断裂图谱1
FTIR红外光谱原理及图谱解析完整版本课件 (一)

FTIR红外光谱原理及图谱解析完整版本课件(一)FTIR红外光谱原理及图谱解析完整版本课件简介FTIR红外光谱是一种常用的物质分析方法,广泛应用于化学、生物、环境等领域。
本文介绍FTIR红外光谱的原理和图谱解析方法。
一、红外光谱原理FTIR红外光谱的原理是基于物质分子振动的吸收和散射行为。
当分子中的化学键振动时,将会吸收红外光谱区域的能量,产生特定的吸收峰。
FTIR光谱分析仪通过红外光源和可变波长的光学器件将可见光波长转化为红外波长,使其能够与物质的振动共振。
经过物质样品后,经过红外光谱检测器,将该区域的光强度转换为物质光谱图。
二、FTIR光谱图谱解析方法1.波数和吸收峰FTIR光谱图中,横坐标为波数,纵坐标为吸收率或透过率。
不同物质的振动特性存在差异,因此所产生的吸收峰位置也不同。
FTIR光谱图分析可以通过峰的波数来推断物质中的官能团,并可定性或定量分析样品中成分的存在。
2.峰形及其宽度FTIR光谱图中峰形和宽度提供了有关振动模式和分子结构的信息。
当样品存在着两种或更多种不同类型的化学键时,产生的峰可能是峰形尖锐的或不对称的,而单一类型的化学键则产生峰形较为平缓的吸收峰。
3.吸收强度FTIR光谱中吸收强度是定量分析制备样品中成分存在的重要指标,吸收峰强度和峰的面积可用于计算样品中成分的含量。
吸收因素可能包括洗涤和处理的语句、溶剂效应、仪器信噪比等因素。
4.干扰峰物质在FTIR光谱测试过程中,可能会产生应力、化学作用、示谐频和空气湿度等干扰峰。
为了避免这些因素影响光谱数据,应采取适当的标准条件、仪器校准等措施来进行分析,避免由于干扰而得到错误的结果。
结语FTIR红外光谱分析是一种重要的化学分析技术。
理解FTIR红外光谱的原理和图谱解析方法,能够帮助我们准确、敏捷地进行样品分析。
二维核磁共振-1

X
MA
δH A
M F1
X
AM
X
CH2Br-CHBr-COOH
F2
δH
图为2,3-二溴丙酸的AMX体系1H-1H COSY谱。
F1和F2皆为化学位移。两组对角峰为对角线与两组交叉峰 组成正方形,说明这两组质子有偶合。2,3-二溴丙酸的碳上3 个质子为AMX系统。
液体二维核磁共振方法 (two-dimensional NMR)
二维核磁共振的基本原理
二维核磁共振(2D NMR)方法是七十年代提出并发展起来的。
NMR一维谱的信号是一个频率的函数,共振峰分布在一个 频率轴(或磁场)上,可记为S(ω)。
而二维谱信号是二个独立频率(或磁场)变量的函数,记 为S(ω1,ω2),共振信号分布在两个频率轴组成的平面上。也就 是说2D NMR将化学位移、偶合常数等NMR参数在二维平面上 展开,于是在一般一维谱中重迭在一个坐标轴上的信号,被分 散到由二个独立的频率轴构成的平面上,使得图谱解析和寻找 核之间的相互作用更为容易。
• HMBC可高灵敏度地检测13C-1H远程偶合( 2JCH,3JCH ),因 此可得到有关季碳的结构信息及其被杂原子切断地1H偶合系统 之间的结构信息。
ΝΟΕ类核磁共振谱
NOE( Nuclear Overhauser Effect )是一种双照射技术,其原 理是:用照射强度小于被照射谱线半高宽度的射频照射某个 核时,在空间上与之接近的核的信号强度会有所变化。
1H 13C
纵轴为碳谱,横轴为氢谱
异核多键相关谱
