视2. (F)3. 两,三,四边4. 等腰三角形,圆,等腰三角形5. 三角形6. 圆柱,棱柱,圆锥,棱锥7. 2,1,长方形或正方形8. 8π+16π29. 球,圆柱,圆锥等.10. 点动成线,线动成面,面动成体11. b、c;b、c12. ( 8,10)13. 从左到右依次填:四棱柱(或长方体),三棱柱,圆锥,圆柱,球14. 三角,(n-2)15. (6,8,3)三、解答题(每小题4分,共40分)主视图 左视图2. 解:能,如图所示即可.3. 可能的图形有很多,这里就不再举例了.4. 圆锥5. 6个不同的四边形,看起来像脸6. (1)四棱柱(或长方体)(2)圆柱(3)棱锥(4)圆柱(5)棱锥(6)圆锥(7)球(8)球或多面体8.主视图左视图俯视图10. (都是棱柱,侧面都是平面,侧棱互相平行,侧棱长相等)一、精心选一选(每题4分,共计32分)1.下列说法中,正确的是( )A .棱柱的侧面可以是三角形B .由六个大小一样的正方形所组成的图形是正方体的展开图C .正方体的各条棱都相等D .棱柱的各条棱都相等2.直角三角形绕它最长边(即斜边)旋转一周得到的几何体为( )3.棱柱的侧面都是( )A .正方形B .长方形C .五边形D .菱形4.圆锥的侧面展开图是( )A .长方形B .正方形C .圆D .扇形5.下列交通标志图中,属于轴对称图形的是( )主视图左视图俯视图6.一个直立在水平面上圆柱体的主视图、俯视图、左视图分别是()A.长方形、长方形、圆B.长方形、圆、长方形C.圆、长方形、长方形D.长方形、三角形、圆7.下列平面图中不能围成立方体的是()8.如果有一个正方体,它的展开图可能是下面四个展开图中的()二、细心填一填(每题4分,共计24分)9.长方体由个面,条棱,个顶点。
北师大版七年级上册数学期中复习试卷(含答案)

北师大版七年级上册数学期中复习试卷范围:第1-3章内容一.选择题1.﹣的倒数是()A.5B.C.﹣5D.﹣2.地球上的海洋面积约为361000000km2,用科学记数法可表示为()A.361×106km2B.36.1×107km2C.0.361×109km2D.3.61×108km23.如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体“着”相对的面上的汉字是()A.冷B.静C.应D.考4.一袋大米的质量标识为“10±0.15千克”,则下列大米中质量合格的是()A.9.80千克B.10.16千克C.9.90千克D.10.21千克5.若单项式﹣2x m﹣n y3与﹣5x6y2m+n是同类项,则这两个单项式的和是()A.﹣3x6y3B.﹣7x12y6C.3x6y3D.﹣7x6y36.在式子a2+2,,ab2,,﹣8x,3中,整式有()A.6个B.5个C.4个D.3个7.代数式2x2+x+9的值是8,则代数式8x2+4x﹣3的值是()A.1B.﹣7C.﹣1D.78.已知|a﹣2|+(b+3)2=0,则b a的值是()A.﹣6B.6C.﹣9D.99.点A在数轴上距﹣2的点3个单位长度,且位于原点左侧,则点A所表示的是()A.1B.﹣5C.1或﹣5D.以上都不对10.下列说法中错误的是()A.数字0也是单项式B.是二次单项式C.的系数是D.单项式﹣a的系数与次数都是111.如果a<0,b>0,a+b<0,那么下列关系式中正确的是()A.a>b>﹣b>﹣a B.a>﹣a>b>﹣b C.b>a>﹣b>﹣a D.﹣a>b>﹣b>a12.下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有()A.482B.483C.484D.485二.填空题13.如果向东走5m,记作+5m;那么向西走10m,记作m.14.比较大小:﹣(填“>”或“<”).15.去括号:a﹣(﹣2b+c)=.16.如果对于任何非零有理数a,b定义一种新的运算“★”如下:a★b=,则﹣4★2的值为.17.已知x,y互为相反数,m,n互为倒数,且有|a|=7,a2﹣(x+y+mn)a﹣(﹣nm)2019=.18.如图,在数轴上原点为O,点P表示的数为30,点Q表示的数为120,甲、乙两只小虫分别从O、P两点出发,沿直线匀速爬向点Q,最终到达点Q.已知甲每分钟爬行60个单位长度,乙每分钟爬行30个单位长度,则在此过程中,甲、乙两只小虫相距10个单位长度时的爬行时间为分钟.三.解答题19.计算﹣32+1÷4×﹣|﹣1|×(﹣0.5)2.20.化简:﹣4(a3﹣3b2)+(﹣2b2+5a3)21.先化简,再求值;﹣,其中a=5,b=﹣5.22.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的表面积是多少?(结果保留π)23.一只蚂蚁从某点A出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+2,﹣3,+12,﹣8,﹣7,+16,﹣12.(1)通过计算说明蚂蚁是否回到起点A.(2)如果蚂蚁爬行的速度为0.5厘米/秒,那么蚂蚁共爬行了多长时间.24.如图,大小两个正方形的边长分别为a、b.(1)用含a、b的代数式表示阴影部分的面积S;(2)如果a=8,b=6,求阴影部分的面积.25.观察下列等式,,,将以上三个等式两边分别相加得:.(1)猜想并写出:=.(2)直接写出下列各式的计算结果:①=;②=.(3)探究并计算:.26.如图,已知数轴上原点为O,点B表示的数为﹣2,A在B的右边,且A与B的距离是5,动点P从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,动点Q从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,设运动时间为t(t>0)秒.(1)写出数轴上点A表示的数,点P表示的数(用含t的代数式表示),点Q表示的数(用含t的代数式表示);(2)问点P与点Q何时到点O距离相等?(3)若点D是数轴上一点,点D表示的数是x,是否存在x,使得|x﹣3|+|x+2|=7?如果存在,直接写出x的值:如果不存在,说明理由.参考答案一.选择题1.解:﹣的倒数是﹣5.故选:C.2.解:361 000 000=3.61×108,故选:D.3.解:这是一个正方体的平面展开图,共有六个面,其中面“静”与面“着”相对,面“沉”与面“应”相对,“冷”与面“考”相对.故选:B.4.解:∵10﹣0.15=9.85(千克),10+0.15=10.15(千克),∴合格范围为:9.85~10.15千克,故选:C.5.解:∵单项式﹣2x m﹣n y3与﹣5x6y2m+n是同类项,∴,则﹣2x6y3﹣5x6y3=﹣7x6y3,故选:D.6.解:在式子a2+2,,ab2,,﹣8x,3中,整式有:a2+2,ab2,,﹣8x,3共5个.故选:B.7.解:由题意得:2x2+x+9=8,即2x2+x=﹣1,则原式=4(2x2+x)﹣3=﹣4﹣3=﹣7,故选:B.8.解:∵|a﹣2|+(b+3)2=0,∴a=2,b=﹣3.∴原式=(﹣3)2=9.故选:D.9.解:﹣2﹣3=﹣5,﹣2+3=1(舍去)故选:B.10.解:A、数字0也是单项式是正确的,故本选项不符合题意;B、是二次单项式是正确的,故本选项不符合题意;C、的系数是是正确的,故本选项不符合题意;D.单项式﹣a的系数是﹣1,原来的说法错误,符合题意.故选:D.11.解:∵a<0,b>0∴﹣a>0﹣b<0∵a+b<0∴负数a的绝对值较大∴﹣a>b>﹣b>a.故选:D.12.解:第一个图形正三角形的个数为5,第二个图形正三角形的个数为5×3+2=2×32﹣1=17,第三个图形正三角形的个数为17×3+2=2×33﹣1=53,第四个图形正三角形的个数为53×3+2=2×34﹣1=161,第五个图形正三角形的个数为161×3+2=2×35﹣1=485.如果是第n个图,则有2×3n﹣1个故选:D.二.填空题13.解:向东走5m记作+5m,那么向西走10m应记作﹣10m;故答案为:﹣10.14.解:∵,,,∴.故答案为:>.15.解:a﹣(﹣2b+c)=a+2b﹣c.故答案为:a+2b﹣c.16.解:根据题意:﹣4★2=﹣1=﹣1.故答案为:﹣117.解:∵x,y互为相反数,m,n互为倒数,且有|a|=7,∴x+y=0,mn=1,a=±7,∴当a=7时,a2﹣(x+y+mn)a﹣(﹣nm)2019=49﹣7+1=43;当a=﹣7时,a2﹣(x+y+mn)a﹣(﹣nm)2019=49+7+1=57;综上所述:a2﹣(x+y+mn)a﹣(﹣nm)2019的值为43或57.故答案为:43或57.18.解:设在此过程中,甲、乙两只小虫相距10个单位长度时的爬行时间为t分钟,由题意得:30+30t﹣60t=10,解得t=;或60t﹣(30+30t)=10,解得t=;或30t=120﹣30﹣10,解得t=.故在此过程中,甲、乙两只小虫相距10个单位长度时的爬行时间为或或分钟.故答案为:或或.三.解答题19.解:原式=﹣9+﹣=﹣9.20.解:原式=﹣4a3+12b2﹣2b2+5a3=a3+10b2.21.解:原式=﹣a2+2ab+4b2﹣3ab﹣3a2+ab=﹣4a2+4b2,当a=5,b=﹣5时,原式=﹣100+100=0.22.解:正方形ABCD以直线AB为轴,将正方形旋转一周可得圆柱体,圆柱的高为3cm,底面直径为6cm,所以圆柱体的表面积为:S侧+2S底面=6π×3+2×9π=36πcm2.答:所得几何体的表面积是36πcm2.23.解:(1)∵(+2)﹣3+(+12)+(﹣8)+(﹣7)+(+16)+(﹣12),=30﹣30,=0,∴蚂蚁回到起点A;(2)(2+3+12+8+7+16+12)÷0.5=60÷0.5=120(秒).答:蚂蚁共爬行了120秒.24.解:(1)大小两个正方形的边长分别为a、b,∴阴影部分的面积为:S=a2+b2﹣=;(2)∵a=8,b=6,∴S==32+18﹣24=26.25.解:(1)=﹣.(2)直接写出下列各式的计算结果:①=;②=.(3)=×(1﹣+﹣+﹣+…+﹣)=×=.26.解:(1)∵AB=5,且点A在点O的右侧,∴点A表示的数为3.∵动点P从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,动点Q从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,∴点P表示的数为(3t﹣2),点Q表示的数为(﹣4t+3).故答案为:3;(3t﹣2);(﹣4t+3).(2)依题意,得:|3t﹣2|=|﹣4t+3|,即3t﹣2=﹣4t+3或3t﹣2=4t﹣3,解得:t=或t=1.答:当t=秒或1秒时,点P与点Q到点O距离相等.(3)当x<﹣2时,|x﹣3|+|x+2|=7,即3﹣x﹣x﹣2=7,解得:x=﹣3;当﹣2≤x≤3时,|x﹣3|+|x+2|=7,即3﹣x+x+2=5≠7;当x>3时,|x﹣3|+|x+2|=7,即x﹣3+x+2=7,解得:x=4.答:存在x=﹣3或x=4,使得|x﹣3|+|x+2|=7.。
北师大版2019-2020学年七年级(上)期末数学试卷(解析版) (1)

七年级(上)期末数学试卷一、精心选一选(本大题共12个小题,每个题4分,共48分)请将正确答案的序号填入下面表格中.1.2的相反数是()A.﹣B.C.2 D.﹣22.若x=1是方程2a+3x=9的解,则a的值为()A.B.1 C.3 D.63.如图的几何体是由若干形状、大小完全相同的小立方体组成,则从左面看几何体,看到的图形是()A.B.C.D.4.成渝高铁终于开通了,在百度搜索“成渝高铁”,相关结果约有62800个,高铁开通后,成都和重庆正式形成了1小时经济圈,沿线城市的交流、互动更加便捷和频繁.将62800用科学记数法表示为()A.0.628×105B.6.28×104C.62.8×103D.628×1025.下列调查方式中,最适合用普查的是()A.调查重庆市初中生每天体育锻炼所用的时间B.调查北京地区雾霾污染程度C.质检部门调查厂商生产的一批足球合格率D.调查深圳“12.20”滑坡事件的伤亡人数6.下列各式正确的是()A.x2x3=x6B.3=2x3D.x3÷x2=x7.若(x﹣1)(x+3)=x2+mx+n,则m+n=()A.﹣1 B.﹣2 C.﹣3 D.28.如图,线段AB=4,延长AB到点C,使BC=2AB,若点D是线段AC的中点,则BD的长为()A.1.5 B.2 C.2.5 D.69.已知x+y=4,xy=3,则x2+y2的值为()A.22 B.16 C.10 D.410.校园“mama”超市出售2种中性笔,一种每盒有8支,另一种每盒有12支.由于近段时间某班全体上课状态很不错,班委准备每人发1支以示鼓励.若买每盒8支的中性笔x盒,则有3位同学没有中性笔;若买每盒12支的中性笔,则可以少买2盒,且最后1盒还剩1支,根据题意,可列方程为()A.8x﹣3=12(x﹣3)+11 B.8x+3=12(x﹣2)﹣1C.8x+3=12(x﹣3)+1 D.8x+3=12(x﹣2)+111.如图是由一些点组成的图形,按此规律,第⑥个图形中点的个数为()A.43 B.49 C.63 D.12712.如图,长方形ABCD中有6个形状、大小相同的小长方形,且EF=3,CD=12,则图中阴影部分的面积为()A.108 B.72 C.60 D.48二、耐心填一填(本大题共6个小题,每小题4分,共24分)请将每个小题的正确答案填入下面表格中.13.﹣3的倒数是.14.已知多项式﹣3a2b+﹣ab+1,则这个多项式的次数是.15.小明在O点记录一辆正在行驶的笔直的公路l上的汽车的位置,第一次记录的汽车位置是在O点南偏西30°方向上的点A处,第二次记录的汽车位置是在O点南偏东45°方向上的点B处,则∠AOB=.16.已知5m=2,5n=3,则53m+2n=.17.一个两位数,个位数比十位数字大4,而且这个两位数比它的数字之和的3倍大2,则这个两位数是.18.小明正在离家9.5千米的地方放羊15只,突然风云变幻,不久后可能要下雨,羊必须尽快回家,现有一辆马车最多装羊10只,没有装羊时速度为18千米/时,装有羊时,为安全起见,速度控制为12千米/时,而羊独自回家的速度为3千米/时,若装卸羊的时间忽略不计,则所有羊都到家的最短时间是小时.三、解答题(本题共2小题,每小题10分,共20分)解答时每小题必须给出必要的演算过程或推理步骤.19.计算:(1)|﹣5|+(﹣3)2×(π﹣2015)0++(﹣1)2018(2).20.解方程:(1)2x+3(x﹣1)=2(x+3)(2)=1.