2018年秋九年级数学下册 第1章 解直角三角形 1.3 解直角三角形(3)练习 (新版)浙教版
九年级数学下册 第1章 直角三角形的边角关系教案 北师大版

九年级数学下册第1章直角三角形的边角关系教案北师大版§1.1.1 从梯子的倾斜程度谈起(第1课时)教学目标1、经历探索直角三角形中边角关系的过程2、理解锐角三角函数(正切、正弦、余弦)的意义,并能够举例说明3、能够运用三角函数表示直角三角形中两边的比4、能够根据直角三角形中的边角关系,进行简单的计算教学重点和难点重点:理解正切函数的定义难点:理解正切函数的定义教学过程设计一、复习已学过的直角三角形性质和定理(勾股定理和其逆定理,300定理,斜边中线定理等等)二、新课讲授1、你能比较两个梯子哪个更陡吗?你有哪些办法?2、生活问题数学化:⑴如图:梯子AB和EF哪个更陡?你是怎样判断的?⑵以下三组中,梯子AB和EF哪个更陡?你是怎样判断的?ABC 8mα5m 5mβ13m3、直角三角形的边与角的关系(如图,回答下列问题) ⑴Rt △AB 1C 1和Rt△AB 2C 2有什么关系? ⑵222111B AC C B AC C 和有什么关系? ⑶如果改变B 2在梯子上的位置(如B 3C 3)呢? ⑷由此你得出什么结论?4、正切函数(1) 明确各边的名称(2) 的邻边的对边A A A ∠∠=tan(3) 明确要求:1)必须是直角三角形;2)是∠A 的对边与∠A 的邻边的比值。
(4) tanA 的值越大,梯子越陡 5、巩固练习如图,在△ACB 中,∠C = 90°, 1) tanA = ;tanB = ;2) 若AC = 4,BC = 3,则tanA = ;tanB = ;3) 若AC = 8,AB = 10,则tanA = ;tanB = ; 三、讲解例题例1 图中表示甲、乙两个自动扶梯,哪一个自动扶梯比较陡?分析:通过计算正切值判断梯子的倾斜程度。
这是上述结论的直接应用。
ABC∠A 的对边∠A 的邻边斜边ABC例2 如图,在△ACB 中,∠C = 90°,AC = 6,43tanB ,求BC 、AB 的长。
九年级数学下册第一章直角三角形的边角关系本章小结与复习教案(新版)北师大版

第一章直角三角形的边角关系一、本章知识要点:1、锐角三角函数的概念;2、解直角三角形。
二、本章教材分析:(一).使学生正确理解和掌握三角函数的定义,才能正确理解和掌握直角三角形中边与角的相互关系,进而才能利用直角三角形的边与角的相互关系去解直角三角形,因此三角形函数定义既是本章的重点又是理解本章知识的关键,而且也是本章知识的难点。
如何解决这一关键问题,教材采取了以下的教学步骤:1.从实际中提出问题,如修建扬水站的实例,这一实例可归结为已知RtΔ的一个锐角和斜边求已知角的对边的问题。
显然用勾股定理和直角三角形两个锐角互余中的边与边或角与角的关系无法解出了,因此需要进一步来研究直角三角形中边与角的相互关系。
2.教材又采取了从特殊到一般的研究方法利用学生的旧知识,以含30°、45°的直角三角形为例:揭示了直角三角形中一个锐角确定为30°时,那么这角的对边与斜边之比就确定比值为1:2,接着以等腰直角三角形为例,说明当一个锐角确定为45°时,其对边与斜边之比就确定为,同时也说明了锐角的度数变化了,由30°变为45°后,其对边与斜边的比值也随之变化了,由到。
这样就突出了直角三角形中边与角之间的相互关系。
3.从特殊角的例子得到的结论是否也适用于一般角度的情况呢?教材中应用了相似三角形的性质证明了:当直角三角形的一个锐角取任意一个固定值时,那么这个角的对边与斜边之比的值仍是一个固定的值,从而得出了正弦函数和余弦函数的定义,同理也可得出正切、余切函数的定义。
4.在最开始给出三角函数符号时,应该把正确的读法和写法加强练习,使学生熟练掌握。
同时要强调三角函数的实质是比值。