HMBC [(1H-detected) heteronuclear multiplebond correlation,(检出1H的)异核多键相关] 把1H核和远程偶合的13C核关联起来,它的作用 相当于长程多键H,C-COSY
波谱解析-1HNMR图谱讲稿1

2. 化学位移的表示方法
位移的表示方法
与裸露的氢核相比,TMS 的化学位移最大,但规定 δTMS=0,其他种类氢核的位 移为负值,负号不加。
δ小,屏蔽强,共振需 要的磁场强度大,在高场出 现,图右侧;
δ大,屏蔽弱,共振需 要的磁场强度小,在低场出 现,图左侧; δ = [( ν样 - νTMS) / νTMS ] 106 (ppm)
4 PDF 文件使用 "pdfFactory Pro" 试用版本创建
三、化学位移
¡ (一)概念:共振峰与标准品峰之间的差
距称为化学位移。
¡
符号“δ” 单位“ppm”
¡
δ=(ν样-ν标)/ν照×10 6
¡
= Δν(Hz) ×10 6
¡
ν 照
选择标准品的条件 P73 a 高度化学惰性 b 磁各向同性的,或接近于磁各向同性 c 只有一个简单、尖锐和易于识别的吸收峰 d 具有与大量的溶剂或有机液体易于混溶的性质 e 易挥发物质,回收样品方便。 1H-NMR中目前最适宜的标准品是四甲基硅(TMS),
自旋取向数(m)=2I + 1
4 核的回旋(进动) P87
置于外加磁场中的原子核,由于受到自 旋磁场和外加磁场的合力作用,使它产生回 旋,又称进动。
回旋频率:核磁矩(μ)这个矢量在一
分种内环绕外加磁场旋转的周数。
2 PDF 文件使用 "pdfFactory Pro" 试用版本创建
,处于高能态, m=-1/2,其能量E-1/2 = +μHB0 ;
二者能量相差很小,
ΔE = +μHB0 -(-μHB0)= 2μHB0
(即H跃迁时所需能量)
P86
LED色温图谱详解_1

---------------------------------------------------------------最新资料推荐------------------------------------------------------LED色温图谱详解LED 色温图谱详解 NOTE: 色温=实测色温-计算色温(根据相对色温线) 结论: 1. 根据实际测试的色标可看出: 不在色温线上面的色坐标点, 可以通过相对色温线的方式求出该点色温.2. 向下延长各个相对色温线, 基本交汇在一点(X:0. 33 Y: 0. 20) .依此点坐标: 2500K 相对色温线与X 轴的夹角约为30 度. 25000K 相对色温线与 2500K 相对色温线之间的夹角约为 90 度. 250000K 相对色温线与 2019K 相对色温线之间的夹角约为 100 度. 具体见上图所示. 3. 根据上图白光色坐标分布图与相对色温线的关系, 现在许多分光参数表是根据色温方式划分各个 BIN 等级(色标分布图是参照早期日亚白光色标分布图制作) . 这样分当然具有一定的好处。
4. 工厂色标分布图所对应的的色温范围为:4000K~16000K.5. 采用白光计算机(T620) 测试出的色温值与根据相对色温线所计算出的色温值有一定的差别, 机台测试出的色温值只能做一个参考值. 根据相对色温线所计算出的色温值与机台测试的色温值之间的差别详见上表色温值. 相关色温 8000-4000K 的白光 LED 的发射光谱和色品质特性摘要:文章报告和分析了 8000K、 6400K、 5000K 和 4000K 四种色温的白光 LED 的发射光谱、色品质和显色性等特性,它们与工作条件密切相关。