四、解答题(本大题共4个小题,其中21、22题8分,其余2个小题每题10分,共36分)解答时每小题必须给出必要的演算过程或推理步骤.21.先化简,再求值:5(3a﹣1)+(2+a)(2﹣a)+(a﹣3)2,其中a=﹣1.22.每年5月的第2个星期日是母亲节.某班级就在今年母亲节当天以何种方式向母亲表达感谢面向全班同学开展了问卷调查,统计结果包含:仅用言语表达了对母亲的感谢、用行动表达对母亲的感谢、对母亲什么都没做三种结果,根据得到的数据绘制了如图所示的两幅不完整的统计图,请根据统计图所给的信息解答下列问题:(1)该班级一共有学生名,请补全条形统计图;(2)求扇形统计图中“仅用言语表达感谢”所对应的圆心角度数;(3)用行动来表达对母亲的感谢的同学中有4人(其中女生有2名)选择的是在母亲节当天为母亲做早餐,班主任决定从这4名同学中随机选择2名听取这样做的用意,请用列表法或画树状图的方法求选出的2人恰好是1男1女的概率.23.列方程解应用题:为喜迎“元旦节”,某商店购进某种气球200只,每只进价5元,在“元旦节”当天以11元的价格卖出气球150只,“元旦节”后,将剩下的气球全部降价销售,最终该商店从这批气球中共获利80%.求“元旦节”后此种气球每只降价多少元?24.如图,∠AOB=180°,∠BOC=80°,OD平分∠AOC,∠DOE=3∠COE,求∠BOE.五、解答题(本大题共2个小题,其中25题10分,26题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25.规定符号△(x)(x是正整数)满足下列性质:①当x为质数时,△(x)=1②对于任意两个正整数p和q,有△(pq)=p△(q)+q△(p)例如:△(9)=△(3×3)=3△(3)+3△(3)=3×1+3×1=6;△(15)=△(3×5)=3△(5)+5△(3)=3×1+5×1=8;△(30)=△(2×15)=2△(15)+15△(2)=2×8+15×1=31问:(1)填空:△(4)=,△(16)=,△(32)=;(2)求△(2016).26.已知某提炼厂10月份共计从矿区以每吨4000元价格购买了72吨某矿石原料,该提炼厂提炼矿石材料的相关信息如下表所示:提炼方式每天可提炼原材料的吨数提炼率提炼后所得产品的售价(元/吨)每提炼1吨原材料消耗的成本(元)粗提炼7 90% 30000 1000精提炼 3 60% 90000 3000注:①提炼率指提炼后所得的产品质量与原材料的比值;②提炼后的废品不产生效益;③提炼厂每天只能做粗提炼或精提炼中的一种.受市场影响,提炼厂能够用于提炼矿石原材料的时间最多只有12天,若将矿石原材料直接在市场上销售,每吨的售价为5000元,现有3种提炼方案:方案①:全部粗提炼;方案②:尽可能多的精提炼,剩余原料在市场上直接销售(直接销售的时间忽略不计);方案③:一部分粗提炼,一部分精提炼,且刚好12天将所有原材料提炼完.问题:(1)若按照方案③进行提炼,需要粗提炼多少天?(2)哪个提炼方案获得的利润最大?最大利润是多少?(3)已知提炼厂会根据每月的利润按照一定的提成比例来计算每个月需要给工厂员工发放的总提成,具体计算方法如下表:提炼厂利润不超过150万元的部分超过150万元但不超过200万元的部分超过200万元的部分提成比例8% a% 15%现知按照(2)问中的最大利润给员工发放的10月份的总提成为15.09万元,11月份和12月份提炼厂获得的总利润为480万元,11月份和12月份给员工的总提成为50.6万元,且12月份的利润比11月份的利润大,求提炼厂12月份的利润.2015-2016学年重庆一中七年级(上)期末数学试卷参考答案与试题解析一、精心选一选(本大题共12个小题,每个题4分,共48分)请将正确答案的序号填入下面表格中.1.2的相反数是()A.﹣B.C.2 D.﹣2【考点】相反数.【分析】根据相反数的概念作答即可.【解答】解:根据相反数的定义可知:2的相反数是﹣2.故选:D.【点评】此题主要考查了相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.2.若x=1是方程2a+3x=9的解,则a的值为()A.B.1 C.3 D.6【考点】一元一次方程的解.【分析】把x=1代入方程,即可得出一个关于a的方程,求出方程的解即可.【解答】解:把x=1代入方程2a+3x=9得:2a+3=9,解得:a=3,故选C.【点评】本题考查了解一元一次方程,一元一次方程的解的应用,能得出一个关于a的一元一次方程是解此题的关键.3.如图的几何体是由若干形状、大小完全相同的小立方体组成,则从左面看几何体,看到的图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易知一共两列,第一列有2个正方形,第二列有1个正方形,故选:A.【点评】本题考查了三视图的知识,熟悉左视图是从物体的左面看得到的视图是根本.4.成渝高铁终于开通了,在百度搜索“成渝高铁”,相关结果约有62800个,高铁开通后,成都和重庆正式形成了1小时经济圈,沿线城市的交流、互动更加便捷和频繁.将62800用科学记数法表示为()A.0.628×105B.6.28×104C.62.8×103D.628×102【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:62800=6.28×104,故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.下列调查方式中,最适合用普查的是()A.调查重庆市初中生每天体育锻炼所用的时间B.调查北京地区雾霾污染程度C.质检部门调查厂商生产的一批足球合格率D.调查深圳“12.20”滑坡事件的伤亡人数【考点】全面调查与抽样调查.【分析】根据抽样调查和全面调查的概念解答即可.【解答】解:调查重庆市初中生每天体育锻炼所用的时间适合用抽样调查,A错误;调查北京地区雾霾污染程度适合用抽样调查,B错误;质检部门调查厂商生产的一批足球合格率适合用抽样调查,C错误;调查深圳“12.20”滑坡事件的伤亡人数适合用全面调查,D正确;故选:D.【点评】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.下列各式正确的是()A.x2x3=x6B.3=2x3D.x3÷x2=x【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘除法法则、幂的乘方与积的乘方法则,分别进行各项的判断即可.【解答】解:A、x2x3=x5,故本选项错误;B、(x3)2=x6,故本选项错误;C、(2x)3=8x3,故本选项错误;D、x3÷x2=x,故本选项正确;故选D.【点评】此题考查了幂的乘方与积的乘方、同底数幂的乘除法,属于基础题,掌握各部分的运算法则是关键.7.若(x﹣1)(x+3)=x2+mx+n,则m+n=()A.﹣1 B.﹣2 C.﹣3 D.2【考点】多项式乘多项式.【专题】计算题;整式.【分析】已知等式左边利用多项式乘以多项式法则计算,再利用多项式相等的条件求出m 与n的值,即可求出m+n的值.【解答】解:已知等式整理得:(x﹣1)(x+3)=x2+2x﹣3=x2+mx+n,∴m=2,n=﹣3,则m+n=2﹣3=﹣1.故选A【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.8.如图,线段AB=4,延长AB到点C,使BC=2AB,若点D是线段AC的中点,则BD的长为()A.1.5 B.2 C.2.5 D.6【考点】两点间的距离.【分析】根据AB=4cm,BC=2AB得出BC的长,从而得出AC的长,再根据D是AC的中点求出AD的长,根据BD=AD﹣AB即可得出答案.【解答】解:∵AB=4cm,BC=2AB=8cm,∴AC=AB+BC=4+8=12cm,∵D是AC的中点,∴AD=AC=×12=6cm,∴BD=AD﹣AB=6﹣4=2cm.故选B.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.9.已知x+y=4,xy=3,则x2+y2的值为()A.22 B.16 C.10 D.4【考点】完全平方公式.【分析】根据完全平方公式得出x2+y2=(x+y)2﹣2xy,代入求出即可.【解答】解:∵x+y=4,xy=3,∴x2+y2=(x+y)2﹣2xy=42﹣2×3=10.故选C.【点评】本题考查了完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.10.校园“mama”超市出售2种中性笔,一种每盒有8支,另一种每盒有12支.由于近段时间某班全体上课状态很不错,班委准备每人发1支以示鼓励.若买每盒8支的中性笔x盒,则有3位同学没有中性笔;若买每盒12支的中性笔,则可以少买2盒,且最后1盒还剩1支,根据题意,可列方程为()A.8x﹣3=12(x﹣3)+11 B.8x+3=12(x﹣2)﹣1C.8x+3=12(x﹣3)+1 D.8x+3=12(x﹣2)+1【考点】由实际问题抽象出一元一次方程.【分析】根据买每盒8支的中性笔x盒,则有3位同学没有中性笔可知全班人数为8x+3,根据买每盒12支的中性笔,则可以少买2盒,且最后1盒还剩1支可知12(x﹣2)﹣1人,据此可列出一元一次方程.【解答】解:依据题意得全班级人数是一定的,所以:8x+3=12(x﹣2)﹣1,故选:B.【点评】本题主要考查了由实际问题抽象出一元一次方程的知识,解答本题的关键是用x表示出全班同学人数,此题难度一般.11.如图是由一些点组成的图形,按此规律,第⑥个图形中点的个数为()A.43 B.49 C.63 D.127【考点】规律型:图形的变化类.【分析】根据题干中图形发现,每个图形第1行有1个,以后每行的个数是连续偶数,据此规律可知第6个图形中点的个数.【解答】解:∵第1个图形中点的个数为:1+1×(1+1)=3,第2个图形中点的个数为:1+2×(2+1)=7,第3个图形中点的个数为:1+3×(3+1)=13,…∴第6个图形中点的个数为:1+6×(6+1)=43,故选:A.【点评】本题考查规律型中的图形变化问题,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.12.如图,长方形ABCD中有6个形状、大小相同的小长方形,且EF=3,CD=12,则图中阴影部分的面积为()A.108 B.72 C.60 D.48【考点】一元一次方程的应用.【专题】几何图形问题.【分析】设每小长方形的宽为x,则每小长方形的长为x+3,根据一个小长方形的宽+2个小长方形的长=CD,列出方程,求出x的值,再根据长方形的面积公式用最大的长方形减去6个最小的小长方形的面积,得出阴影部分的面积.【解答】解:设每小长方形的宽为x,则每小长方形的长为x+3,根据题意得:2(x+3)+x=12,解得:x=2,则每小长方形的长为2+3=5,则AD=2+2+5=9,阴影部分的面积为9×12﹣2×5×6=48;故选D.【点评】此题考查了一元一次方程的应用,关键是根据所给出的图形,找出相等关系,列出方程,求出小长方形的宽和长.二、耐心填一填(本大题共6个小题,每小题4分,共24分)请将每个小题的正确答案填入下面表格中.13.﹣3的倒数是﹣.【考点】倒数.【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:﹣3的倒数是﹣.【点评】本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.14.已知多项式﹣3a2b+﹣ab+1,则这个多项式的次数是5.【考点】多项式.【分析】直接利用多项式次数的定义得出答案.【解答】解:多项式﹣3a2b+﹣ab+1,则这个多项式的次数是:a2b3的次数,即为:2+3=5.故答案为:5.【点评】此题主要考查了多项式,正确把握多项式的次数定义是解题关键.15.小明在O点记录一辆正在行驶的笔直的公路l上的汽车的位置,第一次记录的汽车位置是在O点南偏西30°方向上的点A处,第二次记录的汽车位置是在O点南偏东45°方向上的点B处,则∠AOB=75°.【考点】方向角.【分析】首先根据方向角正确作出A、B和O的相对位置,然后利用角的和、差计算.【解答】解:∠AOB=30°+45°=75°.故答案是:75°.【点评】本题考查了方向角的定义以及角度的计算,正确理解方向角的定义是本题的关键.16.已知5m=2,5n=3,则53m+2n=72.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据同底数幂的乘法的逆运算把原式变形,根据幂的乘方法则计算即可.【解答】解:53m+2n=53m52n=(5m)3(5n)2=8×9=72.故答案为:72.【点评】本题考查的是同底数幂的乘法、幂的乘方和积的乘方,同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.幂的乘方法则:底数不变,指数相乘.17.一个两位数,个位数比十位数字大4,而且这个两位数比它的数字之和的3倍大2,则这个两位数是26.【考点】一元一次方程的应用.【专题】数字问题.【分析】设十位数字为x,个位数字为x+4,根据数字问题的数量关系建立方程组求出其解即可.【解答】解:设十位数为x,个位数字为x+4,根据题意得:10x+x+4=3(x+x+4)+2,解得:x=2,则这个两位数是26;故答案为:26.【点评】本题考查了一元一次方程的应用,解答时运用数字问题的数量关系建立方程是关键.18.小明正在离家9.5千米的地方放羊15只,突然风云变幻,不久后可能要下雨,羊必须尽快回家,现有一辆马车最多装羊10只,没有装羊时速度为18千米/时,装有羊时,为安全起见,速度控制为12千米/时,而羊独自回家的速度为3千米/时,若装卸羊的时间忽略不计,则所有羊都到家的最短时间是1小时.【考点】一元一次方程的应用.【分析】先算出第一批羊到家的时间,再算出马车赶回与第二批羊相遇的时间,设所有羊都到家的最短时间为x小时,根据题意,列出一元一次方程,解方程即可.【解答】解:第一批羊到家的时间为9.5÷12=小时.马车赶回来,与第二批羊相遇的时间为:(9.5﹣3×)÷(18+3),=(﹣)÷21,=÷21,=小时.设所有羊都到家的最短时间为x小时,根据题意有:12×(x﹣﹣)=9.5﹣3×(+),整理得12x﹣=,解得x=1.即所有羊都到家的最短时间为1小时.故答案为:1.【点评】本题考查了一元一次方程的应用,解题的关键是:先算出第一批羊到家时间和马车赶回与第二批羊相遇的时间,设出最短时间为x小时,列出方程即可.