2019-2020年高三数学第一轮复习讲义(76)抽样方法、总体分布的估计

合集下载

高三数学人教版总体分布的估计知识点归纳总结知识点总结

高三数学人教版总体分布的估计知识点归纳总结知识点总结

高三数学人教版总体分布的估计知识点归纳总结知识点总结总体分布的估计是统计学中常用的手法,为此整理了总体分布的估计知识点,请大家查看。

样本估计总体,是研究统计问题的一个基本思想方法,即用样本平均数估计总体平均数(即总体期望值――描述一个总体的平均水平);用样本方差估计总体方差(方差和标准差是描述一个样本和总体的波动大小的特征数,方差或标准差越小,表示这个样本或总体的波动越小,即越稳定)。

一般地,样本容量越大,这种估计就越精确。

总体估计要掌握:(1)表(频率分布表);(2)图(频率分布直方图)。

提醒:直方图的纵轴(小矩形的高)一般是频率除以组距的商(而不是频率),横轴一般是数据的大小,小矩形的面积表示频率
其中,样本指是指从全部的调查对象提取出来进行调查的个体
个体指总体中的每一个考察的对象,
总体指考察的对象的全体,
样本容量指样本中个体的数目。

例如,为了调查全国人口的寿命,抽查了十一个省市的2500名城镇居民,这个问题中2500名城镇居民的寿命的全体是样本。

2500是样本容量。

某个人的寿命是个体。

全国人口寿命是总体。

总体分布的估计知识点的全部内容就是这些,更多精彩内容请持续关注。

抽样方法与总体分布的估计

抽样方法与总体分布的估计

频数为0.32×150=48.

PPT文档演模板
答案 B
抽样方法与总体分布的估计
5.(长沙模拟)如图是某学校一名篮球运动 员在五场比赛中所得分数的茎叶图,则
•该运动员在这五场比赛中得分的方差为________.
答案 6.8
PPT文档演模板
抽样方法与总体分布的估计
考向一 抽样方法
•【例1】从某厂生产的802辆轿车中抽取80辆测试某项 性 能.请合理选择抽样方法进行抽样,并写出抽样过 程. [审题视点] 因为802不能整除80,为了保证“等距” 分段,应先剔除2个个体.
PPT文档演模板
抽样方法与总体分布的估计
•(3)平均数
样本数据的算术平均数,即 =__________________. (4)方差与标准差
方差:s2=__________________________________.
标准差:s= _____________________________________.
抽样方法与总体分布的估计

考点自测
1.(山东)采用系统抽样方法从960人中抽取32人做 问卷调查.为此将他们随机编号为1,2,…, 960,分组后在第一组采用简单随机抽样的方法 抽到的号码为9.抽到的32人中,编号落入区间 [1,450]的人做问卷A,编号落入区间[451,750]的 人做问卷B,其余的人做问卷C.则抽到的人中, 做问卷B的人数为 ( ). •A.7 B.9 C.10 D.15
PPT文档演模板
抽样方法与总体分布的估计
•第三步:从第1段即1,2,…,10这10个编号中,用简单随 机抽样的方法抽取一个编号(如5)作为起始编号; •第四步:从5开始,再将编号为15,25,…,795的个体抽 出,得到一个容量为80的样本.