防止学生产生sinX=60°,sinX=等错误,要讲清sinA不是sin*A而是一个整体。
如果学生产生类似的错误,应引导学生重新复习三角函数定义。
5.在总结规律的基础上,要求学生对特殊角的函数值要记准、记牢,再通过有关的练习加以巩固。
人教版九年级下册28.2.1解直角三角形(教案)

(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与解直角三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量教室中某一物体的高度,演示勾股定理的基本原理。
4.培养学生的空间观念和几何直观,让学生在实际操作中感受直角三角形的边角关系,提高几何图形的认知和运用能力。
三、教学难点与重点
1.教学重点
-理解并掌握锐角三角函数的定义和性质,包括正弦、余弦、正切函数在直角三角形中的应用;
-学会运用勾股定理和三角函数解决直角三角形中边长和角度的求解问题;
-能够将解直角三角形的知识应用于实际问题,建立数学模型并解决问题。
c.难点应用:勾股定理在非标准直角三角形中的应用。教师应通过多种类型的题目,如斜边和一直角边长度未知的情况,指导学生如何灵活运用勾股定理求解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《解直角三角形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要测量物体高度或距离的情况?”(如测量树的高度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索解直角三角形的奥秘。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了解直角三角形的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对勾股定理和三角函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
浙教版数学九年级下册1.3.3解直角三角形 课件(共15张PPT)

那什么是仰角?什么是俯角呢?
导入新知
如图, 在进行测量时,从 下向上看,视线与水平线 的夹角叫做仰角;
仰角 俯角
从上往下看,视线与水平线的夹角叫做俯角. 【分析】(1)C观测D的仰角应为CD与水平面的较小的夹 角,即∠DCE;C观测B的俯角应为CB与水平线的较小的夹 角,即为∠BCE,不难得出∠BCD=∠DCE+∠BCE;(2) 易得CE=AB,则由直角三角形的锐角函数值即可分别求得 BE和DE,求和即可.
拓展延伸 1.如图,物华大厦离小伟家60m,小伟 从自家的窗中眺望大厦,并测得大厦顶 部仰角是450,而大厦底部的俯角是370, 求该大厦的的高度 (结果精确到0.1m).
分析:结合仰角与俯角理解图形,先过点A作AE⊥CD于 E,可得四边形ABCE是矩形,可得BC=AE,然后分别解 两个直角三角形,可得大厦的高度.
新知讲解
问题2:如图,学校的实验楼对面是一幢教学楼,小敏在实验 楼的窗口C测得教学楼顶总D的仰角为18°,教学楼底部B的俯 角为20°,量得实验楼与教学楼之间的距离AB=30m. (结果精确到0.1m.参考数据: tan20°≈0.36,tan18°≈0.32) (2)求教学楼的高BD .
解:(2)由已知得CE=AB=30(m), 在Rt△CBE中,BE=CE×tan20°≈30×0.36=10.80(m), 在Rt△CDE中,DE=CE×tan18°≈30×0.32=9.60(m), ∴教学楼的高BD=BE+DE=10.80+9.60≈20.4(m). 答:教学楼的高为20.4m.