三、解答题(本题共2小题,每小题10分,共20分)解答时每小题必须给出必要的演算过程或推理步骤.19.计算:(1)|﹣5|+(﹣3)2×(π﹣2015)0++(﹣1)2018(2).【考点】有理数的混合运算;零指数幂;负整数指数幂.【专题】计算题;实数.【分析】(1)原式第一项利用绝对值的代数意义化简,第二项利用乘方的意义及零指数幂法则计算,第三项利用负整数指数幂法则计算,最后一项利用乘方的意义计算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=5+9+9+1=24;(2)原式=﹣1×8×+15﹣16+14=﹣18+15﹣16+14=﹣5.【点评】此题考查了有理数的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.解方程:(1)2x+3(x﹣1)=2(x+3)(2)=1.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x+3x﹣3=2x+6,移项合并得:3x=9,解得:x=3;(2)去分母得:3x﹣3﹣x﹣2=6,移项合并得:2x=11,解得:x=5.5.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.四、解答题(本大题共4个小题,其中21、22题8分,其余2个小题每题10分,共36分)解答时每小题必须给出必要的演算过程或推理步骤.21.先化简,再求值:5(3a﹣1)+(2+a)(2﹣a)+(a﹣3)2,其中a=﹣1.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用平方差公式及完全平方公式化简,去括号合并得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=15a﹣5+4﹣a2+a2﹣6a+9=9a+8,当a=﹣1时,原式=﹣9+8=﹣1.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.22.每年5月的第2个星期日是母亲节.某班级就在今年母亲节当天以何种方式向母亲表达感谢面向全班同学开展了问卷调查,统计结果包含:仅用言语表达了对母亲的感谢、用行动表达对母亲的感谢、对母亲什么都没做三种结果,根据得到的数据绘制了如图所示的两幅不完整的统计图,请根据统计图所给的信息解答下列问题:(1)该班级一共有学生60名,请补全条形统计图;(2)求扇形统计图中“仅用言语表达感谢”所对应的圆心角度数;(3)用行动来表达对母亲的感谢的同学中有4人(其中女生有2名)选择的是在母亲节当天为母亲做早餐,班主任决定从这4名同学中随机选择2名听取这样做的用意,请用列表法或画树状图的方法求选出的2人恰好是1男1女的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)由用行动表达对母亲的感谢的有15人,占25%,即可求得该班级的学生数,继而求得仅用言语表达了对母亲的感谢的人数,补全条形统计图;(2)首先求得“仅用言语表达感谢”的人数占的百分比,继而求得“仅用言语表达感谢”所对应的圆心角度数;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选出的2人恰好是1男1女的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵用行动表达对母亲的感谢的有15人,占25%,∴该班级一共有学生:15÷25%=60(名),∴仅用言语表达了对母亲的感谢的有:60﹣15﹣10=35(名);故答案为:60;如图:(2)求扇形统计图中“仅用言语表达感谢”所对应的圆心角度数为:360°×=210°;(3)画树状图得:∵共有12种等可能的结果,选出的2人恰好是1男1女的有8种情况,∴选出的2人恰好是1男1女的概率为:=.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.23.列方程解应用题:为喜迎“元旦节”,某商店购进某种气球200只,每只进价5元,在“元旦节”当天以11元的价格卖出气球150只,“元旦节”后,将剩下的气球全部降价销售,最终该商店从这批气球中共获利80%.求“元旦节”后此种气球每只降价多少元?【考点】一元一次方程的应用.【分析】设“元旦节”后此种气球每只降价x元,根据总收入﹣总成本=利润和已知条件,列出方程,求解即可.【解答】解:设“元旦节”后此种气球每只降价x元,根据题意得:[11×150+(11﹣x)×(200﹣150)]﹣200×5=200×50×80%,解得:x=8,答:“元旦节”后此种气球每只降价8元.【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解;本题的等量关系是总收入﹣总成本=利润.24.如图,∠AOB=180°,∠BOC=80°,OD平分∠AOC,∠DOE=3∠COE,求∠BOE.【考点】角平分线的定义.【分析】根据邻补角和角平分线的定义可得∠COD=50°,由∠DOE=3∠COE知∠COE=∠COD=25°,可得∠BOE度数.【解答】解:∵∠AOB=180°,∠BOC=80°,∴∠AOC=100°,∵OD平分∠AOC,∴∠COD=∠AOC=50°,又∵∠DOE=3∠COE,∴∠COE=∠COD=25°,∴∠BOE=∠BOC﹣∠COE=55°.【点评】本题主要考查了角平分线的定义运用能力,能熟练根据题意将已知条件逐步推导到待求的角上来是关键.五、解答题(本大题共2个小题,其中25题10分,26题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25.规定符号△(x)(x是正整数)满足下列性质:①当x为质数时,△(x)=1②对于任意两个正整数p和q,有△(pq)=p△(q)+q△(p)例如:△(9)=△(3×3)=3△(3)+3△(3)=3×1+3×1=6;△(15)=△(3×5)=3△(5)+5△(3)=3×1+5×1=8;△(30)=△(2×15)=2△(15)+15△(2)=2×8+15×1=31问:(1)填空:△(4)=4,△(16)=32,△(32)=80;(2)求△(2016).【考点】有理数的混合运算.【专题】计算题;新定义;实数.【分析】(1)原式利用题中的新定义计算即可得到结果;(2)原式变形后,利用已知新定义计算即可得到结果.【解答】解:(1)△(4)=△(2×2)=2△(2)+2△(2)=4△(2)=4×1=4,△(16)=△(4×4)=4△(4)+4△(4)=8△(4)=8×4=32,△(32)=△(2×16)=16△(2)+2△(16)=16+64=80;(2)△(2016)=△(32×63)=63△(32)+32△(63)=63×80+32△(7×9)=5040+32×(9△(7)+7△(9))=5040+32×(9+42)=6672.【点评】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.26.已知某提炼厂10月份共计从矿区以每吨4000元价格购买了72吨某矿石原料,该提炼厂提炼矿石材料的相关信息如下表所示:提炼方式每天可提炼原材料的吨数提炼率提炼后所得产品的售价(元/吨)每提炼1吨原材料消耗的成本(元)粗提炼7 90% 30000 1000精提炼 3 60% 90000 3000注:①提炼率指提炼后所得的产品质量与原材料的比值;②提炼后的废品不产生效益;③提炼厂每天只能做粗提炼或精提炼中的一种.受市场影响,提炼厂能够用于提炼矿石原材料的时间最多只有12天,若将矿石原材料直接在市场上销售,每吨的售价为5000元,现有3种提炼方案:方案①:全部粗提炼;方案②:尽可能多的精提炼,剩余原料在市场上直接销售(直接销售的时间忽略不计);方案③:一部分粗提炼,一部分精提炼,且刚好12天将所有原材料提炼完.问题:(1)若按照方案③进行提炼,需要粗提炼多少天?(2)哪个提炼方案获得的利润最大?最大利润是多少?(3)已知提炼厂会根据每月的利润按照一定的提成比例来计算每个月需要给工厂员工发放的总提成,具体计算方法如下表:提炼厂利润不超过150万元的部分超过150万元但不超过200万元的部分超过200万元的部分提成比例8% a% 15%现知按照(2)问中的最大利润给员工发放的10月份的总提成为15.09万元,11月份和12月份提炼厂获得的总利润为480万元,11月份和12月份给员工的总提成为50.6万元,且12月份的利润比11月份的利润大,求提炼厂12月份的利润.【考点】一元一次方程的应用.【分析】(1)设粗提炼x天,则精提炼12﹣x天,根据题意列出方程,解方程即可得出结论;(2)根据题中给出的三个方案,讨论每个方案所获得的利润,即可得出结论;(3)依据(2)中的最大利润可以算出a=10,由12月份利润比11月份利润大,设出12月份利润为M万元,根据提成比例不同,分三种情况讨论,即可得出结论.【解答】解:(1)设需要粗提炼x天,则精提炼12﹣x天,根据题意,得7x+3×(12﹣x)=72,整理,得4x=36,。
北师大版2019-2020学年七年级上学期英语期中十校联考试卷D卷

北师大版2019-2020学年七年级上学期英语期中十校联考试卷D卷姓名:________ 班级:________ 成绩:________一、单项填空。
请从A、B、C、D四个选项中选出可以填入空白处 (共5题;共10分)1. (2分)—Hi, Daniel. How was your trip to Qingdao?—________. The beaches there are very beautiful and we also enjoyed some fresh seafood.A . Not badlyB . Very muchC . Very goodD . So well2. (2分)What time ______ your best friend go to school?A . isB . doC . does3. (2分)—When did Neil Armstrong walk on the moon?—____July 20th,1969.A . InB . AtC . ForD . On4. (2分)The girl is Linda Black. Linda is her ________ name.A . firstB . lastC . familyD . middle5. (2分)- Bad luck! I lost _______ new pen yesterday.- Don't worry. I'll lend _____ to you.A . my; meB . mine; myC . mine; mineD . my; mine二、交际配对。
(共1题;共5分)6. (5分)根据短文内容,从短文后的方框ABCDEFG选项中,选出适当的选项B: Certainly. Go along this street. Turn left into Xingfu Street, and the museum is on your right.A:________B: It's about thirty minutes.A: I see.________B: Yes, you can. A No.103 bus will take you there.A:________B: Over there. Look! The bus is coming.A: Thank you very much.B:________三、完形填空。
北师大版七年级数学上册期中考试测评B卷-1

鼎吉教育(Dinj Education )中小学生课外\个性化辅导中心资料 北师大版七年级数学上册学习地址:佛山市南海区南海大道丽雅苑中区会所2楼(体育馆对面) 第1页 咨询热线:鼎吉教育(吉老师) qq10-76-69811七年级数学第一学期期中考试模拟试卷一、选择题(每小题3分,共30分)1、用一个平面截正方体,若所得的截面是一个三角形,则留下的较大的一块几何体一定有 ( )A 、7个面B 、15条棱C 、7个顶点D 、10个顶点 2、如果a 是负有理数,则下列各式中成立的是( ) A 、a a -< B 、a a = C 、a a ≤ D 、aa 1>3、已知α∠和β∠互为补角,其中βα∠>∠,那么β∠的余角为 ( )A .)(21βα∠+∠B .)(21βα∠-∠C .α∠21D .不能确定 4、如果一个数它的倒数,相反数,总是这个数最大,那么:( )A .这个数是大于1的正数;B .这个数是正的真分数;C .这个数是负的假分数;D .这个数是负整数。
5、字母a 表示一个有理数,若a a =-,则a 是( ) (A )非负数; (B )非正数; (C )负数; (D )不为零的数6、下面四个式子:20120-=-;3)3()3(34=-÷-;032)32(222=--;99199=⨯÷中,其中不正确...的有( ) A 、1个 B 、2个 C 、3个 D 、4个 7、将右边的正方体展开能得到的图形是( )8、代数式12x 2y m与nx 2y (其中m ,n 为数字,n ≠0)是同类项,则( ).A .m=1,n 为不等于零的任何数B .m=1且n=12C .m=0,n 为任何数D .m=0且n=129、a 是负数且1a <,那么11a a --的值( )A .等于1B .小于0大于-1C .小于-1D .大于1 10、火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京。
2024-2025学年北师大版(2019)九年级科学上册阶段测试试卷758

2024-2025学年北师大版(2019)九年级科学上册阶段测试试卷758考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五总分得分评卷人得分一、单选题(共9题,共18分)1、下列关于抗体的叙述不正确的是( )A. 抗体是人体淋巴细胞产生的一种特殊蛋白质B. 感染SARS病毒康复后的患者体内可能存在SARS病毒的抗体C. 一种抗体可以针对多种抗原发挥特异性免疫作用D. 抗体是在抗原的刺激下产生的2、人类历史上不断进行着能量转化技术的进步,即能源革命.下列关于能源的说法,正确的是( )A. 核能都是原子核分裂时释放出来的能量B. 地球50亿年积累的太阳能是我们今天所用大部分能量的源泉C. 电能和风能都是通过消耗一次能源得到的二次能源D. 化石能源、核能可以在自然界源源不断地得到,都属于可再生能源3、在“中学生营养日”活动中,专家提出:大力宣传普及营养科学与食品卫生知识,扫除“营养盲”在我国城乡已成当务之急。