1/ 22随着正向电流 IF 的增加,色品坐标 x 和 y 值逐渐减小,色温增大,发生色漂移,而光通量呈亚线性增加,光效逐渐下降。
由于在白光 LED 中发生光转换过程,产生光吸收的辐射传递,致使白光中 InGaN 芯片的蓝色 EL 光谱的形状和发射峰发生变化。
第六章 质谱法-part 1

m/z = mass-to-charge ratio =
mass (amuor daltons) charge ( )
3. 亚稳离子
m1+ m2+ + 中性碎片
m
2 m2
m1
例:对氨基茴香醚在m/z 94.8和59.2二个亚稳峰
80 123
108
59.2 94.8 m/z
1082/123=94.8
802/108=59.2
m*94.8
裂解过程为
23
m/z=108
(M+2)%=0.006nc+0.20n0
加合性 或1个18O (M+1)%=1.17=7.7(实测7.7) (M+2)%=0.006 72+0.201 =0.29+0.20=0.49 (实测为0.46) 说明: C5C2*H14O及C7H14O*在M+2峰中 贡 献分别为: 0.29 和 0.20
轻质
重质同位素
1个Cl和1个Br (3+1)(1+1)=3+3+1+1=3:4:1 ( M:M+2:M+4)
2). 只含C、H、O原子
M 1 M 1% 100 % 1.12 nc 1.1nc M
nc 碳的个数 例:计算庚酮-4(C7H14O)的M+1及M+2峰 M+2峰由2个13C或一个18O产生,具加合性
第六章 质谱法 (Mass Spectrometry)
1.通俗易懂解释知识图谱(KnowledgeGraph)

1.通俗易懂解释知识图谱(KnowledgeGraph)1. 前⾔从⼀开始的Google搜索,到现在的聊天机器⼈、⼤数据风控、证券投资、智能医疗、⾃适应教育、推荐系统,⽆⼀不跟知识图谱相关。
它在技术领域的热度也在逐年上升。
本⽂以通俗易懂的⽅式来讲解知识图谱相关的知识、尤其对从零开始搭建知识图谱过程当中需要经历的步骤以及每个阶段需要考虑的问题都给予了⽐较详细的解释。
知识图谱( Knowledge Graph)的概念由⾕歌2012年正式提出,旨在实现更智能的搜索引擎,并且于2013年以后开始在学术界和业界普及。
⽬前,随着智能信息服务应⽤的不断发展,知识图谱已被⼴泛应⽤于智能搜索、智能问答、个性化推荐、情报分析、反欺诈等领域。
另外,通过知识图谱能够将Web上的信息、数据以及链接关系聚集为知识,使信息资源更易于计算、理解以及评价,并且形成⼀套Web语义知识库。
知识图谱以其强⼤的语义处理能⼒与开放互联能⼒,可为万维⽹上的知识互联奠定扎实的基础,使Web 3.0提出的“知识之⽹”愿景成为了可能。
2. 知识图谱定义知识图谱:是结构化的语义知识库,⽤于迅速描述物理世界中的概念及其相互关系。
知识图谱通过对错综复杂的⽂档的数据进⾏有效的加⼯、处理、整合,转化为简单、清晰的“实体,关系,实体”的三元组,最后聚合⼤量知识,从⽽实现知识的快速响应和推理。
知识图谱有⾃顶向下和⾃底向上两种构建⽅式。