1.3 解直角三角形(3)
—— 仰角与俯角
浙教版
九年级下
导入新知
复习回顾: 堤坝横断面的问题实质是解有关梯形的计算问题,利 用坡度可以把有关线段分别与梯形的高建立联系,从 而求解. 某人沿着坡角为45 °的斜坡走了310 2 m,则此人的垂 直高度增加了____________m . 310
北师大版九年级下册第一章直角三角形的边角关系说课稿.4直角三角形公开课

3.使用多媒体工具展示生动的几何图形和动画,帮助学生直观理解直角三角形的边角关系。
4.给予学生成功的体验,通过设计难度适中的练习题,让学生在解决问题中获得成就感,增强学习信心。
5.鼓励学生提出问题和自己的想法,培养他们的探究精神和批判性思维。
4.最后介绍直角三角形的判定与证明方法,通过一系列例题,让学生掌握如何运用这些方法解决实际问题。
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习或实践活动:
1.设计一些填空题和选择题,让学生独立完成,以检验他们对基本概念和定理的理解。
2.安排一些证明题,要求学生在小组内合作完成,培养他们的合作能力和逻辑推理能力。
(二)教学反思
在教学过程中,可能遇到的问题包括学生对直角三角形性质的误解、对勾股定理证明过程的困惑以及实际问题解决能力的不足。为应对这些问题,我将采取以下措施:及时澄清误解,通过实例和图示解释概念;分步骤讲解勾股定理的证明,强调每一步的逻辑;设计更多实际问题练习,培养学生的应用能力。课后,我将通过学生的课堂表现、作业完成情况和测验成绩来评估教学效果。具体的反思和改进措施包括:根据学生反馈调整教学方法和进度,针对学生的弱点提供额外的辅导,以及不断更新教学资源,以提高教学质量和学生的学习效果。
2.提供一个自我评价表,让学生根据自己在课堂上的表现和作业完成情况进行自我评价。
3.对学生的表现给予积极的反馈,针对他们的不足提出建设性的建议,帮助他们改进学习方法。
4.鼓励学生相互评价,通过同伴互助,共同提高。
(五)作业布置
课后作业的布置如下:
1.设计一些与直角三角形相关的练习题,包括基本概念的理解题、定理的证明题以及实际问题的应用题。
九年级数学(下)第一章解直角三角形测验卷(含答案)

第一章 解直角三角形(一)班级 姓名 学号一、选择题(每小题3分,共30分。
)1.(2013·天津中考)tan 60︒ 的值等于( )A.1B.2C.3D.2 2.(2013·重庆中考)计算6tan 452cos 60︒-︒ 的结果是( ) A.43 B.4C.53D.53.(2013·浙江温州中考)如图,在ABC △中,90,5,3,∠C AB BC =︒== 则sin A 的值是( ) A.34B.34C.35D.454.在ABC △中,90C =︒∠,如果2,1AB BC ==,那么sin A 的值是( ) A.21 B.55C.33 D.23 5.在ABC △中,90C =︒∠,5,3,AB BC ==则sin B = ( )A. 34B. 53 C. 43 D. 456.已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为( ) A.43 B.45C.54D.347.如图,一个小球由地面沿着坡度12∶i =的坡面向上前进了10 m ,此时小球距离地面的高度为( )A.5 mB.25 mC.45 mD.310m 8.已知直角三角形两直角边长之和为7,面积为6,则斜边长为( )阶段性学业评价试卷九年级(下)数学 第7题图第3题图ACBA. 5B.37C. 7D. 389.如图,已知:45°<∠A <90°,则下列各式成立的是( ) A.sin cos A A = B.sin cos A>A C.sin tan A>AD.sin cos A<A10.如图,在菱形ABCD 中,⊥DE AB ,3cos 5A =,2BE =,则tan ∠DBE 的值是( ) A .12B .2C .52 D .55二、填空题(每题3分,共24分)11.(2013·广东中考)在Rt △ABC 中, 90,3,4=︒==ABC AB BC ∠,则sin A =______. 12.(2013·陕西中考)比较大小:8cos 31︒35.(填“>”“=”或“<”)13.如图,小兰想测量南塔的高度,她在A 处仰望塔顶,测得仰角为30°,再往塔的方向前进50 m 至B 处,测得仰角为60°,那么塔高约为 _________ m.(小兰身高忽略不计,31732.≈)14.已知等腰三角形的腰长为2,腰上的高为1,则它的底角等于________.15.大坝的横断面是梯形,坝内斜坡的坡度,坝外斜坡的坡度,则两个坡角的和为 .16.