七年级数学上册 第四章 一元一次方程 4.2 解一元一次方程(第4课时)教案 (新版)苏科版
初中七年级上册数学《解一元一次方程》教案优质优秀10篇

初中七年级上册数学《解一元一次方程》教案优质优秀10篇初中七年级上册数学《解一元一次方程》教案优质篇一一、学生起点分析学生的知识技能基础:学生在小学已经学习过算术四则运算,而初中的有理数运算是以小学算术四则运算为基础的,不同的是有理数运算多了一个符号问题。
符号法则是有理数运算法则的重要组成部分,也是学生学习本章知识和今后学习其他与计算有关的内容时容易出错的知识点之一。
学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了一些数学活动,感受到了数的范围的扩大,能借助生活经验对一些简单的实际问题进行有理数的运算,如计算比赛的得分,计算温差等等。
同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定数学交流的能力。
学生学习中的困难预设:学生学习数学是一种认识过程,要遵循一般的认识规律,而七年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大,需要通过绝对值大小的比较来确定和的符号和加法转化为减法两个过程,要求学生在课堂上短时间内完成这个认识过程确有一定的难度,在教学时应从实例出发,充分利用教材中的正负抵消的思想,用数形结合的观点加以解释,让学生感知法则的由来,以突破这一难点。
二、教学任务分析对于有理数的运算,首先在于运算的意义的理解,即首先要回答为什么要进行运算。
为此,必须让学生通过具体的问题情境,认识到运算的作用,加深学生对运算本身意义的理解,同时也让学生体会到运算的应用,从而培养学生一定的应用意识和能力。
教科书基于学生学习了相反数和绝对值基础之上,提出了本课时的具体学习任务:探索有理数的加法运算法则,进行有理数的加法运算。
本课时的教学重点是有理数加法法则的探索过程,利用有理数的加法法则进行计算,教学难点是异号两数相加的法则。
教学方法是“引导分类归纳”。
本课时的教学目标如下:1.经历探索有理数加法法则的过程,理解有理数的加法法则;2.能熟练进行整数加法运算;3.培养学生的数学交流和归纳猜想的能力;4.渗透分类、探索、归纳等思想方法,使学生了解研究数学的一些基本方法。
苏科版(2024新版)七年级数学上册4.3.2 用一元一次方程解决问题——行程问题(同步课件)

例3、甲从A地到B地需4h,乙从B地到A地需10h。
(1)若两人同时相向而行,几小时可以相遇?
(2)若两人同时同向而行,甲几小时可以追到乙?
【分析】(1)相遇问题:两者的路程之和=两者间的距离
(2)追及问题:两者的路程之差=两者间的距离
未知速度和总路
程该如何列式呢
?
若是知道总路程,
甲、乙的速度就可
看我追上
你~
让我先走
2个小时
解:兔子出发时与乌龟的距离为:10×120=1200(m),
设x分钟后兔子追上乌龟,
根据题意得:590x-10x=1200,
解得:x= ,答:兔子再经过了 分钟追上乌龟。
590m/min
10m/min
追及
10x
1200m
590x
相遇问题
相遇
590x
10x
甲
乙
600km
根据题意得:90x+480+140x=600,
解得:x= ,
答:相背而行 小时后两车相距600km。
例4、甲、乙两站相距480km,一列慢车从甲站开出,每小时行90km,一列快车从乙
站开出,每小时行140km。
(1)慢车先开出1h,快车再开,两车相向而行,问快车开出多少小时后两车相遇?