所谓⾃顶向下构建是借助百科类⽹站等结构化数据源,从⾼质量数据中提取本体和模式信息,加⼊到知识库中;所谓⾃底向上构建,则是借助⼀定的技术⼿段,从公开采集的数据中提取出资源模式,选择其中置信度较⾼的新模式,经⼈⼯审核之后,加⼊到知识库中。
看⼀张简单的知识图谱:如图所⽰,你可以看到,如果两个节点之间存在关系,他们就会被⼀条⽆向边连接在⼀起,那么这个节点,我们就称为实体(Entity),它们之间的这条边,我们就称为关系(Relationship)。
金属磨粒图谱识别 1.总述

铁系金属磨粒图谱识别
——磨粒与磨损总述
1.磨粒
(1)磨粒分类:以材料划分的五大类磨粒,即铁系金属、有色金属、氧化物、润滑剂产物和污染物(不是因磨损产生但对磨损有影响)。
(2)磨粒形成机理
2.磨损机理
由于磨损过程的复杂性,磨粒类型和磨损机理之间不全是一一对应关系,磨粒类型和磨损机理之间对应关系如下图所示。
由于磨合期是摩擦副磨合过程,磨合初期产生的像切削磨粒等一般认为是正常的磨粒,将其归为正常磨粒(本文不讨论磨合期磨损磨粒)。
但切削磨粒出现在磨合期以外,则判断为异常磨损。
所以磨粒类型和磨损机理之间不全是一一对应关系。
4.不同磨损期的磨粒浓度曲线
如下图所示,其中A-磨合期,B-正常磨损期,C-异常磨损期。
图1-1:磨损元素浓度曲线图1-2:磨粒浓度曲线图1-1是采用光谱技术所得到的磨损元素浓度ppm(百万分之一)与时间的关系曲线,表征润滑剂中微米级及以下的小磨粒累积值,与图1-3的“磨损量”曲线十分吻合。
图1-2采用铁谱技术得到的磨粒浓度D1与系曲线,表征润滑剂中大于微米级的大磨粒浓度值,与图1-4的磨损率的“浴盆曲线”曲线十分接近。
图1-3:磨损量变化曲线图1-4:磨粒速率变化曲线
6.摩擦副的表面组成。
一种图像分裂分析——德勒兹、于贝尔曼与瓦尔堡

摘要:法国艺术史家于贝尔曼在《遗存的图像》中,将瓦尔堡的图集工作与德勒兹的理论概念相连,并经由“作为症状的图像”,结合德勒兹与加塔利所主张的“精神分裂分析”,指向了一种“图像分裂分析”的可能,以此在当代视野下对于艺术史方法论展开反思;另外,在德勒兹、于贝尔曼将图像的概念敞开后,图像与影像、绘画与电影、图像研究的理论工作与当代艺术及展览实践,也在菲利普-阿兰·米肖的《阿比·瓦尔堡与运动的图像》那里,被共同纳入了跨越学科与媒介的视觉文化广阔图景之中。
关键词:图像;瓦尔堡;德勒兹;于贝尔曼中图分类号:J0-05文献标识码:A文献编号:1009-4016(2021)02-0005-10在由舒尔德·凡·图伊宁(Sjoerd van Tuinen)与斯蒂芬·泽普克(Stephen Zepke)主编的论文集《德勒兹与加塔利之后的艺术史》[1]中,来自哥伦比亚的两位学者古斯塔沃·奇罗拉(Gustavo Chirolla)与莫斯盖拉(Juan Fernando Mejía Mosquera)以《德勒兹与于贝尔曼论艺术史》一文,讨论了吉尔·德勒兹(Gilles Deleuze)、乔治·迪迪-于贝尔曼(Georges Didi-Huberman)这两位法国哲学家与艺术史家之间的理论亲缘。
在文中,作者不无惊异地指出,在绘画与电影等艺术领域著作颇丰、且对于贝尔曼影响甚大的德勒兹,竟从未提过阿比·瓦尔堡(Aby Warburg)的名字:[1]91我们知道,一方面,于贝尔曼正是以《遗存的图像:阿比·瓦尔堡的艺术史和幽灵时间》[2]一书,通过对瓦尔堡图像工作方法的研究成为其代表著作,于贝尔曼的艺术史观及方法论建构,亦多受益于这位德国学者的遗产;而另一方面,在《遗存的图像》一书中,于贝尔曼也时时将对瓦尔堡的研究阐释,放入到德勒兹与加塔利“精神分裂分析”(Schizoanalysis)等一系列理论主张与概念术语之中,以此在一种当代艺术史方法论的探索视野下,在德勒兹与瓦尔堡之间实现了连接。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