高考数学一轮总复习课件:随机抽样、用样本估计总体

高考数学一轮总复习课件:随机抽样、用样本估计总体

6.(2020·天津)从一批零件中抽取 80 个,测量其直径(单位: mm),将所得数据分为 9 组:[5.31,5.33),[5.33,5.35),…,[5.45, 5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽 取的零件中,直径落在区间[5.43,5.47)内的个数为( B )
n 的样本进行调查,其中从丙车间的产品中抽取了 3 件,则 n=
(D ) A.9
B.10
C.12
D.13
【解析】 由分层抽样可得630=2n60,解得 n=13.
【讲评】 进行分层抽样的相关计算时,常利用以下关系式 巧解:
①总样体本的容个量数nN=该层该抽层取的的个个体体数数; ②总体中某两层的个体数之比等于样本中这两层抽取的个 体数之比.
5.对某商店一个月内每天的顾客人数进行了统计,得到样本 的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( A )
A.46,45,56 B.46,45,53 C.47,45,56 D.45,47,53
解析 从茎叶图中可以看出样本数据的中位数为中间两个数的 平均数,即45+2 47=46,众数是 45,极差为 68-12=56,故选择 A.
状元笔记
(1)一个抽样试验能否用抽签法,关键看两点:一是制签是否 方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都 较小时可用抽签法.
(2)在使用随机数表时,如遇到取两位数或三位数,可从选择 的随机数表中的某行某列的数字计起,每两个或每三个作为一个 单位,自左向右选取,有超过总体号码或出现重复号码的数字舍 去.
个最高分、1 个最低分,得到 7 个有效评分.7 个有效评分与 9 个
原始评分相比,不变的数字特征是( A )

抽样方法、总体分布的估计

抽样方法、总体分布的估计

简单随机抽样、系统抽 题型一 样 ①抽签法、随机数表法 思维提 ; 示 ②系统抽样的步骤.
题型二 思维提示
分层抽样 由差异明显的几部 分组成的总体适于 用分层抽样
题型三 思维提示
频率分布条形图的有关 问题 条形图与频率分布直方 图的区别
例3
为了估计某人的射击技术状况,在他的 训练记录中抽取了50次进行检验,他命中的 环数如下:
(3)注意频率分布条形图和频率分布直方图
是两个不同的概念.虽然它们的横轴表示 的内容是相同的,但是频率分布条形图的 纵轴(矩形的高)表示频率;频率分布直方图 的纵轴(矩形的高)表示频率与组距的比值, 其相应组距上的频率等于该组距上的矩形 的面积. (4)无论样本容量多大,用样本频率分布估 计总体分布时,所作的只是一种估计,可 能出现误差甚至错误,也允许存在误 差.当然希望这种误差越小越好,因此常 在条件许可下,适当增加样本容量,合理
(1)请作出频率分布表,并画出频率分布直
方图; (2)估计纤度落在[1.38,1.50)中的概率及纤 度小于1.40的概率是多少? (3)统计方法中,同一组数据常用该组区间 的中点值(例如:区间[1.30,1.34)的中点值 是1.32)作为代表.据此,估计纤度的期 望. [分析] 按题目要求作出频率分布表、绘出 频率分布.抽样方法 全体 (1)总体:所要考查的对象的 个体 叫做总体,其中每一个要考察的对象称
为 .总体与个体之间的关系类似 从总体中抽取一部分个体 集合与元素之间的关系. 样本的容量 (2)样本: 叫做总 体的一个样本,样本中个体的数目称 为 .样本和总体之间的 关系类似于子集与集合之间的关系.
分组 频数 [解] (1)频率分布表如下: [1.30,1.34) 4 [1.34,1.38) 25 [1.38,1.42) 30 [1.42,1.46) 29 [1.46,1.50) 10 [1.50,1.54) 2 100 合计