跑啊跑~
解:设x分钟后它们在路上相遇,
根据题意得:590x+10x=15000,
解得:x=25,
答:乌龟和兔子经过了25分钟后可以相遇。
590m/min
10m/min
相遇
590x
15000m
10x
Part2:乌龟与兔子追及的故事
5.2 解一元一次方程 第4课时《去分母解一元一次方程》教案-人教版(2024)数学七年级上册

5.2.4去分母解一元一次方程教案【学习目标】1.掌握含有分数系数的一元一次方程的解法;2.熟练利用解一元一次方程的步骤解各种类型的方程,体会解方程中的化归思想.【学习重难点】重点:利用去分母解一元一次方程.难点:熟练利用解一元一次方程的步骤解各种类型的方程.【学习内容】复习回顾1.等式的性质2:等式两边乘________,或除以,结果仍相等.2.写出下列各组数的最小公倍数:(1)2和4最小公倍数为______;(2) 2和3 最小公倍数为____;(3)2,3和6 最小公倍数为____;(4)4,5和6 最小公倍数为_____.问题导入2 3x+12x+17x +x =33你能解出这道方程吗?把你的解法与其他同学交流一下,看谁的解法好.总结:像这样,方程中有些系数是分数,如果能化去分母,把系数化为整数,则可以使计算更方便些.今天,我们就来学习如何用去分母解一元一次方程.新知探究探究点1:解含分母的一元一次方程问题4 如图,翠湖在青山、绿水两地之间,距青山50 km,距绿水70 km.某天,一辆汽车匀速行驶,途经王家庄、青山、绿水三地的时间如表所示,王家庄距翠湖的路程有多远?设:王家庄距翠湖的路程为x km.通过路线图和表格,你能得到什么信息?由于汽车是匀速行驶,则汽车在各段的行驶速度相等,即王家庄→青山、王家庄→绿水、青山→绿水行驶速度相等.根据速度= 路程时间,可列方程x−50 3= x+705x−50 3= 50+702x+70 5= 50+702我们来解这个方程x−50 3= x+705这个方程中未知数的系数不是整数,如果能化去分母,把未知数的系数化成整数,就可以使解方程中的计算更简便些.方程左边x的系数是13方程右边x的系数是15思考:如何化去分母?依据是什么?依据等式的性质2:等式两边乘同一个数,结果仍相等.这个方程中,两边都乘分母的最小公倍数15.x−50 3= x+705去分母,得5(x-50)=3(x+70)去括号,得5x-250=3x+210.移项,得5x-3x=210+250.合并同类项,得2x=460.系数化为1,得x=230.因此,王家庄距翠湖的路程为230 km.为了更全面地研究问题,我们再以方程3x+12- 2= 3x−210- 2x+35为例,以框图的形式展示解这类一元一次方程的步骤.想一想1. 若使方程的系数变成整系数方程,方程两边应该同乘以什么数?2. 去分母时要注意什么问题?要点归纳:解含分母的一元一次方程的一般步骤:通过这些步骤可以使以x为未知数的方程逐步向着x=a的形式转化,这个过程主要依据等式的基本性质和运算律等.归纳总结注意:解一元一次方程的步骤不是一成不变的,有时可以省略某个步骤,有时可以先去括号或者先合并同类项再去分母,要根据方程的特点灵活运用.典例解析 例7 解下列方程12(1)1224x x +--=+ 121(2)3323x x x --+=- 解:(1)去分母(方程两边乘4),得 2(x +1) -4 = 8+ (2 -x ). 去括号,得 2x +2 -4 = 8+2 -x. 移项,得 2x +x = 8+2 -2+4. 合并同类项,得 3x = 12. 系数化为1,得 x = 4. (2)去分母(方程两边乘6),得 18x+3(x -1) =18-2 (2x -1).去括号,得 18x+3x -3 =18-4x +2. 移项,得 18x+3x+4x =18 +2+3. 合并同类项,得 25x = 23. 系数化为1,得x =2325. 巩固练习 1.在解方程3x −14-1=2x +76时,为了去分母,最好将方程两边同乘( )A.4B.6C.12D.16 2.将方程x2-x +14=1去分母,下列变形正确的是( )A.2x -x +1=1B.2x -(x +1)=1C.2x -x +1=4D.2x -(x +1)=4 3.解下列方程: (1)3x −12=4x +25;(2)1-3x −14=3+x 2;(3)2x −13-x =2x +14;(4)3x −22-(2-x )=x.解:(1)去分母(方程两边乘10),得5(3x -1)=2(4x +2).去括号,得15x -5=8x +4. 移项,得15x -8x =4+5. 合并同类项,得7x =9. 系数化为1,得x = 97.(2)去分母(方程两边乘4),得4-(3x -1)=2(3+x ). 去括号,得4-3x +1=6+2x . 移项,得-3x -2x =6-4-1. 合并同类项,得-5x =1. 系数化为1,得x = -15.(3)去分母(方程两边乘12),得4(2x -1)-12x =3(2x +1). 去括号,得8x -4-12x =6x +3. 移项,得8x -12x -6x =3+4. 合并同类项,得-10x =7. 系数化为1,得x = -710.