断口分析fractography研究金属断裂面的学科,是断裂学科的组成部分。
金属破断后获得的一对相互匹配的断裂表面及其外观形貌,称断口。
断口总是发生在金属组织中最薄弱的地方,记录着有关断裂全过程的许多珍贵资料,所以在研究断裂时,对断口的观察和研究一直受到重视。
通过断口的形态分析去研究一些断裂的基本问题:如断裂起因、断裂性质、断裂方式、断裂机制、断裂韧性、断裂过程的应力状态以及裂纹扩展速率等。
如果要求深入地研究材料的冶金因素和环境因素对断裂过程的影响,通常还要进行断口表面的微区成分分析、主体分析、结晶学分析和断口的应力与应变分析等。
随着断裂学科的发展,断口分析同断裂力学等所研究的问题更加密切相关,互相渗透,互相配合;断口分析的实验技术和分析问题的深度将会取得新的发展。
断口分析现已成为对金属构件进行失效分析的重要手段。
断口的宏观和微观观察断口分析的实验基础是对断口表面的宏观形貌和微观结构特征进行直接观察和分析。
通常把低于40倍的观察称为宏观观察,高于40倍的观察称为微观观察。
对断口进行宏观观察的仪器主要是放大镜(约10倍)和体视显微镜(从5~50倍)等。
在很多情况下,利用宏观观察就可以判定断裂的性质、起始位置和裂纹扩展路径。
但如果要对断裂起点附近进行细致研究,分析断裂原因和断裂机制,还必须进行微观观察。
断口的微观观察经历了光学显微镜(观察断口的实用倍数是在 50~500倍间)、透射电子显微镜(观察断口的实用倍数是在 1000~40000倍间)和扫描电子显微镜(观察断口的实用倍数是在 20~10000倍间)三个阶段。
因为断口是一个凹凸不平的粗糙表面,观察断口所用的显微镜要具有最大限度的焦深,尽可能宽的放大倍数范围和高的分辨率。
扫描电子显微镜最能满足上述的综合要求,故近年来对断口观察大多用扫描电子显微镜进行(见金属和合金的微观分析)。
脆性断口和延性断口根据断裂的性质,断口大致可以分为几乎不伴随塑性变形而断裂的脆性断口,和伴随着明显塑性变形的延性断口。
脆性断口的断裂面通常与拉伸应力垂直,宏观上断口由具有光泽的结晶亮面组成;延性断口的断裂面可能同拉伸应力垂直或倾斜,分别称为正断口和斜断口;从宏观来看,断口上有细小凹凸,呈纤维状。
对于单轴拉伸断口和冲击断口,在理想情况下,其断裂面是由三个明显不同的区域(即纤维区、放射区和剪切唇区)所构成(图1 [断口的三要素])。
这三个区域实际上是裂纹形成区、裂纹扩展区和剪切断裂区(对冲击拉伸则有终了断裂区),通常称它们为断口三要素。
对于同一种材料,三个区域的面积及其所占整个断口的比例随外界条件的改变而变化。
例如:加载速率愈大,温度愈低,则裂纹扩展区(即放射区)所占的比例也愈大。
如果定义裂纹扩展区对另外两个区面积的比值为,则通常把=1时的断裂温度称为材料的韧性-脆性转变温度(或延性-脆性转变温度、塑性-脆性转变温度)。
如果在同一温度和加载速率下比较两种材料的断裂性质,则值愈小的材料,其延性(塑性)愈好。