你认为下列观点正确的是( )A. 营养保健食品代替食物,获得营养更全面B. 不吃蔬菜,水果可代替;不吃主食,零食可代替C. 青少年处于生长发育的重要时期,应多摄入高脂肪和高蛋白食品D. 学生早餐也应按照“五谷搭配、粗细搭配、荤素搭配、多样搭配”的原则4、我国科学家创造性地构建了“单中心铁催化剂”,在甲烷高效转化研究中获得重大突破.该转化的微观示意图如图所示.下列说法正确的是()A. 生成物之一为H2OB. 该反应属于分解反应C. 反应后催化剂质量增加D. 反应物与生成物共有4种分子5、下列关于热机和环境保护的说法,正确的是A. 热机排出的尾气没有内能B. 热机的效率能达到100%C. 热机都是使用汽油做燃料D. 热机的大量使用会造成环境污染6、如图所示,是体能测试中掷出的实心球运动的情景,下列说法正确的是()A.实心球离开手后继续前进,是由于受到惯性的作用B.实心球在b点时,处于平衡状态C.实心球从a点运动到c 点的过程中,重力做了功D.在实心球从b点运动到c点的过程中,动能转化为重力势能7、下列工具中,正常使用时属于省力杠杆的是()A.定滑轮B.钓鱼竿C.托盘天平D.开瓶起子8、日常生活中的下列做法中,不正确的是()A.用盐酸除去铁制品表面的铁锈B.铝合金门窗变旧变暗后应使用砂纸或钢丝球用力打磨C.购物时使用无纺布袋有利于减少“白色污染”D.汽油中加入适量乙醇作为汽车燃料,可节省石油资源、减少污染9、在骨的结构中,与骨折后的修复有关的是()A. 红骨髓B. 黄骨髓C. 骺端软骨层的细胞D. 骨膜内层的成骨细胞评卷人得分二、填空题(共9题,共18分)10、人的牙可分为____、 ____、____三类。
北师大版七年级上册数学《期中检测试卷》含答案

北 师 大 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. -2019的相反数是( ) A. 2019B. -2019C.12019D. 12019-2. 有理数a 、b 在数轴上表示的点如图所示,则a 、a -、b 、b -的大小关系是( )A. b a a b ->>->B. a a b b >->>-C. b a b a >>->-D. b a a b -<<-<3. 国际比赛用的乒乓球的标准直径是40毫米.以40毫米为标准,超过的记作正,不足的记作负,有4个乒乓球的直径如下,其中最合符标准的是( ) A. +0.3毫米B. -0.6毫米C. 0.5毫米D. -0.2毫米4. 讲究卫生要勤洗手,人的一只手上约有28000万个看不见的细菌.把28000万个用科学记数法表示为( )个A. 72810⨯B. 82.810⨯C. 92810.⨯D. 90.2810⨯5. 下列图形中是正方体表面展开图的是( )A. B.C. D.6. 单项式25x y-的系数和次数分别是( )A.1 5 -,2 B. -1,3 C.15-,3 D. -1,27. 如果单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是().A. m=2,n=2B. m=-1,n=2C. m=-2,n=2D. m=2,n=-18. 下列计算正确的是()A. 22232x y yx x y-= B. 532y y-= C. 277a a a+= D. 325a b ab+=9. 用黑白两种颜色的六边形砖按如下规律拼成若干个图案,第n个图案中有白色砖()块A. 42n+ B. 64n+ C. 6n D. 24n+10. 下列结论中正确的是()A. 100101(1)(1)1-+-=- B. 若n为正整数,则2(1)1n-=C. 若||||a b=,则a b= D. 15(3)53-÷⨯+=-二、填空题(每题4分,满分16分,将答案填在答题纸上)11. 计算:53--=__________;28(2)-÷-=__________.12. 如图所示是计算机某计算程序,若开始输入x=3,则最后输出的结果是_____.13. 若m n、满足221|(2)|0m n++-=,则n m=__________.14. 已知x y,互为相反数且均不为0,a b,互为倒数,m是最大的负整数.则代数式2019x y xabm y+-+的值为__________.三、解答题:共54分.解答应写出文字说明、证明过程或演算步骤.15. 计算(1)20(14)(18)13+----(2)2210(2)8()3-⨯--÷-(3)36296.89()96.89()96.89()111111⨯--⨯++⨯- (4)2214[102(3)]2--⨯-⨯- 16. (1)化简:2222(324)(343)x xy y xy y x +---+.(2)已知23x y -=,求代数式362(31)(7)[]y x y x y --+-+-的值.17. 如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,请画出这个几何体的正视图和左视图.18. 高速公路养护小组乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+10,-9,+8,-12,-3,7,-6,-7,6,+4.(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车行驶每千米耗油量为0.4升,求这一天养护小组的汽车共耗油多少升?19. 某市出租车收费标准如下:行程不超过3km 时,收起步价8元,3km 以后,每千米收费1.5元.某人乘坐该市出租车行驶xkm ,请解答下列问题: (1)用含x 的代数式表示应付的车费; (2)当5x km =时,求他应付的车费;(3)小明乘坐该市出租车去看外婆,下车时出租车计价器显示费用为20元,小明乘坐的路程是多少? 20. 数学老师在黑板上抄写了一道题目:“当2a =-,3b =-时,求多项式2222215[(31)2(4)]2a b ab a b a b ab -+--++的值”,小明做题时把2a =-错抄成2a =,但他最终求出的值也正确,这是为什么?四、填空题(每题4分,满分20分,将答案填在答题纸上)21. 如果2324(2)25a xx b x x -+-+-+是关于x 的五次四项式,那么a b -=__________.22. 用小立方体搭一个几何体,其主视图和俯视图如下图,搭这样的集合体最多需要__________个小立方体,最少需要__________个小立方体.23. 在实数的原有运算法则中我们补充定义新运算“⊕”如下:当a b 时,2a b b ⊕=;当a b <时,a b a ⊕=,则当2x =时,(1)(3)x x x ⊕⋅-⊕的值为______24. 有理数a b c ,,在数轴上的位置如图所示,则|a +|c +||||b c b a ---__________.25. 已知:a b c ,,都不为0,且a b c abc a b c abc+++的最大值为m ,最小值为n ,则2020()m n +的值为__________.五、解答题:共30分.解答应写出文字说明、证明过程或演算步骤.26. 若代数式2222424,363,A x xy y B x xy y =-+=-+且23,16,0,x y xy ==<求()()423A A B A B ⎡⎤+--+⎣⎦的值.27. 甲,乙两家服装商店销售同一品牌的西装和领带,西装定价都是每套200元,领带定价都是每条40元.现两家商店都在促销:甲店:买一套西装送一条领带;乙店:西装和领带都按定价的90%付款. 学校合唱团要购买西装20套,领带x 条(20x >),由后勤谢老师负责购买,请为谢老师出谋划策: (1)若只在一家商店购买,当60x =时,谢老师选择哪家商店购买西装和领带更划算? (2)若只在一家商店购买,请用含x代数式分别表示在两家商店的花费;(3)当60x =时,请设计最省钱购买方案并求出最少的花费是多少. 28. (1)探索材料1(填空):数轴上表示数m 和数n 的两点之间的距离等于||m n -.例如数轴上表示数2和5的两点距离为|25|-= ;数轴上表示数3和-1的两点距离为|3(1)|--= ;则|63|+的意义可理解为数轴上表示数 和 这两点的距离;|4|x +的意义可理解为数轴上表示数 和 这两点的距离;(2)探索材料2(填空):①如图1,在工厂的一条流水线上有两个加工点A 和B ,要在流水线上设一个材料供应点P 往两个加工点输送材料,材料供应点P 应设在 才能使P 到A 的距离与P 到B 的距离之和最小?②如图2,在工厂的一条流水线上有三个加工点A B C ,,,要在流水线上设一个材料供应点P 往三个加工点输送材料,材料供应点P 应设在 才能使P 到A B C ,,三点的距离之和最小?③如图3,在工厂的一条流水线上有四个加工点A B C D ,,,,要在流水线上设一个材料供应点P 往四个加工点输送材料,材料供应点P 应设在 才能使P 到A B C D ,,,四点的距离之和最小?(3)结论应用(填空):①代数式|3||4|x x ++-的最小值是 ,此时x 的范围是 ;②代数式|632x x x ++++-|的最小值是 ,此时x 的值为 . ③代数式7425||x x x x ++++-+-的最小值是 ,此时x 的范围是 .答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. -2019的相反数是( ) A. 2019B. -2019C.12019D. 12019-【答案】A 【解析】 【分析】根据只有符号不同的两个数是互为相反数解答即可. 【详解】解:-2019的相反数是2019. 故选A .【点睛】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.2. 有理数a 、b 在数轴上表示的点如图所示,则a 、a -、b 、b -的大小关系是( )A b a a b ->>-> B. a a b b >->>- C. b a b a >>->- D. b a a b -<<-<【答案】D 【解析】 【分析】根据各点在数轴上的位置判断出a ,b 的符号及绝对值的大小,进而可得出结论. 【详解】解:∵由图可知,a <0<b ,|a|<|b|=b , ∴b >-a >a >-b . 故选:D .【点睛】本题考查的是有理数的大小比较,数轴上右边的点表示的数总比左边的大是解答此题的关键. 3. 国际比赛用的乒乓球的标准直径是40毫米.以40毫米为标准,超过的记作正,不足的记作负,有4个乒乓球的直径如下,其中最合符标准的是( ) A. +0.3毫米B. -0.6毫米C. 0.5毫米D. -0.2毫米【答案】D 【解析】 【分析】根据正负数的性质,判断最符合标准的即可. 【详解】∵0.20.30.50.6-<<<- ∴-0.2毫米最符合标准 故答案为:D .【点睛】本题考查了正负数的实际应用,掌握正负数的定义以及性质是解题的关键.4. 讲究卫生要勤洗手,人的一只手上约有28000万个看不见的细菌.把28000万个用科学记数法表示为( )个A. 72810⨯B. 82.810⨯C. 92810.⨯D. 90.2810⨯【答案】B 【解析】 【分析】根据科学记数法的定义以及性质进行表示即可. 【详解】28000万82.810=⨯ 故答案为:B .【点睛】本题考查了科学记数法的应用,掌握科学记数法的定义以及性质是解题的关键. 5. 下列图形中是正方体表面展开图的是( )A. B.C. D.【答案】C 【解析】【分析】根据正方体表面的十一种展开图的性质进行判断即可. 【详解】A. 不属于正方体表面展开图,错误; B. 不属于正方体表面展开图,错误; C. 属于正方体表面展开图,正确; D. 不属于正方体表面展开图,错误; 故答案为:C .【点睛】本题考查了正方体展开图的问题,掌握正方体表面的十一种展开图的性质是解题的关键.6. 单项式25x y-的系数和次数分别是( ) A. 15-,2 B. -1,3C. 15-,3D. -1,2【答案】C 【解析】 【分析】根据单项式的定义以及性质来判断系数和次数即可. 【详解】系数和次数分别是15-,3 故答案为:C .【点睛】本题考查了单项式的系数和次数问题,掌握单项式的定义以及性质是解题的关键. 7. 如果单项式x 2y m +2与x n y 的和仍然是一个单项式,则m 、n 的值是( ). A. m =2,n =2 B. m =-1,n =2C. m =-2,n =2D. m =2,n =-1【答案】B 【解析】试题分析:本题考查同类项的定义,单项式x 2y m+2与x n y 的和仍然是一个单项式,意思是x 2y m+2与x n y 是同类项,根据同类项中相同字母的指数相同得出. 解:由同类项定义, 可知2=n,m+2=1, 解得m=﹣1,n=2. 故选B .考点:同类项.8. 下列计算正确的是( )A. 22232x y yx x y -=B. 532y y -=C. 277a a a +=D. 325a b ab +=【答案】A 【解析】 【分析】根据整式的加减法法则对各项进行运算即可. 【详解】A. 22232x y yx x y -=,正确; B. 532y y y -=,错误; C. 78a a a +=,错误; D. 3232a b a b +=+,错误; 故答案为:A .【点睛】本题考查了整式的加减运算,掌握整式的加减法法则是解题的关键.9. 用黑白两种颜色的六边形砖按如下规律拼成若干个图案,第n 个图案中有白色砖( )块A. 42n +B. 64n +C. 6nD. 24n +【答案】A 【解析】 【分析】根据图形的规律可得第n 个图案中有白色砖块的数量应是差为4的等差数列,求出代数式即可. 【详解】第1个图案中有白色砖6块 第2个图案中有白色砖10块 第3个图案中有白色砖14块 故第n 个图案中有白色砖24n +块 故答案为:A .【点睛】本题考查了图形的规律题,掌握图形的规律求出代数式是解题的关键.10. 下列结论中正确的是( ) A. 100101(1)(1)1-+-=- B. 若n 为正整数,则2(1)1n -= C. 若||||a b =,则a b =D. 15(3)53-÷⨯+=-【答案】B 【解析】 【分析】根据幂的运算法则、绝对值的性质、实数的混合运算法则对各项进行计算即可. 【详解】A. ()100101(1)(1)110-+-=+-=,错误;B. 若n 为正整数,则2(1)1n -=,正确;C. 