(4)去分母(方程两边乘2),得3x -2-2(2-x )=2x . 去括号,得3x -2-4+2x =4x . 移项,得3x +2x -2x =2+4. 合并同类项,得3x =6. 系数化为1,得x =2. 课堂练习 1.解下列方程: (1) 19100x =21100(x -2); (2) x +12-2= x4;(3)5x −14=3x +12-2−x 3; (4)3x +22-1=2x −14-2x +15.解:(1)去分母(方程两边乘100),得19x=21(x-2). 去括号,得19x =21x-42. 移项,得19x -21x =-42. 合并同类项,得-2x =-42. 系数化为1,得x =21.(2)去分母(方程两边乘4),得2(x+1)-8=x . 去括号,得2x +2-8=x . 移项,得2x -x =8-2. 合并同类项,得x =6.(3)去分母(方程两边乘12),得3(5x-1) = 6(3x+1)- 4(2-x ). 去括号,得15x -3=18x+6-8+4x . 移项,得15x -18x -4x =6-8+3. 合并同类项,得-7x =1. 系数化为1,得x = - 17 .(4)去分母(方程两边乘20),得10(3x+2) -20= 5(2x-1)- 4(2x +1). 去括号,得30x +20-20=10x -5-8x -4. 移项,得30x -10x +8x =-5-4. 合并同类项,得28x =-9. 系数化为1,得x = -928 .2. 伦敦大英博物馆保存着一部极其珍贵的文物—莱茵德纸草书. 这是古代埃及人用象形文字写在一种用纸莎草压制成的草片上的著作,书中记载了许多数学问题,其中有一道著名的问题: 一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,这个数是多少?请你用方程解决这个问题.解:设这个数是 x ,则可列方程:23x +12 x + 17 x +x =33. 解得x =138697.答:这个数是138697.3.一辆客车和一辆卡车同时从A 地出发沿同一公路同方向匀速行驶,客车的行驶速度是70 km/h ,卡车的行驶速度是 60km/h ,客车比卡车早1h 经过B 地,求A ,B 两地相距的路程.解:设A ,B 两地相距的路程为x km ,根据题意列方程,得x60- x70=1. 解得x =420.答:A ,B 两地相距的路程为420 km.课程小结教学反思。
解一元一次方程(第二课时 移项与合并同类项)(课件)七年级数学上册(苏教版)

探索与思考
如何求方程3x+20=4x-25的解?
3x+20 = 4x-25
3x+20-4x-20=4x-25-4x-20
3x-4x=-25-20
-x=-45
x=45
把它变成x=a(常数)的形式
等式两边都含有
x的项和不含字母的常数项。
利用等式性质1,将等式
变为x=a(常数)的形式
合并同类项
探索与思考
数学(苏科版)
七年级 上册
第四章 一元一次方程
4.2 解一元一次方程
第二课时 移项与合并同类项
课前回顾
等式的两边都加上(或减去)同一个数(或同一个式子),所得的结
果仍是等式。
如果a=b,那么a±c=a±c
等式两边都乘以同一个数,或都除以同一个不为0的数,结果仍相等。
如果a=b,那么ac = bc
如果a=b,那么
因为这批书的总数是一个定值,
表示它的两个式子应相等
(2)每人分3本,还剩余20本,则这批书共
(3x+20)
_______ 本;
(3)每人分4本,还缺25本,则这批书共 (4x-25)
______本;
3x+20=4x-25
(4)根据题意可列方程为________________________
等式左右两边都有未知数,如何求得方程的解呢?
合并同类项: 7x=24
系数化为1 :
24
x= .
7
(4) x+ =
x-3
1
2
移项:x- x=-3-2
1
2
合并同类项: x=-5
系数化为1 :x=-10.
利用移项与合并同类项移项解方程
初中七年级上册数学《解一元一次方程》教案优质范文五篇

初中七年级上册数学《解一元一次方程》教案优质范文五篇星星从不嫉妒太阳的灿烂辉煌,它在自己的岗位上尽力发光。
今天小编为大家带来的是初中七年级上册数学《解一元一次方程》教案优质范文,希望可以帮助到大家。
初中七年级上册数学《解一元一次方程》教案优质范文一教材分析:《解一元一次方程(一)合并同类项与移项》是义务教育教科书七年级数学上册第三章第二节的内容。
在此之前,学生已学会了有理数运算,掌握了单项式、多项式的有关概念及同类项、合并同类项,和等式性质,进一步将所学知识运用到解方程中。
这为过渡到本节的学习起着铺垫作用。
合并同类项与移项是解方程的基础,解方程它的移项根据是等式性质1、系数化为1它的根据是等式性质2,解方程是今后进一步学习不可缺少的知识。
因而,解方程是初中数学中必须要掌握的重点内容。
设计思路:《数学课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