金属断裂的微观机制为了阐明断裂的全过程(包括裂纹的生核和扩展,以及环境因素对断裂过程的影响等),提出种种微观断裂模型,以探讨其物理实质,称为断裂机制。
在断口的分析中,各种断裂机制的提出主要是以断口的微观形态为基础,并根据断裂性质、断裂方式以及同环境和时间因素的密切相关性而加以分类。
根据大量的研究成果,目前已知主要的金属断裂微观机制可以归纳在表1[金属的断裂微观机制]中。
属于不同断裂机制的断裂,其断口微观结构各具有独特的形貌特征。
图2[基本断裂机制的典型微观形貌 a沿晶脆性断裂×500 b 解理断裂×1000 c 准解理断裂]×2000 d 韧窝断裂×2000]所示是属于不同基本断裂机制的断口所观察到的典型微观形貌,其物理本质和断口特征为:沿晶脆性断裂是指断裂路径沿着不同位向的晶界(晶粒间界)所发生的一种属于低能吸收过程的断裂。
根据断裂能量消耗最小原理,裂纹的扩展路径总是沿着原子键合力最薄弱的表面进行。
晶界强度不一定最低,但如果金属存在着某些冶金因素使晶界弱化(例如杂质原子P、S、Si、Sn等在晶界上偏聚或脱溶,或脆性相在晶界析出等等),则金属将会发生沿晶脆性断裂。
沿晶脆性断裂的断口特征是:在宏观断口表面上有许多亮面,每个亮面都是一个晶粒的界面。
如果进行高倍观察,就会清晰地看到每个晶粒的多面体形貌(图2a[基本断裂机制的典型微观形貌a沿晶脆性断裂×500]),类似于冰糖块的堆集,故有冰糖状断口之称;又由于多面体感特别强,故在三个晶界面相遇之处能清楚地见到三重结点。
沿晶脆性断裂的发生在很大程度上取决于晶界面的状态和性质。
实践表明,提纯金属,净化晶界,防止杂质原子在晶界上偏聚或脱溶,以及避免脆性第二相在晶界析出等,均可以减少金属发生沿晶脆性断裂的倾向。
因此,应用X射线能谱分析法和俄歇电子能谱分析法确定沿晶断裂面的化学成分,对从冶金因素来认识材料的致脆原因,提出改进工艺措施有指导意义。
解理断裂属于一种穿晶脆性断裂,根据金属原子键合力的强度分析,对于一定晶系的金属,均有一组原子键合力最弱的、在正应力下容易开裂的晶面,这种晶面通常称为解理面。
例如:属于立方晶系的体心立方金属,其解理面为{100}晶面;六方晶系为{0001};三角晶系为{111}。
一个晶体如果是沿着解理面发生开裂,则称为解理断裂。
面心立方金属通常不发生解理断裂(见晶体结构)。
解理断裂的特点是:断裂具有明显的结晶学性质,即它的断裂面是结晶学的解理面{},裂纹扩展方向是沿着一定的结晶方向〈〉。
为了表示这种结晶学性质,通常用解理系统{}〈〉来描述。
对于体心立方金属,已观察到的解理系统有 {100} <001>,{100}〈011〉等。
解理断口的特征是宏观断口十分平坦,而微观形貌则是由一系列小裂面(每个晶粒的解理面)所构成。
在每个解理面上可以看到一些十分接近于裂纹扩展方向的阶梯,通常称为解理阶(图2b[基本断裂机制的典型微观形貌 b解理断裂×1000])。
解理阶的形态是多种多样的,同金属的组织状态和应力状态的变化有关。
其中所谓“河流花样”是解理断口的最基本的微观特征。
河流花样解理阶的特点是:支流解理阶的汇合方向代表断裂的扩展方向;汇合角的大小同材料的塑性有关,而解理阶的分布面积和解理阶的高度同材料中位错密度和位错组态有关。
因此,通过对河流花样解理阶进行分析,就可以帮助我们寻找主断裂源的位置,判断金属的脆性程度,和确定晶体中位错密度和位错容量。
准解理断裂也是一种穿晶断裂。
根据蚀坑技术分析表明,多晶体金属的准解理断裂也是沿着原子键合力最薄弱的晶面(即解理面)进行。