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_ .17.如图,在四边形ABCD 中,609069=︒==︒==A B D BC ,CD ∠,∠∠,,则AB =__________. 18.如图,在△ABC 中,已知324530,∠,∠AB B C ==︒=︒,则AC =________. 三、解答题 (本题共有7小题,共46分)ABC第9题图ACB第18题19.(5分)计算:(1)()42460sin 45cos 22+- ; (2)2330tan 3)2(0-+--.20.(5分)在Rt △ABC 中,∠C =900,若12sin 13A =,求cosA, sinB, cosB.21.(6分)等腰梯形的一个底角的余弦值是223,腰长是6,上底是22求下底及面积22.(6分)某工程队修建一条高速公路,在某座山处要打通一条东西走向的隧道AB(如图),为了预算造价,应测出隧道AB 的长,为此,在A 的正南方向1500米的C 处,测得∠ACB=620,求隧道AB 的长.(精确到1米,供选用的数:sin620=0.8829,cos620=0.4695,tan620=1.881,cot620=0.5317)23.(6分)已知tanA=2,求AA AA cos 5sin 4cos sin 2+-的值。
浙教版数学九年级下册《1.3解直角三角形》说课稿2

浙教版数学九年级下册《1.3 解直角三角形》说课稿2一. 教材分析《1.3 解直角三角形》是浙教版数学九年级下册的第一章第三节内容。
这一节主要让学生掌握解直角三角形的方法,包括正弦、余弦、正切函数的定义及应用,以及直角三角形的边角关系。
这部分内容是初等数学的重要基础,也是中学数学的难点之一。
教材通过具体的例题和练习题,引导学生理解和掌握解直角三角形的方法,培养学生的运算能力和逻辑思维能力。
二. 学情分析九年级的学生已经掌握了初中阶段的基本数学知识,包括代数、几何等。
他们对直角三角形有一定的了解,知道直角三角形的三个内角和为180度,但可能对正弦、余弦、正切函数的定义及应用还不够清楚。
因此,在教学过程中,我需要以学生已有的知识为基础,通过引导学生自主探究和合作交流,帮助他们理解和掌握解直角三角形的方法。
三. 说教学目标1.知识与技能目标:使学生理解和掌握解直角三角形的方法,包括正弦、余弦、正切函数的定义及应用,以及直角三角形的边角关系。
2.过程与方法目标:通过观察、分析、归纳等方法,培养学生解决问题的能力和合作交流能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探究、积极思考的良好学习习惯。
四. 说教学重难点1.教学重点:解直角三角形的方法,正弦、余弦、正切函数的定义及应用。
2.教学难点:正弦、余弦、正切函数在解直角三角形中的应用,尤其是对复杂三角形的理解和计算。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、合作交流法等,引导学生主动探究和理解解直角三角形的方法。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具,结合数学软件和网络资源,为学生提供丰富的学习资源和方法。
六. 说教学过程1.导入新课:通过一个实际问题,引出解直角三角形的重要性,激发学生的学习兴趣。
2.自主探究:让学生独立思考,尝试解决实际问题,引导学生发现解直角三角形的规律。
3.合作交流:学生进行小组讨论,分享各自的解题方法和思路,培养学生的合作交流能力。
1.3 解直角三角形 课件1(数学浙教版九年级下册)

牛刀小试,我能行
2、 如图,小明想测量塔CD的高度.他在A处仰望 塔顶,测得仰角为300,再往塔的方向前进50m至B处, 测得仰角为600,那么该塔有多高?(小明的身高忽 略不计,结果精确到1m).
解:如图,根据题意可知,∠A=300,∠DBC=600,AB=50m. 设 CD=xm,则∠ADC=600,∠BDC=300, 在Rt△ADC中 tan∠ADC = AC
初三(2)全体同学
船有触礁的危险吗
A N B
·
R M P
Q C
九年级数学(下)第一章
直角三角形的边角关系
第四节 船有触礁的危险吗 第1课时
新世界中英文学校
授课人朱明福
想一想
船有触礁的危险吗
例:海中有一个小岛A,该岛四周10海里内有暗礁. 今有货轮由西向东航行,开始在A岛南偏西600的B 处,往东行驶20海里后到达该岛的南偏西300的C 处.之后,货轮继续向东航行 你认为货轮继续向东航行途中会有触礁的危险吗?