若||||a b =,则a b =±,错误;D. 15(3)453-÷⨯+=-,错误; 故答案为:B .【点睛】本题考查了实数的运算问题,掌握幂的运算法则、绝对值的性质、实数的混合运算法则是解题的关键.二、填空题(每题4分,满分16分,将答案填在答题纸上)11. 计算:53--=__________;28(2)-÷-=__________.【答案】 (1). 8- (2). 2- 【解析】 【分析】直接算减法即可;先算乘方,再算除法即可. 【详解】538--=-28(2)2-÷-=-故答案为:8-,2-.【点睛】本题考查了实数的混合运算,掌握实数混合运算法则是解题的关键. 12. 如图所示是计算机某计算程序,若开始输入x=3,则最后输出的结果是_____.【答案】38【解析】【分析】根据题意可知,该程序计算是先乘以4,再减去2,若结果大于10,则就是所求,若小于等于10,则重新进行计算.【详解】输入x=3,∴3x-2=3×4-2=10,所以应将10再重新输入计算程序进行计算,即10×4-2=38,故答案为38.【点睛】本题考查了程序运算,代数式求值,解题关键是弄清题意,根据题意把x 的值代入,按程序一步一步计算.13. 若m n 、满足221|(2)|0m n ++-=,则n m =__________. 【答案】14【解析】【分析】根据绝对值和平方的非负性,求出mn 、的值,再代入求解即可. 【详解】∵221|(2)|0m n ++-= ∴21020m n +=⎧⎨-=⎩解得1,22m n =-= 将1,22m n =-=代入n m 中 21124n m ⎛⎫=-= ⎪⎝⎭ 故答案为:14. 【点睛】本题考查了整式的运算,掌握绝对值和平方的非负性是解题的关键.14. 已知x y ,互为相反数且均不为0,a b ,互为倒数,m 是最大的负整数.则代数式2019x y x ab m y+-+的值为__________.【答案】2020-【解析】【分析】 根据相反数和倒数的定义以及性质得0111x x y ab m y +==-==-,,,,再代入求解即可. 【详解】∵x y ,互为相反数且均不为0, ∴0,1x x y y+==- ∵a b ,互为倒数∴1ab =∵m 是最大的负整数∴1m =- 将0111x x y ab m y +==-==-,,,代入2019x y x ab m y+-+中 原式020191=2020---=故答案为:2020-. 【点睛】本题考查了整式的混合运算,掌握相反数和倒数的定义以及性质、最大的负整数是1-是解题的关键.三、解答题:共54分.解答应写出文字说明、证明过程或演算步骤.15. 计算(1)20(14)(18)13+----(2)2210(2)8()3-⨯--÷- (3)36296.89()96.89()96.89()111111⨯--⨯++⨯- (4)2214[102(3)]2--⨯-⨯-【答案】(1)11 (2)28- (3)96.89- (4)12-【解析】【分析】(1)直接算加减法即可.(2)先算乘方,再算乘除法,最后算加法即可.(3)根据乘法分配律计算即可.(4)先算乘方,再算中括号内的乘法,再算中括号内的减法,再算乘法,最后算减法即可,.【详解】(1)20(14)(18)13+----11=(2)2210(2)8()3-⨯--÷- 10412=-⨯+4012=-+28=-(3)36296.89()96.89()96.89()111111⨯--⨯++⨯- 36296.89111111⎛⎫=⨯--- ⎪⎝⎭()96.891=⨯-96.89=-(4)2214[102(3)]2--⨯-⨯- 116[1029]2=--⨯-⨯ 116[1018]2=--⨯- 116[8]2=--⨯- 16+4=-12=-【点睛】本题考查了实数的混合运算,掌握实数混合运算法则是解题的关键.16. (1)化简:2222(324)(343)x xy y xy y x +---+. (2)已知23x y -=,求代数式362(31)(7)[]y x y x y --+-+-的值.【答案】(1)xy - (2)7-【解析】【分析】(1)先去括号,再合并同类项即可.(2)先去小括号,再去中括号,最后算加减法即可化简,再代入求值即可.【详解】(1)2222(324)(343)x xy y xy y x +---+ 2222324343x xy y xy y x =+--+-xy =-.(2)362(31)(7)[]y x y x y --+-+-3662[2]7y x y x y =---++-355[4]y x y =---3+554+y x y =-8+45y x =-将23x y -=代入原式中原式()8+542544357y x x y =-=--+=-⨯+=-.【点睛】本题考查了整式的混合运算,掌握整式混合运算法则、合并同类项的方法是解题的关键. 17. 如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,请画出这个几何体的正视图和左视图.【答案】作图见解析【解析】【分析】根据几何体的三视图的性质,作出这个几何体的正视图和左视图即可.【详解】如图所示,即为所求.正视图左视图【点睛】本题考查了几何体的三视图问题,掌握几何体的三视图的性质是解题的关键.18. 高速公路养护小组乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+10,-9,+8,-12,-3,7,-6,-7,6,+4.(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车行驶每千米耗油量为0.4升,求这一天养护小组的汽车共耗油多少升?【答案】(1)西方向,2千米(2)180【解析】【分析】(1)把所有行驶记录相加,即可判断最后位置方向和距离.(2)把所有行驶记录的绝对值相加,再除以汽车行驶每千米的耗油量,即可求解.-+--+--++=-.【详解】(1)1098123767642∵约定向东为正,向西为负∴养护小组最后到达的地方在出发点的西方向,距出发点2千米.(2)10+9+8+12+3+7+6+7+6+41800.4=(升) 故这一天养护小组的汽车共耗油180升.【点睛】本题考查了正负数的实际应用,掌握正负数的定义以及性质是解题的关键.19. 某市出租车收费标准如下:行程不超过3km 时,收起步价8元,3km 以后,每千米收费1.5元.某人乘坐该市出租车行驶xkm ,请解答下列问题:(1)用含x 的代数式表示应付的车费;(2)当5x km =时,求他应付的车费;(3)小明乘坐该市出租车去看外婆,下车时出租车计价器显示费用为20元,小明乘坐的路程是多少?【答案】(1)()()()8,038+1.53,3x y x x ⎧≤≤⎪=⎨->⎪⎩(2)11 (3)11 【解析】【分析】(1)根据题意,列出代数式即可;(2)将5x =代入方程求解即可;(3)将20y =代入方程求解即可.【详解】(1)设应付的车费为y 元,由题意得()()()8,038+1.53,3x y x x ⎧≤≤⎪=⎨->⎪⎩(2)∵53x =>∴()8 1.55311y =+⨯-=故他应付的车费为11元.(3)∵208>∴将20y =代入()8 1.53y x =+-中()208 1.53x =+-解得11x =故小明乘坐的路程是11km .【点睛】本题考查了一元一次方程的行程问题,掌握解一元一次方程的方法是解题的关键.20. 数学老师在黑板上抄写了一道题目:“当2a =-,3b =-时,求多项式2222215[(31)2(4)]2a b ab a b a b ab -+--++的值”,小明做题时把2a =-错抄成2a =,但他最终求出的值也正确,这是为什么?【答案】证明见解析【解析】【分析】先化简多项式,然后分别代入2a =-,3b =-和2a =,3b =-求原式的值,即可得证. 【详解】2222215[(31)2(4)]2a b ab a b a b ab -+--++ 222225[3128]a b ab a b a b ab =-+----225[9]a b a b =--2259a b a b =-+249a b =+当2a =-,3b =-时原式()()2423939=⨯-⨯-+=-当2a =,3b =-时原式()2423939=⨯⨯-+=- ∴小明做题时把2a =-错抄成2a =,但他最终求出的值也正确.【点睛】本题考查了多项式的计算问题,掌握化简多项式的方法、代入求值法是解题的关键.四、填空题(每题4分,满分20分,将答案填在答题纸上)21. 如果2324(2)25a x x b x x -+-+-+是关于x 的五次四项式,那么a b -=__________.【答案】9【解析】【分析】根据多项式的定义以及性质求出,a b 的值,再代入求值即可.【详解】∵2324(2)25a x x b x x -+-+-+是关于x 的五次四项式∴2520a b -=⎧⎨+=⎩解得7,2a b ==-将7,2a b ==-代入-a b 中原式()729=--=故答案为:9.【点睛】本题考查了多项式的问题,掌握多项式的定义以及性质是解题的关键.22. 用小立方体搭一个几何体,其主视图和俯视图如下图,搭这样的集合体最多需要__________个小立方体,最少需要__________个小立方体.【答案】 (1). 14 (2). 10【解析】【分析】根据几何体三视图的性质分析即可.【详解】∵俯视图有6个正方形∴最底层有6个正方形∵主视图第二层有3个正方形∴第二层最多有6个正方形,最少有3个正方形∵主视图第三层有1个正方形∴第三层最多有2个正方形,最少有1个正方形∴搭这样的集合体最多需要66214++=个小立方体,最少需要63110++=个小立方体 故答案为:14,10.【点睛】本题考查了几何体三视图的问题,掌握几何体三视图的性质是解题的关键.23. 在实数的原有运算法则中我们补充定义新运算“⊕”如下:当a b 时,2a b b ⊕=;当a b <时,a b a ⊕=,则当2x =时,(1)(3)x x x ⊕⋅-⊕的值为______【答案】2-..【解析】【分析】首先认真分析找出规律,然后再代入数值计算.【详解】在1⊕x 中,1相当于a ,x 相当于b ,∵x=2,∴符合a<b 时的运算公式,∴(1⊕x )x=2.在3⊕x 中,3相当于a ,x 相当于b ,∵x=2,∴符合a ⩾b 时的运算公式,∴3⊕x=4.∴(1⊕x)−(3⊕x)=2−4=−2.【点睛】此题考查有理数的混合运算,掌握运算法则是解题关键24. 有理数a b c ,,在数轴上的位置如图所示,则|a +|c +||||b c b a ---__________.【答案】222a b c -+【解析】【分析】根据绝对值的性质以及数轴的性质进行计算即可.【详解】由数轴得0,0,0a c b c b a +>-<-> ∴a c b c b a ++---a c cb b a =++--+222a b c =-+故答案为:222a b c -+.【点睛】本题考查了绝对值的运算问题,掌握绝对值的性质以及数轴的性质是解题的关键.25. 已知:a b c ,,都不为0,且a b c abc a b c abc+++的最大值为m ,最小值为n ,则2020()m n +的值为__________.【答案】0【解析】【分析】根据绝对值的性质求出m 、n 的值,再代入求值即可.【详解】当0,0,0a b c >>>时,可得最大值=1+1+1+14a b c abc b a cm a c b +++== 当0,0,0a b c <<<时,可得最小值=11114a b c abc a b c a n bc+++----=-= ∴()20202020()440m n +=-=故答案为:0. 【点睛】本题考查了绝对值的计算问题,掌握绝对值的性质是解题的关键.五、解答题:共30分.解答应写出文字说明、证明过程或演算步骤.26. 若代数式2222424,363,A x xy y B x xy y =-+=-+且23,16,0,x y xy ==<求()()423A A B A B ⎡⎤+--+⎣⎦的值.【答案】-216.【解析】试题分析:先化简()()423A A B A B ⎡⎤+--+⎣⎦可得34A B -,再把2222424,363A x xy y B x xy y =-+=-+代入34A B -可得其值为18xy ,再由23,16,0,x y xy ==<求得x 、y 的值,代入即可求值.试题解析:解:()()423A A B A B ⎡⎤+--+⎣⎦=423334A A B A B A B +---=-, 所以34A B -=22223(424)4(363)x xy y x xy y -+--+=222212612122412x xy y x xy y -+-+-=18xy ∵23,16,x y ==∴3,4,x y =±=±∵0,xy <∴x=3,y=-4或x=-3,y=4把x=3,y=-4代入,原式=183(4)216⨯⨯-=-;把x=-3,y=4代入,原式=18(3)4216⨯-⨯=-.考点:整式的加减混合运算.27. 甲,乙两家服装商店销售同一品牌的西装和领带,西装定价都是每套200元,领带定价都是每条40元.现两家商店都在促销:甲店:买一套西装送一条领带;乙店:西装和领带都按定价的90%付款.学校合唱团要购买西装20套,领带x 条(20x >),由后勤谢老师负责购买,请为谢老师出谋划策: (1)若只在一家商店购买,当60x =时,谢老师选择哪家商店购买西装和领带更划算?(2)若只在一家商店购买,请用含x 的代数式分别表示在两家商店的花费;(3)当60x =时,请设计最省钱的购买方案并求出最少的花费是多少.【答案】(1)若只在一家商店购买,当60x =时,谢老师选择甲商店购买西装和领带更划算.(2)若只在一家商店购买,在甲商店的花费为403200x +元,在乙商店的花费为360036x +元.(3)当60x =时,最省钱的购买方案为在甲商店购买20套西装,20条领带,在乙商店购买0套西装,40条领带,最少的花费是5440元.【解析】【分析】(1)分别根据题意计算出若只在甲购买和若只在乙购买的花费,比较两个花费的大小,即可判断哪种方案更划算.(2)根据题意列出代数式表示即可.(3)设在甲商店购买x 套西装,x 条领带,即在乙商店购买20x -套西装,60x -条领带,总花费为y 元,可得方程y=165760x -+,再根据020x ≤≤,即可确定最省钱的购买方案.