例如:对于体心立方金属(如钢等),准解理断裂也基本上是{100}晶面,但由于断裂面上存在较大程度的塑性变形(见范性形变),故断裂面不是一个严格准确的解理面。
准解理断裂首先在回火马氏体等复杂组织的钢中发现。
对于大多数合金钢(如 Ni-Cr钢和Ni-Cr-Mo钢等),如果发生断裂的温度刚好在延性-脆性转变温度的范围内,也常出现准解理断裂。
从断口的微观形貌特征来看(图2c[基本断裂机制的典型微观形貌c准解理断裂×2000] ),在准解理断裂中每个小断裂面的微观形态颇类似于晶体的解理断裂,也存在一些类似的河流花样,但在各小断裂面间的连结方式上又具有某些不同于解理断裂的特征,如存在一些所谓撕裂岭等。
撕裂岭是准解理断裂的一种最基本的断口形貌特征。
准解理断裂的微观形貌的特征,在某种程度上反映了解理裂纹与已发生塑性变形的晶粒间相互作用的关系。
因此,对准解理断裂面上的塑性应变进行定量测量,有可能把它同断裂有关的一些力学参数如:屈服应力、解理应力和应变硬化参数等联系起来。
韧窝断裂金属多晶材料的断裂,通过空洞核的形成长大和相互连接的过程进行,这种断裂称为韧窝断裂(dimple fracture)韧窝断裂是属于一种高能吸收过程的延性断裂。
其断口特征为:宏观形貌呈纤维状,微观形态呈蜂窝状(图2d[基本断裂机制的典型微观形貌 d韧窝断裂×2000]),断裂面是由一些细小的窝坑构成,窝坑实际上是长大了的空洞核,通常称为韧窝,它是韧窝断裂的最基本形貌特征和识别韧窝断裂机制的最基本依据。
系统的观察表明,韧窝的尺寸和深度同材料的延性有关,而韧窝的形状则同破坏时的应力状态有关。
由于应力状态不同,相应地在相互匹配的断口偶合面上,其韧窝形状和相互匹配关系是不同的。
如图3 [在断口偶合面上韧窝的形状和应力状态关系]所示:a为等轴型韧窝,韧窝形成的应力状态为均匀应变型;b 为同向伸长韧窝,伸长方向平行于断裂方向,其应力状态为拉伸撕裂型;c 为异向伸长型韧窝,伸长方向平行于断裂方向,其应力状态为刃滑动型;d为同向伸长韧窝,但伸长方向垂直于断裂方向,其应力状态为螺滑动型。
除了上述四种基本的韧窝形状外,还存在混合应力状态下所形成的韧窝,理论分析表明,最低限度有14种,其中8种已从实验观察到。
由于韧窝的形状与应力状态密切相关,故对断口耦合面上相啮合部位的韧窝形状、尺寸和深度进行分析,就可以确定断裂时所在部位的应力状态和裂纹扩展的方向,并对材料的延性进行评价。
还有其他断裂的机制如:疲劳、蠕变和应力腐蚀断裂等。
微观断裂机制的实际应用作为材料断裂韧性指标之一的裂纹扩展阻力,它不但是一个材料常数,而且也同断裂的微观机制有关。
例如:当断裂机制是沿晶脆性断裂或解理断裂时,值较小;反之,当断裂机制是韧窝断裂时,则值较大,如表2[断裂微观机制和裂纹扩展阻力的关系] 的关系" class=image>所示。
断裂微观机制的分析,有可能把断口的形貌分析同断裂力学指标联系起来,其中最重要的成果之一是系统地建立了断裂机制图,这对解决一些工程断裂问题十分有用。
所谓断裂机制图,是指选择适当的断裂参数、力学参数或物理参数作为坐标系,用它来确立各种可能出现的微观断裂机制的区域,以便发现各类金属断裂的普遍规律。
在工程应用上,断裂机制图对工程设计,材料的选择,使用条件的限制,以及失效分析等都能提供十分重要的指导性意见和数据资料,目前正大力开展这方面的工作。
参考书目。