基于以上理念,结合本节课内容及学生情况,教学设计中采用了探究发现法和多媒体辅助教学法,在学生已有的知识储备基础上,利用课件,鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生始终处于积极探索的过程中,通过学生动手练习,动脑思考,完成教学任务。
其基本程序设计为:复习回顾、设问题导入探索规律、形成解法例题讲解、熟练运算巩固练习、内化升华回顾反思、进行小结达标测试、反馈情况作业布置、反馈情况。
教学目标:1、知识与技能:(1)通过分析实际问题中的数量关系,建立方程解决实际问题,进一步认识方程模型的重要性;(2)、掌握移项方法,学会解“a·+b=c·+d”的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。
2、过程与方法:通过解形如“a·+b=c·+d”形式的方程,体验数学的建模思想。
3、情感、态度与价值观:通过合作探究,培养学生积极思考、勇于探索的精神。
教学重点:建立方程解决实际问题,会解“a·+b=c·+d”类型的一元一次方程。
七年级数学《一元一次方程》教案【4篇】

七年级数学《一元一次方程》教案【4篇】七年级数学《一元一次方程》教案篇一2.自主探索、合作交流:先由学生独立思考求解,再小组合作交流,师生共同评价分析。
方法1:解:方程两边都加上2,得5x-2+2=8+2也就是5x=8+2合并同类项,得5x=10所以,x=23.理性归纳、得出结论(让学生通过观察、归纳,独立发现移项法则。
)比较方程5x=8+2与原方程5x-2=8,可以发现,这个变形相当于5x-2=85x=8+2即把原方程中的-2改变符号后,从方程的一边移到另一边,这种变形叫做移项。
教学建议:关于移项法则,不应只强调记忆,更应强调理解。
学生开始时也许仍习惯于利用逆运算而不利用移项法则来求解方程,可借助例题、练习题使相互逐步体会到移项的优越性)。
方法2;解:移项,得5x=8+2合并同类项,得5x=10方程两边都除以5,得x=24.运用反思、拓展创新[例1]解下列方程:(1)2x+6=1(2)3x+3=2x+7教学建议:先鼓励学生自己尝试求解方程,教师要注意发现学生可能出现的错误,然后组织学生进行讨论交流。
[例2]解方程:教学建议:①先放手让学生去做,学生可能采取多种方法,教学时,不要拘泥于教科书中的解法,只要学生的解法合理,就应给予鼓励。
②在移项时,学生常会犯一些错误,如移项忘记变号等。
这时,教士不要急于求成,而要引导学生反思自己的解题过程。
必要时,可让学生利用等式的性质和移项法则两种方法解例1、例2中的方程,并将两者加以对照,进而使学生加深对移项法则的理解,并自觉地改正错误。
5.小结回顾:学生谈本节课的收获与体会。
师强调:移项法则。
七年级数学《一元一次方程》教案篇二教学内容:人教版七年级上册3.1.1一元一次方程教学目标:知识与技能:1、理解一元一次方程,以及一元一次方程解的概念。
2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。
3、掌握检验某个数值是不是方程解的方法。
过程与方法:在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用新知识解决实际问题的能力。
5.2 解一元一次方程 第4课时 去分母 课件(共14张PPT)

解:去分母(方程两边乘6),得 去括号,得 移项,得 合并同类项,得 系数化为1,得
课堂小结
1.解一元一次方程的一般步骤:
去分母、去括号、移项、合并同类项、系数化为1.
2.解一元一次方程的主要依据:
等式的基本性质和运算律 3.去分母时应注意的问题:
①分子如果是多项式,要先加上括号,再去分母; ②分母为1的项不要漏乘各分母的最小公倍数。
巩固应用
3.一辆客车和一辆卡车同时从A地出发沿同一公路同方向匀速行驶, 客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比 卡车早1h经过B地.求A,B两地相距的路程.
如何解?
等式两边乘同一个数,结果仍相等.(等式的基本性质二) 这个方程中各分母的最小公倍数是15,方程两边都乘15,得
5(x-50)=3(x+70). 去括号,得
5x-250=3x+210. 移项,得
5x-3x=210+250. 合并同类项,得
2x=460. 系数化为1,得
x=230. 答,王家庄距翠湖的路程为230km.
探究新知
解方程:
思考: 1.若使方程的系数变成整系数方程,方程两边应该同乘以什么数? 2.去分母时要注意什么问题?
分析:方程两边同乘分母的最小公倍数10
去分母
探究新知
解方程:
去分母
去括号 移项 合并同类项 系数化为1
你能说出每个步骤的依 据吗?
思考: 总结步骤 1.解一元一次方程的一般步骤包括哪些?
人教版(2024) 数学 七年级 上册
5.2 解一元一次方程
第4课时 ··去分母
学习目标
1.会把实际问题抽象成数学模型,会用去分母的方法解一 元一次方程
2024七年级数学上册第4章一元一次方程4.2一元一次方程及其解法第4课时解一元一次方程__去分母习

8
9
10
11
12
13
2.