【详解】(1)若只在甲购买:()20020+6020405600⨯-⨯=(元)若只在乙购买:2002090+4060905760⨯⨯⨯⨯=%%(元)∵56005760<若只在一家商店购买,当60x =时,谢老师选择甲商店购买西装和领带更划算.(2)若只在甲购买: ()20020+2040403200x x ⨯-⨯=+若只在乙购买: 2002090+4090360036x x ⨯⨯⨯=+%%故若只在一家商店购买,在甲商店的花费为403200x +元,在乙商店的花费为360036x +元.(3)∵单买领带时,乙商店比甲商店便宜∴要想花费最少,在甲商店购买的西装套数等于领带的条数∴设在甲商店购买x 套西装,x 条领带,即在乙商店购买20x -套西装,60x -条领带,总花费为y 元 ()()2002009020409060y x x x =+⨯⨯-+⨯⨯-%%=165760x -+.∵020x ≤≤∴当20x 时,总花费y 有最小值最小值为162057605440-⨯+=故当60x =时,最省钱的购买方案为在甲商店购买20套西装,20条领带,在乙商店购买0套西装,40条领带,最少的花费是5440元.【点睛】本题考查了一次函数的实际应用,掌握一次函数的性质以及最值问题是解题的关键.28. (1)探索材料1(填空): 数轴上表示数m 和数n 的两点之间的距离等于||m n -.例如数轴上表示数2和5的两点距离为|25|-= ;数轴上表示数3和-1的两点距离为|3(1)|--= ;则|63|+的意义可理解为数轴上表示数 和 这两点的距离;|4|x +的意义可理解为数轴上表示数 和 这两点的距离;(2)探索材料2(填空):①如图1,在工厂的一条流水线上有两个加工点A 和B ,要在流水线上设一个材料供应点P 往两个加工点输送材料,材料供应点P 应设在 才能使P 到A 的距离与P 到B 的距离之和最小?②如图2,在工厂的一条流水线上有三个加工点A B C ,,,要在流水线上设一个材料供应点P 往三个加工点输送材料,材料供应点P 应设在 才能使P 到A B C ,,三点的距离之和最小?③如图3,在工厂的一条流水线上有四个加工点A B C D ,,,,要在流水线上设一个材料供应点P 往四个加工点输送材料,材料供应点P 应设在 才能使P 到A B C D ,,,四点的距离之和最小?(3)结论应用(填空):①代数式|3||4|x x ++-的最小值是 ,此时x 的范围是 ; ②代数式|632x x x ++++-|的最小值是 ,此时x 的值为 . ③代数式7425||x x x x ++++-+-的最小值是 ,此时x 的范围是 .【答案】(1)探索材料1(填空):3,46,3,,4x --,; (2)探索材料2(填空):①点A 和点B 之间;②点B 上;③点B 和点C 之间;(3)结论应用(填空):①7,34x -≤≤;②8,3-;③18,42x -≤≤.【解析】【分析】 (1)探索材料1(填空):根据给出的材料填写即可; (2)探索材料2(填空):分情况讨论点P 的位置,使点P 到其他点的距离之和最小;(3)结论应用(填空):根据探索材料2得出的结论填写即可.【详解】(1)探索材料1(填空):253-=,()314--=,()6363+=--,()44x x +=--故答案:3,46,3,,4x --,. (2)探索材料2(填空):①1)当点P 在点A 左边2PA PB PA AB +=+2)当点P 在点A 之间PA PB AB +=3)当点P 在点B 右边2PA PB PB AB +=+∴当点P 在点A 和点B 之间,才能使P 到A 的距离与P 到B 的距离之和最小②1)当点P 在点A 左边2PA PB PC PA PB AC ++=++2)当点P 在点A 和点B 之间PA PB PC AC BP ++=+3)当点P 在点B 和点C 之间PA PB PC AC BP ++=+4)当点P 在点C 右边2+PA PB PC PC PB AC ++=+∴最小值为AC BP +,当点P 在点B 上时,值最小为AC∴当点P 在点B 上时,才能使P 到A B C ,,三点的距离之和最小③1)当点P 在点A 左边42PA PB PC PD PA AB BC AD +++=+++2)当点P 在点A 和点B 之间2PA PB PC PD PB BC AD +++=++3)当点P 在点B 和点C 之间PA PB PC PD AD BC +++=+4)当点P 在点C 和点D 之间2PA PB PC PD PC BC AD +++=++5)当点P 在点D 右边42PA PB PC PD PD CD BC AD +++=+++∴当点P 在点B 和点C 之间时,才能使P 到A B C D ,,,四点的距离之和最小故答案为:①点A 和点B 之间;②点B 上;③点B 和点C 之间.(3)结论应用(填空):①由探索材料2得,当34x -≤≤时,|3||4|x x ++-有最小值,最小值为|3||4|347x x x x ++-=++-=②由探索材料2得,这是在求点x 到6,3,2--三个点的最小距离,∴当3x =-时,|632x x x ++++-|有最小值,最小值为|3303386325-++++-=+--+=| ③由探索材料2得,这是在求点x 到7,4,2,5--四个点的最小距离,∴当42x -≤≤时,7425||x x x x ++++-+-有最小值,最小值为7425|742|518x x x x x x x x ++++-+-=++++-+-=.故答案为:①7,34x -≤≤;②8,3-;③18,42x -≤≤.【点睛】本题考查了数轴上两点之间的距离最值问题,掌握数轴上两点之间的距离公式、绝对值的性质是解题的关键.。
北师大版2019-2020学年七年级(下)期末数学试卷(含解析) (15)

北师大版2019-2020学年第二学期七年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)下面四个手机APP图标中,可看作轴对称图形的是()A.B.C.D.2.(3分)下列计算正确的是()A.a2+a2=a4B.(2a)3=6a3C.a9÷a3=a3D.(﹣2a)2•a3=4a53.(3分)小颖有两根长度为6cm和9cm的木条,桌上有下列长度的几根木条,从中选出一根,使三根木条首尾顺次相连,钉成三角形木框,她应该选择长度为()的木条.A.2cm B.3cm C.12cm D.15cm4.(3分)学习整式的乘法时,小明从图1边长为a的大正方形中剪掉一个边长为b的小正方形,将图1中阴影部分拼成图2的长方形,比较两个图中阴影部分的面积,能够验证的一个等式为(A.a(a+b)=a2+ab B.(a+b)(a﹣b)=a2﹣b2C.(a﹣b)2=a2﹣2ab+b2D.a(a﹣b)=a2﹣ab5.(3分)如图,一把直尺的边缘AB经过一块三角板DCB的直角顶点B,交斜边CD于点A,直尺的边缘EF分别交CD,BD于点E,F,若∠D=60°,∠ABC=20°,则∠1的度数为()A.25°B.40°C.50°D.80°6.(3分)马老师带领的数学兴趣小组做“频率的稳定性”试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.掷一枚质地均匀的硬币,硬币落下后朝上的是正面B.一副去掉大小王的普通扑克牌(52张,四种花色)洗匀后,从中任抽一张牌,花色是梅花C.不透明袋子中有1个红球和4个白球,每个球除颜色外都相同,从中任取一球是白球D.在玩“石头、剪刀、布”的游戏中,小颖随机出的是“石头”7.(3分)如图,在Rt△ABC中,∠C=90°,在AC和AB上分别截取AE、AD,使AE =AD.再分别以点D、E为圆心,大于DE长为半径作弧,两弧在∠BAC内交于点F,作射线AF交边BC于点G,若CG=4,AB=10,则△ABG的面积为()A.12B.20C.30D.408.(3分)等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则这个等腰三角形顶角的度数为()A.40°B.70°C.40°或70°D.40°或140°9.(3分)轩轩和凯凯在同一个数学学习小组,在一次数学活动课上,他们各自用一张边长为12cm的正方形纸片制作了一副七巧板,并合作设计了如图所示的作品请你帮他们计算图中圈出来的三块图形的面积之和为()A.12cm2B.24cm2C.36cm2D.48 cm210.(3分)如图,在边长为4的正方形ABCD中剪去一个边长为2的小正方形CEFG,动点P从点A出发,沿多边形的边以A→D→E→F→G→B的路线匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的图象大致为()A.B.C.D.二、填空题(每小题3分,共15分)11.(3分)被誉为“中国天眼”的FAST望远镜首次发现的毫秒脉冲星得到国际认证,新现的脉冲星自转周期为0.00519秒,将0.00519用科学记数法表示应为.12.(3分)如图,在4×4正方形网格中,已有4个小正方形被涂黑,现任意选取一个白色的小正方形并涂黑,使整个黑色部分构成一个轴对称图形的概率是.13.(3分)学习了平行线的相关知识后,学霸君轩轩利用如图所示的方法,可以折出“过已知直线外一点和已知直线平行”的直线.由操作过程可知他折平行线的依据可以是.(把所有正确结论的序号都填在横线上)①平行于同一条直线的两条直线平行;②同位角相等,两直线平行;③内错角相等,两直线平行;④同旁内角互补,两直线平行.14.(3分)学习了“设计自己的运算程序”一课后,马老师带领数学兴趣小组同学继续进行探究:任意写一个3的倍数(非零)的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数位上的数字再立方,求和,……重复运算下去,就能得到一个固定的数字a,我们称它为数字“黑洞”.这个数字a=.15.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=AC.点D为BC的中点,E为边AB上一动点(不与A、B点重合),以点D为直角顶点、以射线DE为一边作∠MDN=90°,另一条直角边DN与边AC交于点F(不与A、C点重合),分别连接AD、EF,下列结论中正结论是.(把所有正确结论的序号都填在横线上)①BE=AF;②△DEF是等腰直角三角形;③无论点E、F的位置如何,总有EF=DF+CF成立;④四边形AEDF的面积随着点E、F的位置不同发生变化.三、解答题(共55分)16.(6分)如图,已知DE∥BC,∠3=∠B,则∠1+∠2=180°.下面是王宁同学的思考过程,请你在括号内填上理由、依据或内容.思考过程:因为DE∥BC(已知),所以∠3=∠EHC().因为∠3=∠B(已知),所以∠B=∠EHC().所以AB∥EH().所以∠2+=180°().因为∠1=∠4(),所以∠1+∠2=180°(等量代换).17.(6分)先化简,再求值.[(x+y)2+(x+y)(x﹣y)]÷(2x),其中x=﹣1,y=.18.(8分)如图所示,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离,但绳子不够长,请你利用三角形全等的相关知识带他设计一种方案测量出A、B 间的距离,写出具体的方案,并解释其中的道理.19.(8分)暑假将至,丹尼斯大卖场为回馈新老顾客,进行有奖促销活动活动.活动规定:购买500元的商品就可以获得一次转转盘的机会(转盘分为5个区域,分别是特等奖、一等奖、二等奖、三等奖、不获奖),转盘指针停在哪个获奖区域就可以得到该区域相应等级奖品一件(如果指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止).大卖场工作人员在制作转盘时,将各扇形区域圆心角(不完全)分配如下表奖次特等奖一等奖二等奖三等奖不获奖圆心角10°30°80°120°促销公告:凡购买我大卖场商品500元均有可能获得下列奖品:特等奖:山地越野自行车一辆等奖:双肩背包一个二等奖:洗衣液一桶三等奖:抽纸一盒根据以上信息,解答下列问题:(1)求不获奖的扇形区域圆心角度数是多少?(2)求获得双肩背包的概率是多少?(3)甲顾客购物520元,求他获奖的概率是多少?20.(8分)周六的早上,小颖去郑州图书大厦买书.她先走到早餐店吃早餐,然后又去图书大厦买书,最后又回到家.如图是小颖所用的时间x(分)和离家的距离y(千米)之间的示意图,请根据图象解答下列问题:(1)在上述变化过程中,自变量是,因变量是;(2)早餐店到小颖家的距离是千米,她早餐花了分钟;(3)出发后37分到55分之间小颖在干什么?(4)小颖从图书大厦回家的过程中,她的平均速度是多少?21.(9分)如图,在正方形网格上有一个三角形ABC(三个顶点均在格点上).(1)画出△ABC关于直线DE对称的△A1B1C1(其中点A与点A1对应,点B与点B1对应,点C与点C1对应);(2)若每个小正方形的边长都是1,计算△A1B1C1的面积.22.(10分)在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠DCE=β.(1)如图1,当点D在BC的延长线上移动时,请说明:△ABD≌△ACE;(2)①当点D在BC的延长线上移动时,α与β之间有什么数量关系?请直接写出你的结论;②当点D在直线BC上(不与B,C点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论,并在备用图上画出相应图形.2018-2019学年河南省郑州市七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下面四个手机APP图标中,可看作轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:A、是轴对称图形,故选项正确;B、不是轴对称图形,是中心对称图形,故选项错误;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.故选:A.【点评】本题主要考查了轴对称图形的定义,正确理解定义是解题关键.2.(3分)下列计算正确的是()A.a2+a2=a4B.(2a)3=6a3C.a9÷a3=a3D.(﹣2a)2•a3=4a5【分析】根据单项式乘单项式的法则,合并同类项的法则,同底数幂的除法的法则,积的乘方和幂的乘方的法则计算即可.【解答】解:A、a2+a2=2a2,不符合题意;B、(2a)3=9a3,不符合题意;C、a9÷a3=a6,不符合题意;D、(﹣2a)2•a3=4a5,符合题意;故选:D.【点评】本题考查了单项式乘单项式,合并同类项,同底数幂的除法,积的乘方和幂的乘方,熟练掌握计算法则是解题的关键.3.