. ``z````xxk
北
A
·
东
B
20
C
D
想一想
实践出真知
• 1、如图海中有一小岛P,在距离P处 8 2海里范围内有暗礁,一 轮船自西向东航行,它在A处测得小岛P位于北偏东60°方向, 且AP间的距离为16海里,若轮船继续向东航行,请计算轮船有 无触礁危险?如有危险,轮船自A处开始,至少沿东偏南多少度 方向航行才能安全通过这一海域? 解
从M到N的走向为南偏东30°,在M的南偏东60°方 向上有一点A,以A为圆心,500m为半径的圆形区 域为居民区。取MN上另一点B,测得BA的方向 为南偏东75°。已知MB=400m,通过计算回答, 如果不改变方向,输水路线是否穿过居民区?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3解直角三角形(3)
(见A本57页)
A 练就好基础基础达标
1.王英同学从A地沿北偏西60°方向走100 m到B地,再从B地向正南方向走200 m 到C地,此时王英同学离A地( D)
A.150 m B.503m C.100 m D.1003m
2.如图所示,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD =60°,又测得AC=100 m,则B点到河岸AD的距离为( B)
A.100 m B.50 3 m C.2003
3
m D.50 m
2题图
第3题图
3.苏州中考如图所示,长4 m的楼梯AB的倾斜角∠ABD为60°.为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为( B) A.2 3 m B.2 6 m C.(23-2) m D.(26-2) m
4.西宁中考如图所示,为保护门源百里油菜花海,由“芬芳浴”游客中心A处修建通往百米观景长廊BC的两条栈道AB,AC. 若∠B=56°,∠C=45°,则游客中心A到观景长廊BC的距离AD的长约为__60__ m.(sin 56°≈0.8,tan 56°≈1.5)
第4题图
5题图
5.如图所示,四边形ABCD的对角线AC,BD相交于点O,且BD平分AC.若BD=8,AC
=6,∠BOC=120°,则四边形ABCD的面积为结果保留根号).
第6题图
6.益阳中考如图所示,小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.旗杆PA 的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平
线),测角仪B′D的高度为1 m,则旗杆PA的高度为__1
1-sin α
__ m.
第7题图
7.绍兴中考如图所示,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走60 m到达C 点,测得点B在点C的北偏东60°方向.
(1)求∠CBA的度数;
(2)求出这段河的宽.(结果精确到1 m,备用数据:2≈1.41,3≈1.73)
第7题答图
解:(1)由题意,得∠BAD=45°,
∠BCA=30°,
∴∠CBA=∠BAD-∠BCA=15°.
(2)如图,作BD⊥CA交CA的延长线于D,设BD=x,
∵∠BCA=30°,∴CD=
BD
tan 30°
=3x,
∵∠BAD=45°,∴AD=BD=x,则3x-x=60,解得x=60
3-1
≈82,
即这段河的宽约为82 m.
第8题图
8.2017·乌鲁木齐中考一艘渔船位于港口A北偏东60°方向,距离港口20海里的B 处,它沿北偏西37°方向航行至C处突然出现故障,在C处等待救援,B,C之间的距离为10海里,救援船从港口A出发20分钟到达C处,求救援艇的航行速度.(sin 37°≈0.6,cos 37°≈0.8,3≈1.732,结果取整数)
第8题答图
解:作辅助线如图所示:
BD ⊥AD ,BE ⊥CE ,CF ⊥AF ,
由题意知,∠FAB =60°,∠CBE =37°,
∴∠BAD =30°,
∵AB =20海里,
∴BD =10海里,
在Rt △ABD 中,AD =AB 2-BD 2
=103≈17.32(海里),
在Rt △BCE 中,sin37°=CE BC
, ∴CE =BC·sin37°≈0.6×10=6(海里),
∵cos37°=EB BC
,∴EB =BC·cos37°≈0.8×10=8(海里), EF =AD =17.32海里,∴FC =EF -CE =11.32(海里),
AF =ED =EB +BD =18(海里),
在Rt △AFC 中,
AC =AF 2+FC 2=182+11.322≈21.26(海里),
21.26÷2060
=64(海里/小时). 答:救援艇的航行速度大约是64海里/小时.