−
−
四名同学用接力的方式解方程:
=1-
,约定:
每人只能看到前一人给的式子,并进行一步计算,再将结
果传递给下一人,最后求出方程的解.过程如图所示:
甲同学
2(3 x -1)=6-(4 x -1)
丙同学
6 x +4 x =6-1-2
1
2
3
乙同学
6 x -2=6-4 x -1
整式的值,则关于 x 的方程- + = 的解是
0
x=
.
x
-2
0
2
2 ax -3 b
-6
-3
0
1
2
3
4
5
6
7
8
9
10
11
12
13
11. 规定一种新的运算:a*b=2- a - b ,则
解是
x=
1
− +
*
=1的
.
2
3
4
5
6
7
8
9
10
11
12
13
12. 【母题 教材P119例7】解下列方程:
第4章
4.2
第4课时
一元一次方程
一元一次方程及其解法
解一元一次方程——去分母
CONTENTS
目
录
01
1星题
夯实基础
02
2星题
提升能力
03
3星题
发展素养
1. [2024 江阴期中]方程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生解方程.
观察与比较,尝试概括去分母的方法.
通过不同方法解方程,感受去分母解方程的优越性.
二、数学运用
例1.解方程:
(1) = x+1;(2) (2x-5)= (x-3)- .
教师强调:(1)去分母时不能“漏乘”;
(2)不跳步.
例2.解方程:
(1) - =3;
(2) - = .
教师强调:先观察方程的特点,分别扩大为原来的10倍.
六、课后作业
课本P103 练一练1,课本P104 习题6(或教师补充).
独立完成.
了解学生对所学知识的掌握程度.
把方程变形成ax=b(a≠0)的形式
合并同类项法则
系数相加,字母及字母的指数均不变
系数化为1
把方程的两边都除以未知数的系数(不为0)
等式性质2
分子、分母不要颠倒
强调:解方程时,可根据具体情况,有些步骤可能用不上;有些步骤可以前后顺序颠倒;有时还可以省略一些步骤,以使运算简化.
通过对所学知识总结,促进对知识的理解和内化.
例3.若x= 是方程 - = 的解,求代数式 (-4m2+2m-8)-( m-1)的值.
例1 (1)
分析:只要设法把方程中的分母去掉,就可以把它转化为课本102页例6那样不含分母的方程求解.
学生解答(要求学生检验).
并总结解方程的一般步骤:
去分母、去括号、移项、合并同类项、系数化为1.
例1的设计主要是让学生熟悉去分母法则在解方程中的运用.
4.2 解一元一次方程
教学目标
1.用“去分母”法解一元一次方程;
2.掌握解一元一次方程的一般步骤,能灵活运用去分母、去括号、移项、合并同类项、系数化为1等五步骤解一元一次方程;
3.经历求解过程,体会方程解法的选择应根据具体方程的特点而定;
4.体会化归思想——把复杂变简单,将未知变已知的作用,体会数学的应用价值.
四、课堂巩固
1.解方程:
(1) = ;(2) -1= .
2.解方程:
(1) (x-1)- (x+2)= x+1;
(2) - =2.
3.若代数式 (y+1)- (2y-2)与代数式1+ (y-3)的值相等,求y的值.
学生练习.
巩固练习.
五、课堂小结
通过这节课你学到了什么?
你认为去分母的依据是什么?去分母时要注意什么?
注意(1)转化思想的重要
性.(2)注意解题步骤的规范化和检验的必要性.
例2的设计主要是让学生知道:解方程时,先观察方程的特点,再选择解法.
三、思维拓展
定义新运算“*”如下:a*b= a- b.
(1)求5*(-5);
(2)解方程:2*(2*x)=1*x.
学生练习.
拓展题的设计主要是让学生适应新的问题背景,本质还是解方程.
教学重点
用“去分母”法解一元一次方程;
教学难点
根据具体方程的特点灵活选择方程解法.
教学过程(教师)
学生活动
设计思路
一、复习引入
解方程:
(1) - =4;(2)4x-8=12.
(1)比较结果和形式,它们有什么相同之处和不同之处?
(2)它们是通过怎样变形得到的?
(3)从这两个方程的变形中,你发现了什么?
师生共同小结:
步骤
具体做法
依据
注意事项
去分母
在方程的两边都乘各分母的最小公倍数
等式性质2
不要漏乘不含分母的项
去括号
先去小括号,再去中括号,最后去大括号.
乘法分配律,
去括号法则
括号前是“-”时,去掉括号时括号内各项均要变号
移项
将含未知数的项移到方程的一边,常数项移到方程的另一边
移项法则
移项要变号
合同类项