(3分)小颖有两根长度为6cm和9cm的木条,桌上有下列长度的几根木条,从中选出一根,使三根木条首尾顺次相连,钉成三角形木框,她应该选择长度为()的木条.A.2cm B.3cm C.12cm D.15cm【分析】设木条的长度为xcm,再由三角形的三边关系即可得出结论.【解答】解:设木条的长度为xcm,则9﹣6<x<9+6,即3<x<15,故她应该选择长度为12cm的木条.故选:C.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.4.(3分)学习整式的乘法时,小明从图1边长为a的大正方形中剪掉一个边长为b的小正方形,将图1中阴影部分拼成图2的长方形,比较两个图中阴影部分的面积,能够验证的一个等式为(A.a(a+b)=a2+ab B.(a+b)(a﹣b)=a2﹣b2C.(a﹣b)2=a2﹣2ab+b2D.a(a﹣b)=a2﹣ab【分析】分别根据面积公式进行计算,根据图1的面积=图2的面积列式,即可得到平方差公式.【解答】解:图1阴影面积=a2﹣b2,图2拼剪后的阴影面积=(a+b)(a﹣b),∴得到的公式为:a2﹣b2=(a+b)(a﹣b),即(a+b)(a﹣b)=a2﹣b2,故选:B.【点评】本题考查了平方差公式的几何背景,利用图形的面积和作为相等关系列出等式即可验证平方差公式.5.(3分)如图,一把直尺的边缘AB经过一块三角板DCB的直角顶点B,交斜边CD于点A,直尺的边缘EF分别交CD,BD于点E,F,若∠D=60°,∠ABC=20°,则∠1的度数为()A.25°B.40°C.50°D.80°【分析】利用平行线的性质求出∠EDF,再利用三角形内角和定理求出∠DEF即可.【解答】解:∵∠CBD=90°,∴∠ABD=90°﹣∠ABC=70°,∵EF∥AB,∴∠DFE=∠ABD=70°,∴∠DEF=180°﹣∠D﹣∠DFE=50°,∴∠1=∠DEF=50°,故选:C.【点评】本题考查平行线的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.(3分)马老师带领的数学兴趣小组做“频率的稳定性”试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.掷一枚质地均匀的硬币,硬币落下后朝上的是正面B.一副去掉大小王的普通扑克牌(52张,四种花色)洗匀后,从中任抽一张牌,花色是梅花C.不透明袋子中有1个红球和4个白球,每个球除颜色外都相同,从中任取一球是白球D.在玩“石头、剪刀、布”的游戏中,小颖随机出的是“石头”【分析】利用折线统计图可得出试验的频率在0.5左右,进而得出答案.【解答】解:A、掷一枚质地均匀的硬币,硬币落下后朝上的是正面的概率为;符合题意;B、一副去掉大小王的普通扑克牌洗匀后,从中任意抽出一张的花色是红桃的概率为,不符合题意;C、不透明袋子中有1个红球和4个白球,每个球除颜色外都相同,从中任取一球是白球的概率为,不符合题意;D、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率为,不符合题意;故选:A.【点评】此题主要考查了利用频率估计概率,正确求出各试验的概率是解题关键.7.(3分)如图,在Rt△ABC中,∠C=90°,在AC和AB上分别截取AE、AD,使AE =AD.再分别以点D、E为圆心,大于DE长为半径作弧,两弧在∠BAC内交于点F,作射线AF交边BC于点G,若CG=4,AB=10,则△ABG的面积为()A.12B.20C.30D.40【分析】根据角平分线的性质得到GM=CG=4,根据三角形的面积公式计算即可.【解答】解:如图,作GM⊥AB于M,由基本尺规作图可知,AG是△ABC的角平分线,∵∠C=90°,GM⊥AB,∴GM=CG=4,∴△ABG的面积=×AB×GM=20,故选:B.【点评】本题考查的是三角形的面积,角平分线的性质、基本作图,掌握角的平分线上的点到角的两边的距离相等是解题的关键.8.(3分)等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则这个等腰三角形顶角的度数为()A.40°B.70°C.40°或70°D.40°或140°【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【解答】解:当为锐角三角形时,如图∵∠ADE=50°,∠AED=90°,∴∠A=40°当为钝角三角形时,如图∠ADE=50°,∠DAE=40°,∴顶角∠BAC=180°﹣40°=140°,故选:D.【点评】本题考查了等腰三角形的性质及三角形内角和定理,分类讨论是正确解答本题的关键.9.(3分)轩轩和凯凯在同一个数学学习小组,在一次数学活动课上,他们各自用一张边长为12cm的正方形纸片制作了一副七巧板,并合作设计了如图所示的作品请你帮他们计算图中圈出来的三块图形的面积之和为()A.12cm2B.24cm2C.36cm2D.48 cm2【分析】由七巧板的制作过程可知,这只小猫的头部是用正方形的四分之一拼成的,所以面积是正方形面积的四分之一.【解答】解:如图:小猫的头部的图形是abc,在右图中三角形h的一半与b全等,而由图中a+c+h的一半正好是正方形的四分之一,即阴影部分的面积是×12×12cm2=36cm2,故选:C.【点评】本题考查了正方形的性质,也考查了列代数式的内容,难度较大,还考查了学生的观察图形的能力.10.(3分)如图,在边长为4的正方形ABCD中剪去一个边长为2的小正方形CEFG,动点P从点A出发,沿多边形的边以A→D→E→F→G→B的路线匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的图象大致为()A.B.C.D.【分析】分别判断点P在各条线段上面积的变化情形即可判断.【解答】解:当点P在线段AD上时,面积是逐渐增大的,当点P在线段DE上时,面积是定值不变,当点P在线段EF上时,面积是逐渐减小的,当点P在线段FG上时,面积是定值不变,当点P在线段GB上时,面积是逐渐减小的,综上所述,选项B符合题意.故选:B.【点评】本题考查动点问题函数图象,解题的关键是理解题意灵活运用所学知识解决问题,属于中考常考题型.二、填空题(每小题3分,共15分)11.(3分)被誉为“中国天眼”的FAST望远镜首次发现的毫秒脉冲星得到国际认证,新现的脉冲星自转周期为0.00519秒,将0.00519用科学记数法表示应为 5.19×10﹣3.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.00519用科学记数法表示应为5.19×10﹣3.故答案为:5.19×10﹣3.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)如图,在4×4正方形网格中,已有4个小正方形被涂黑,现任意选取一个白色的小正方形并涂黑,使整个黑色部分构成一个轴对称图形的概率是.【分析】直接利用轴对称图形的性质得出符合题意的位置,进而得出答案.【解答】解:如图所示:选取白色的小正方形中1,2,3的位置3个涂黑,能使整个黑色部分构成一个轴对称图形,故使整个黑色部分构成一个轴对称图形的概率是:=.故答案为:.【点评】此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.13.(3分)学习了平行线的相关知识后,学霸君轩轩利用如图所示的方法,可以折出“过已知直线外一点和已知直线平行”的直线.由操作过程可知他折平行线的依据可以是②③④.(把所有正确结论的序号都填在横线上)①平行于同一条直线的两条直线平行;②同位角相等,两直线平行;③内错角相等,两直线平行;④同旁内角互补,两直线平行.【分析】先根据折叠的性质得到折痕都垂直于过点P的直线,根据根据平行线的判定方法求解.【解答】解:如图,由题图(2)的操作可知PE⊥CD,所以∠PEC=∠PED=90°.由题图(3)的操作可知AB⊥PE,所以∠APE=∠BPE=90°,所以∠PEC=∠PED=∠APE=∠BPE=90°,所以可依据结论②,③或④判定AB∥CD,故答案为②③④.【点评】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;如果两条直线同时垂直于同一条直线,那么这两条直线平行.14.(3分)学习了“设计自己的运算程序”一课后,马老师带领数学兴趣小组同学继续进行探究:任意写一个3的倍数(非零)的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数位上的数字再立方,求和,……重复运算下去,就能得到一个固定的数字a,我们称它为数字“黑洞”.这个数字a=153.【分析】根据数字的变化规律取符合条件的数按规律计算即可求出一个固定数字.【解答】解:例如:33=27,23+73=351,33+53+13=153.故答案为153.【点评】本题考查了数字的变化类、有理数的混合运算,解决本题的关键是理解题意进行计算.15.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=AC.点D为BC的中点,E为边AB上一动点(不与A、B点重合),以点D为直角顶点、以射线DE为一边作∠MDN=90°,另一条直角边DN与边AC交于点F(不与A、C点重合),分别连接AD、EF,下列结论中正结论是①②④.(把所有正确结论的序号都填在横线上)①BE=AF;②△DEF是等腰直角三角形;③无论点E、F的位置如何,总有EF=DF+CF成立;④四边形AEDF的面积随着点E、F的位置不同发生变化.【分析】由“SAS ”可证△BDE ≌△ADF ,可得BE =AF ,DE =DF ,S △BDE =S △ADF ,即可求解.【解答】解:∵∠BAC =90°,AB =AC .点D 为BC 的中点,∴AD =BD =CD ,∠∠BAD =∠CAD =∠B =∠C =45°,AD ⊥BC ,∵∠MDN =90°=∠ADB ,∴∠BDE =∠ADF ,且BD =AD ,∠B =∠DAF =45°,∴△BDE ≌△ADF (SAS )∴BE =AF ,DE =DF ,S △BDE =S △ADF ,∴S △BDE +S △ADE =S △ADF +S △ADE ,∴四边形AEDF 的面积=S △ABD =S △ABC ,故①④符合题意,∵DE =DF ,∠EDF =90°,∴△DEF 是等腰直角三角形,故②符合题意,当点F 在AC 中点时,可得EF =BC =AD ,DF +CF =AC ,∵AD ≠AC ,故③不合题意,故答案为①②④.【点评】本题考查了全等三角形的判定和性质,证明△BDE ≌△ADF 是本题的关键.三、解答题(共55分)16.(6分)如图,已知DE ∥BC ,∠3=∠B ,则∠1+∠2=180°.下面是王宁同学的思考过程,请你在括号内填上理由、依据或内容.思考过程:因为DE ∥BC (已知),所以∠3=∠EHC ( 两直线平行,内错角相等 ).因为∠3=∠B(已知),所以∠B=∠EHC(等量代换).所以AB∥EH(同位角相等,两直线平行).所以∠2+∠4=180°(两直线平行,同旁内角互补).因为∠1=∠4(对顶角相等),所以∠1+∠2=180°(等量代换).【分析】根据平行线的性质得出∠3=∠EHC,求出∠B=∠EHC,根据平行线的判定得出AB∥EH,根据平行线的性质得出∠2+∠4=180°,即可得出答案.【解答】解:∵DE∥BC(已知),∴∠3=∠EHC(两直线平行,内错角相等),∵∠3=∠B(已知),∴∠B=∠EHC(等量代换),∴AB∥EH(同位角相等,两直线平行),∴∠2+∠4=180°(两直线平行,同旁内角互补),∵∠1=∠4(对顶角相等),∴∠1+∠2=180°(等量代换),故答案为:两直线平行,内错角相等,等量代换,同位角相等,两直线平行,∠4,两直线平行,同旁内角互补,对顶角相等.【点评】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.17.(6分)先化简,再求值.[(x+y)2+(x+y)(x﹣y)]÷(2x),其中x=﹣1,y=.【分析】先算括号内的乘法,再合并同类项,算除法,最后代入求出即可.【解答】解:原式=[x2+2xy+y2+x2﹣y2]÷2x=[2x2+2xy]÷2x=x+y,当x=﹣1,y=时,原式=﹣1+=﹣.【点评】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.18.(8分)如图所示,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离,但绳子不够长,请你利用三角形全等的相关知识带他设计一种方案测量出A、B 间的距离,写出具体的方案,并解释其中的道理.【分析】由题意知AC=DC,BC=EC,根据∠ACB=∠DCE即可证明△ABC≌△DEC,即可得AB=DE,即可解题.【解答】解:如图,先在地上取一个可以直接到达A点和B点的点C,连接AC并延长到D,使CD=AC;连接BC并延长到E,使CE=CB,连接DE并测量出它的长度,DE 的长度就是A、B间的距离.证明:由题意知AC=DC,BC=EC,且∠ACB=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴DE=AB.∴量出DE的长,就是A、B两点间的距离.【点评】本题考查了全等三角形在实际生活中的应用,考查了全等三角形对应边相等的性质,本题中求证△ABC≌△DEC是解题的关键.19.(8分)暑假将至,丹尼斯大卖场为回馈新老顾客,进行有奖促销活动活动.活动规定:购买500元的商品就可以获得一次转转盘的机会(转盘分为5个区域,分别是特等奖、一等奖、二等奖、三等奖、不获奖),转盘指针停在哪个获奖区域就可以得到该区域相应等级奖品一件(如果指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止).大卖场工作人员在制作转盘时,将各扇形区域圆心角(不完全)分配如下表奖次特等奖一等奖二等奖三等奖不获奖圆心角10°30°80°120°促销公告:凡购买我大卖场商品500元均有可能获得下列奖品:特等奖:山地越野自行车一辆等奖:双肩背包一个二等奖:洗衣液一桶三等奖:抽纸一盒根据以上信息,解答下列问题:(1)求不获奖的扇形区域圆心角度数是多少?(2)求获得双肩背包的概率是多少?(3)甲顾客购物520元,求他获奖的概率是多少?