高考数学一轮复习学案抽样方法、总体分布的估计

高考数学一轮复习学案抽样方法、总体分布的估计

12.3 抽样方法、总体分布的估计一、知识梳理(一)抽样1.简单随机抽样:设一个总体的个体数为N .如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样⑴用简单随机抽样从含有N 个个体的总体中抽取一个容量为n 的样本时,每次抽取一个个体时任一个体被抽到的概率为N1;在整个抽样过程中各个个体被抽到的概率为Nn; ⑵简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等; ⑶简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础.(4).简单随机抽样的特点:它是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样 简单抽样常用方法:(1)抽签法:先将总体中的所有个体(共有N 个)编号(号码可从1到N ),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n 次,就得到一个容量为n 的样本适用范围:总体的个体数不多时优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.(2)随机数表法: 随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码2.系统抽样:当总体中的个体数较多时,可将总体分成均衡的几个部分,然后按预先定出的规则,从每一部分抽取一个个体,得到需要的样本,这种抽样叫做系统抽样.系统抽样的步骤:①采用随机的方式将总体中的个体编号为简便起见,有时可直接采用个体所带有的号码,如考生的准考证号、街道上各户的门牌号,等等②为将整个的编号分段(即分成几个部分),要确定分段的间隔k 当Nn(N为总体中的个体的个数,n 为样本容量)是整数时,k=N n ;当Nn不是整数时,通过从总体中剔除一些个体使剩下的总体中个体的个数N '能被n 整除,这时k=N n'.③在第一段用简单随机抽样确定起始的个体编号l ④按照事先确定的规则抽取样本(通常是将l 加上间隔k ,得到第2个编号l +k,第3个编号l +2k ,这样继续下去,直到获取整个样本)①系统抽样适用于总体中的个体数较多的情况,它与简单随机抽样的联系在于:将总体均分后的每一部分进行抽样时,采用的是简单随机抽样;②与简单随机抽样一样,系统抽样是等概率抽样,它是客观的、公平的. ③总体中的个体数恰好能被样本容量整除时,可用它们的比值作为系统抽样的间隔;当总体中的个体数不能被样本容量整除时,可用简单随机抽样先从总体中剔除少量个体,使剩下的个体数能被样本容量整除在进行系统抽样3.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比例进行抽样,这种抽样叫做分层抽样,所分成的部分叫做层体,称这样的抽样为不放回抽样;如果每次抽出个体后再将它放回总体,称这样的抽样为放回抽样.随机抽样、系统抽样、分层抽样都是不放回抽样(二)总体分布1.总体:在数理统计中,通常把被研究的对象的全体叫做总体.2.频率分布:用样本估计总体,是研究统计问题的基本思想方法,样本中所有数据(或数据组)的频数和样本容量的比,就是该数据的频率.所有数据(或数据组)的频率的分布变化规律叫做样本的频率分布.可以用样本频率表、样本频率分布条形图或频率分布直方图来表示.3.总体分布:从总体中抽取一个个体,就是一次随机试验,从总体中抽取一个容量为n的样本,就是进行了n次试验,试验连同所出现的结果叫随机事件,所有这些事件的概率分布规律称为总体分布.4.总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线.它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a,b)内取值的概率等于总体密度曲线,直线x=a,x=b及x轴所围图形的面积.0.5 时间(小时) 0 1.0 1.5 2.0二、基础训练1.一个总体中共有10个个体,用简单随机抽样的方法从中抽取一容量为3的样本,则某特定个体入样的概率是CA.310C 3B.89103⨯⨯C.103 D.101 2.(2004年江苏,6)某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均每人的课外阅读时间为BA.0.6 hB.0.9 hC.1.0 hD.1.5 h3.一个年级有12个班,每个班有50名同学,随机编号为1~50号,为了了解他们在课外的兴趣爱好,要求每班的33号学生留下来参加阅卷调查,这里运用的抽样方法是DA.分层抽样法B.抽签法C.随机数表法D.系统抽样法4.为调查参加运动会的1000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是A.1000名运动员是总体B.每个运动员是个体C.抽取的100名运动员是样本D.样本容量是100 解析:这个问题我们研究的是运动员的年龄情况.因此应选D. 答案:D5.一个容量为n 的样本,分成若干组,已知某数的频数和频率分别为40、0.125,则n 的值为A.640B.320C.240D.160解析:∵n40=0.125,∴n =320.故选B.答案:B6.某单位有老年人27人,中年人54人,青年人81人,为了调查他们的健康状况,需从他们中抽取一个容量为36的样本,在简单随机抽样、系统抽样、分层抽样这三种方法中较合适的抽样方法是___________.