B 更上一层楼 能力提升
9.扬州中考若锐角△ABC 内接于⊙O,点D 在⊙O 外(与点C 在AB 同侧),有下列三个结论:①sin ∠C>sin ∠D ;②cos ∠C>cos ∠D ;③tan ∠C>tan ∠D.正确的结论为( D )
A .①②
B .②③
C .①②③
D .①③
第10题图
10.如图所示,一渔船上的渔民在A 处看见灯塔M 在北偏东60°方向,这艘渔船以28 km/h 的速度向正东方向航行,半小时后到达B 处,在B 处看见灯塔M 在北偏东15°方向,此时,灯塔M 与渔船的距离是( A )
A .7 2 km
B .14 2 km
C .7 km
D .14 km
第11题图
11.2017·苏州中考如图所示,在一笔直的沿湖道路l 上有A ,B 两个游船码头,观光岛屿C 在码头Α北偏东60°的方向,在码头B 北偏西45°的方向,AC =4 km.游客小张准备从观光岛屿C 乘船沿CA 回到码头A 或沿CB 回到码头B.设开往码头A ,B 的游船速度分别
为v 1,v 2,若回到A ,B 所用时间相等,则v 1v 2=2
结果保留根号). C 开拓新思路 拓展创新
12.如图所示,在平面直角坐标系中,△ABC 是⊙O 的内接三角形,AB =AC ,点P 是AB ︵的
中点,连结PA ,PB ,PC.
(1)如图(a),若∠BPC=60°,求证:AC =3AP ;
(2)如图(b),若sin ∠BPC =2425
,求tan ∠PAB 的值.
图(a) 图(b)
第12题图
解:(1)证明:∵∠BAC=∠BPC=60°.
又∵AB=AC ,∴△ABC 为等边三角形,
∴∠ACB =60°,∵点P 是AB ︵的中点,∴∠ACP =30°,
又∵∠APC=∠ABC =60°,∴AC =3AP.
第12题答图
(2)如图,连结AO 并延长交PC 于点E ,交BC 于点F ,过点E 作EG⊥AC 于点G ,连结OC. ∵AB =AC ,∴AF ⊥BC ,BF =CF.
又∵点P 是AB ︵的中点,∴∠ACP =∠PCB,
∴EG =EF.
∵∠BPC =∠BAC,又∵∠BAC=∠FOC,
∴∠BPC =∠FOC,
∴sin ∠FOC =sin ∠BPC =2425
. 设FC =24a ,则OC =OA =25a ,
∴OF =7a ,AF =32a.
在Rt △AFC 中,AC 2=AF 2+FC 2,∴AC =40a.
在Rt △AGE 和Rt △AFC 中,sin ∠FAC =EG AE =FC AC
, ∴EG 32a -EG =24a 40a
,∴EG =12a. ∴tan ∠PAB =tan ∠PCB =EF CF =12a 24a =12
. 13.如图所示的晾衣架,支架主视图的基本图形是菱形,其示意图如图(b)所示.晾衣架伸缩时,点G 在射线DP 上滑动,∠CED 的大小也随之发生变化.已知每个菱形边长均等于20 cm ,且AH =DE =EG =20 cm.
(1)当∠CED=60°时,求C ,D 两点间的距离;
(2)当∠CED 由60°变为120°时,点A 向左移动了多少 cm ?(结果精确到0.1 cm)
(3)设DG =x ,当∠CED 的变化范围为60°~ 120°(包括端点值)时,求x 的取值范围.(结果精确到0.1 cm ,参考数据:3≈1.732)
图(a) 图(b)
第13题图
解:(1)如图(a),连结CD ,
13题答图(a)
13题答图(b)
∵每个菱形的边长都是20 cm, 且DE =20 cm ,
∴CE =DE ,
∵∠CED =60°,∴△CED 是等边三角形,
∴CD =20 cm, ∴C ,D 两点之间的距离是20 cm.
(2)如图(b),
作EM⊥CD 于点M, 在△CED 中,CE =DE, ∠CED =120°, ∴∠ECD =30°,∴EM =12
CE =10 cm , ∴CM =10 3 cm ,∴CD =20 3 cm ,
∴点C 向左移动了(203-20) cm ,
∴点A 向左移动了(203-20)×3≈43.9(cm).
(3)如图(a),当∠CED=60°时, ∵ED =EG, ∠CGD =30°,
在Rt △CGD 中,cos 30°=DG CG ,∵CG =40 cm , ∴DG =203≈34.6(cm).
如答图(b),当∠CED=120°时, ∠CGD =60°,
∴DG =12
CG =20 cm ,∴20 cm ≤x ≤34.6 cm.。