【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.【解答】解:(1)360°﹣10°﹣30°﹣80°﹣120°=120°,答:不获奖的扇形区域圆心角度数是120°;=,(2)P(获得双肩背包)答:获得双肩背包的概率是;=,(3)P(获奖)答:他获奖的概率是.【点评】本题考查了概率,正确运用概率公式是解题的关键.20.(8分)周六的早上,小颖去郑州图书大厦买书.她先走到早餐店吃早餐,然后又去图书大厦买书,最后又回到家.如图是小颖所用的时间x(分)和离家的距离y(千米)之间的示意图,请根据图象解答下列问题:(1)在上述变化过程中,自变量是所用的时间,因变量是离家的距离;(2)早餐店到小颖家的距离是 1.1千米,她早餐花了10分钟;(3)出发后37分到55分之间小颖在干什么?(4)小颖从图书大厦回家的过程中,她的平均速度是多少?【分析】根据函数图象的横坐标,可得时间的变化,根据函数图象的纵坐标,可得距离的变化.【解答】解:(1)在上述变化过程中,自变量是小颖所用的时间x,因变量是离家的距离;故答案为:所用的时间;离家的距离;(2)早餐店到小颖家的距离是1.1千米,她早餐花了10分钟;(3)出发后37分到55分之间小颖在选书和买书;(4)小颖从图书大厦回家的过程中,她的平均速度是2÷(80﹣55)=0.08(千米/分钟)=80米/分钟.【点评】此题主要考查了函数图象与实际问题,根据已知图象获取正确信息是解题关键.解题时注意:速度=距离÷时间.21.(9分)如图,在正方形网格上有一个三角形ABC(三个顶点均在格点上).(1)画出△ABC关于直线DE对称的△A1B1C1(其中点A与点A1对应,点B与点B1对应,点C与点C1对应);(2)若每个小正方形的边长都是1,计算△A1B1C1的面积.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)利用分割法求三角形的面积即可.【解答】解:(1)如图,△A1B1C1即为所求.(2)=4×7﹣×2×7﹣×2×5﹣×4×2=28﹣7﹣5﹣4=12.【点评】本题考查作图﹣轴对称变换,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(10分)在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠DCE=β.(1)如图1,当点D在BC的延长线上移动时,请说明:△ABD≌△ACE;(2)①当点D在BC的延长线上移动时,α与β之间有什么数量关系?请直接写出你的结论;②当点D在直线BC上(不与B,C点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论,并在备用图上画出相应图形.【分析】(1)由“SAS”可证△ABD≌△ACE;(2)①证△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质求出即可②α+β=180°或α=β,根据三角形外角性质求出即可.【解答】解:(1)∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,∴△ABD≌△ACE(SAS);(2)①当点D在线段BC的延长线上移动时,α与β之间的数量关系是α=β,理由是:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中∵,∴△BAD≌△CAE(SAS),∴∠B=∠ACE,∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∵∠BAC=α,∠DCE=β,∴α=β;②如图2,当D在线段BC上时,同理可证:△BAD≌△CAE,∴∠ADB=∠AEC,∵∠ABD+∠ADC=180°,∴∠ADC+∠AEC=180°,∴∠DCE+∠DAE=180°,∴α+β=180°;如图1或3,当点D在线段BC延长线或反向延长线上时,α=β.【点评】本题是三角形综合题,考查了全等三角形的性质和判定,三角形的外角性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版2019-2020学年七年级上学期科学期中考试试卷B卷一、选择题(本题共25题,每题2分,每小题只有一个选项正确。
不选 (共25题;共50分)1. (2分)在科学探究过程中,提出问题后可以应用已有的知识对问题的答案提出可能的设想,即()A . 作出假设B . 制定计划C . 实施计划D . 得出结论2. (2分)下表描述生物各类群名称、特征及实例对应正确的是()A . AB . BC . CD . D3. (2分)下列有关真菌的说法错误的是()A . 真菌既有单细胞个体,也有多细胞个体B . 生殖方式为孢子生殖C . 既有对人类有益的个体,也有有害的个体D . 营养方式为自养4. (2分)生活中我们需要对熟悉的物品有大致的估测能力,下面各物品最接近 4厘米的是()A . 科学课本的长度B . 铅笔芯的粗细C . 乒乓球的直径D . 课桌的高度5. (2分)下列选项中属于真正的陆地脊椎动物的是()A .B .C .D .6. (2分)下列单位的换算,正确的是()A . 500毫升= 500÷1000升 = 0.5升B . 1.8米=1.8米×1000毫米 = 1800毫米C . 0.5分米3 = 0.5×1000毫升 = 500毫升D . 12米=12米×100 = 1200厘米7. (2分)小明利用最小分度值为1mm的刻度尺测量一个物体的长度,四次测量的数据分别为2.35cm、2.36cm、2.63cm、2.36cm,则测量结果应记为()A . 2.36cmB . 2.357cmC . 2.35cmD . 2.4cm8. (2分)下列实验操作正确的是()A . 固液分离B . 滴加液体C . 配制溶液D . 称量药品9. (2分)“绿水青山就是金山银山”的绿色发展理念,提醒我们要注重生态建设,保护生物的多样性。
下列选项中不属于生物多样性内涵的是()A . 生物结构的多样性B . 物种的多样性C . 生态系统的多样性D . 基因的多样性10. (2分)下列关于种子植物的说法,错误的是()A . 所有的绿色开花植物都是种子植物B . 无籽西瓜和无核蜜橘不是种子植物C . 无花果在结出果实时,看不到花,但它也是种子植物D . 我们在吃香蕉时,吃不到种子,但它也是种子植物11. (2分)(2013•绍兴)如图所示,将生长良好的甲、乙、丙3盆植物放在阳台上,甲盆定期浇适量水,乙、丙两盆不浇水.15天后,甲、丙两盆植物均存活,乙盆植物枯死.对此实验,下列解释或推论合理的是()A . 乙盆植物因缺水枯死B . 仙人掌能存活是因为发生了变异C . 若给仙人掌定期浇水,其叶会转变成阔叶D . 阔叶植物能进化成仙人掌等叶成刺状的植物12. (2分)两支内径不同、下面玻璃泡内水银量相等的合格的温度计,同时插入同一杯热水中,过一会儿则会看到()A . 两支温度计水银柱上升的高度相同,示数相同B . 内径细的温度计水银柱升得较高,示数较大C . 内径粗的温度计水银柱升得较高,示数较大D . 内径粗的温度计水银柱升得较低,两支温度计示数相同13. (2分)正确规范的操作是实验成功的关键。
下列实验操作,符合规范的是()A . 盖上盖玻片B . 读取液体体积C . 测量物体长度D . 测量液体温度14. (2分)近日有媒体报道,我国科学家发现把二氧化碳变成汽油的高效转化途径,即通过设计一种新型多功能复合催化剂,首次实现了二氧化碳直接加氢制取汽油。
被同行誉为“二氧化碳催化转化领域的突破性进展”据此你认为下列说法中不正确的()A . 新途径可以有效缓解温室效应B . 此技术可以减少对化石燃料的依赖C . 催化剂在化学反应中起着重要的作用,可以决定物质间能否发生化学变化D . 该转化过程中发生了化学变化15. (2分)每年秋季,我们都可以看到排成“人”字或“一”字往南飞的大雁,下列与大雁飞行不相关的结构特点是()A . 有尖而硬的喙B . 有双翼C . 有大量的气囊D . 身体呈流线型16. (2分)一位同学先后用两支均未甩过的体温计测自己的体温,两支体温计示数分别是39.5℃和37.5℃,那么()A . 他的体温低于或等于37.5℃B . 他的体温更接近39.5℃C . 他的体温在37.5至39.5℃之间D . 他的体温一定是37.5℃17. (2分)如图六种动物分成甲、乙两类的分类依据是()A . 水生还是陆生B . 是否胎生哺乳C . 体温是否恒定D . 是否具有脊椎骨18. (2分)在下列分类等级中,生物的共同特征最少的是()A . 种B . 科C . 纲D . 门19. (2分)下列现象不属于应激性的是()A . 朵朵葵花向太阳B . 根向水生长C . 手碰到高温物体缩回D . 植物结出种子20. (2分)下图中的黑色部分表示四种动物共有的特点。
则该特点()A . 卵生B . 用肺呼吸C . 体温恒定D . 具脊椎骨连接而成的脊柱21. (2分)某同学用托盘天平和量筒测量一小石块的密度,图甲是调节天平时的情形,图乙和图丙分别是测量石块质量和体积时的情形,下列说法正确的是()A . 甲图中应将平衡螺母向左调,使横梁平衡B . 乙图中测石块质量时,天平的读数是17.4gC . 由丙图量筒的示数测得石块的体积是20cm3D . 计算出石块的密度是1.7×103 kg/m322. (2分)在观察、比较洋葱鳞片叶内表皮细胞和人口腔上皮细胞的结构时,可知前者比后者多()A . 线粒体、叶绿体、液泡B . 细胞壁、叶绿体、液泡C . 细胞壁、液泡D . 细胞壁、叶绿体23. (2分)小科晚上做完科学作业,抬眼看了一下墙上的挂钟(如图所示),他想:该睡觉了!要不然明天上课要打瞌睡了!此时他看到的时刻是()A . 10点02分07秒B . 10点10分35秒C . 22点10分35秒D . 22点20分35秒24. (2分)下列生活中的现象,描述不正确的是()A . 甲同学穿的红色衣服能吸收除红光外的其他色光B . 乙同学接通电话,一听就不是妈妈的声音,是通过声音的音色判断的C . 丙同学推不动水平地面上的桌子,此时推力小于桌子受到的摩擦力D . 丁同学用手背感受额头的温度高低,是因为手背上的神经末梢对热比较敏感25. (2分)某同学在两片相同的玻璃片上分别滴一滴水和酒精,他将滴水玻璃片放在阳光下照射,滴酒精玻璃片放在树荫下,结果发现水迹先干。
对于该实验,下列说法正确的是()A . 由实验现象可得出“水比酒精更易蒸发”的结论B . 由实验现象可得出“温度越高蒸发越快”的结论C . 此实验只能研究蒸发快慢与温度的关系D . 若把两玻璃片都放在阳光下,则可研究蒸发快慢与液体种类的关系二、填空题(本大题共有11小题,第26-35题每空1分,第3 (共11题;共39分)26. (2分)将稍微有些凹陷的乒乓球放人热水杯中,乒乓球会________ ,这是因为________ 。
27. (2分)观察图中生物填空。
(1)图中 B、D 分别是________、________。
(2)上述动物从简单到复杂的顺序是________(填字母)(3)下列图中和狮子属于一类的是()A . 鲸鱼B . 鳄鱼C . 娃娃鱼D . 鲤鱼28. (2分)被称为“城市的肾”的三垟湿地位于温州城郊,湿地内河道开阔,是虾蟹养殖和菱角种植的天然场所,还是“中国瓯柑之乡”。
目前,湿地内已知动植物有350多科,1700多种,其中包括35种国家珍稀物种,还有濒临灭绝的黑脸琵鹭,黑嘴鸥等国家珍稀保护动植物。
下列有黑嘴鸥、蟹、瓯柑、青蛙,同学为它们编了一个检索表,请帮助他继续完成。
(1)A代表________,D代表________ ,两者在结构层次上的差异是________ 。
(2)A与B的亲缘关系比D与C的________ (填“近”或“远”)。
(3)乙图是某同学将湿地内动物分的两大类,你认为他的分类依据是。
A . 是否有脊椎骨B . 体温是否恒定C . 是否胎生哺乳(4)湿地内有濒临灭绝的黑脸琵鹭,黑嘴鸥等国家珍稀保护动物,造成这些生物濒临灭绝的主要原因是。
①人类活动对环境的破坏②建立湿地保护公约③向河水排放污水④成立珍稀鸟类研究所A . ①④B . ②④C . ①③D . ②③29. (3分)读相对湿度表,回答下列问题:干球温度干湿差(干球温度减去湿球温度)1.0℃2.0℃3.0℃4.0℃5.0℃-5.0℃77%54%32%11%—0.0℃82%65%47%31%15%5.0℃86%71%58%45%32%10.0℃88%76%65%54%44%15.0℃90%80%70%61%52%20.0℃91%82%74%66%58%25.0℃92%83%76%68%61%30.0℃93%86%79%73%67%35.0℃93%87%81%75%69%(1)通常情况下,干球的温度越高,空气的相对湿度也就越________。
(2)假如不考虑相对湿度表之外的数据,当测得的相对湿度是 76%的时候,干球和湿球的温度有可能是________。
30. (3分)如图所示是木本植物茎的结构,请据图回答(示例[4]髓):(1)我们常见到的杨树和柳树等,能年年加粗,这是因为[2]________的作用,它向外能产生新的________,向内能产生新的[3]________。
(2)我们使用的木质课桌椅、家中的木质家具都是用[3]________做成的。
(3)在这个横断面上,我们可以看到有很多同心环带,这是________,它的形成是由于[2]________细胞的分裂活动受________变化的影响。
31. (5.0分)现有①葵花籽、②绿豆荚、③西瓜籽、④稻谷、⑤桔子五种物品,请完成下列问题:(1)上述五种物品中,属于种子的是________(填序号),由________发育而来;(2)稻谷是五谷之一,其营养主要来自________;(3)桔子的食用部分由________发育而来。
32. (2分)我国神舟九号飞船2012年6月16日18时左右,载着景海鹏、刘旺、刘洋(女),3位航天员在中国酒泉卫星发射中心发射顺利升空,于2012年6月23日10时左右按预定时间和地点着陆,期间历时约________小时,航天员翟志刚曾谈到太空漫步时身体处于失重状态,身体有一种“飘飘然”的“飞天”的感觉。
在这种状态下,他的身体的质量将________(填“变大”或“变小”或“不变”)。
这次航天服是我国自制的。
宇航员舱处服橡胶材料达到了的低温标准,-160℃的正确读法是________。
假如宇航员在飞船中看到温度计上昼夜某二次的示数如图甲、乙所示,其中图甲的读数是________℃,图乙的读数是________℃。