解析:要研究的总体里各部分情况差异较大,因此用分层抽样. 答案:分层抽样那么分数在[100,110)中的频率和分数不满110分的累积频率分别是______________、_______(精确到0.01).解析:由频率计算方法知:总人数=45.分数在[100,110)中的频率为458=0.178≈0.18.分数不满110分的累积频率为458652+++=4521≈0.47.答案:0.18 0.47三、例题剖析【例1】 (2004年湖南,5)某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法剖析:此题为抽样方法的选取问题.当总体中个体较多时宜采用系统抽样;当总体中的个体差异较大时,宜采用分层抽样;当总体中个体较少时,宜采用随机抽样.依据题意,第①项调查应采用分层抽样法、第②项调查应采用简单随机抽样法.故选B. 答案:B评述:采用什么样的抽样方法要依据研究的总体中的个体情况来定.【例2】 (2004年福建,15)一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 小组中抽取的号码个位数字与m +k 的个位数字相同.若m =6,则在第7组中抽取的号码是___________.剖析:此问题总体中个体的个数较多,因此采用系统抽样.按题目中要求的规则抽取即可.∵m =6,k =7,m +k =13,∴在第7小组中抽取的号码是63. 答案:63评述:当总体中个体个数较多而差异又不大时可采用系统抽样.采用系统抽样在每小组内抽取时应按规则进行.【例3】 把容量为100的某个样本数据分为10组,并填写频率分布表,若前七组的累积频率为0.79,而剩下三组的频数成公比大于2的整数等比数列,则剩下三组中频数最高的一组的频数为___________.剖析:已知前七组的累积频率为0.79,而要研究后三组的问题,因此应先求出后三组的频率之和为1-0.79=0.21,进而求出后三组的共有频数,或者先求前七组共有频数后,再计算后三组的共有频数.由已知知前七组的累积频数为0.79×100=79,故后三组共有的频数为21,依题意qq a --⋅1)1(31=21,a 1(1+q +q 2)=21.∴a 1=1,q =4.∴后三组频数最高的一组的频数为16.答案:16评述:此题剖析只按第二种思路给出了解答,你能按第一种思路来解吗?(1)列出频率分布表;(2)画出频率分布直方图和累积频率分布图;(3)估计电子元件寿命在100~400 h 以内的概率; (4)估计电子元件寿命在400 h 以上的概率.剖析:通过本题可掌握总体分布估计的各种方法和步骤.(2)频率分布直方图如下:(h ) 1.0.0.0.0.(3)由累积频率分布图可以看出,寿命在100~400 h 内的电子元件出现的频率为0.65,所以我们估计电子元件寿命在100~400 h 内的概率为0.65.(4)由频率分布表可知,寿命在400 h 以上的电子元件出现的频率为0.20+0.15=0.35,故我们估计电子元件寿命在400 h 以上的概率为0.35.评述:画频率分布条形图、直方图时要注意纵、横坐标轴的意义.【例5】 某批零件共160个,其中,一级品48个,二级品64个,三级品32个,等外品16个.从中抽取一个容量为20的样本.请说明分别用简单随机抽样、系统抽样和分层抽样法抽取时总体中的每个个体被取到的概率均相同.【例6】一个容量为100的样本,数据的分组和各组的一些相关信息如下:(1)完成上表;(2)画出频率分布直方图和累积频率分布图;(3)根据累积频率分布图,总体中小于22的样本数据大约占多大的百分比?〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒〒 四、同步练习 g3.1099 抽样方法、总体分布的估计1.某公司甲、乙、丙、丁四个地区分别有150 个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是 ( B )()A 分层抽样法,系统抽样法()B 分层抽样法,简单随机抽样法 ()C 系统抽样法,分层抽样法 ()D 简单随机抽样法,分层抽样法2.已知样本方差由102211(5)10i i s x ==-∑,求得,则1210x x x +++= 50 . 3.设有n 个样本12,,,n x x x ,其标准差为x s ,另有n 个样本12,,,n y y y ,且35k k y x =+(1,2,,)k n = ,其标准差为y s ,则下列关系正确的是 ( B )()A 35y x s s =+ ()B 3y x s s =()C y x s = ()D 5y x s =+时间(小时)4.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( B ) ()A 0.6小时 ()B 0.9小时()C 1.0小时 ()D 1.5小时5.x 是12100,,x x x 的平均数,a 是1240,,x x x 的平均数,b 是4142100,,x x x 的平均数,则x ,a ,b 之间的关系为4060100a bx +=.6.某校有老师200人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n 的样本;已知从女学生中抽取的人数为80人,则n =112.7.一个总体中有100个个体,随机编号0,1,2,…,99,依编号顺序平均分成10个小 组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m k +的个位数字相同,若6m =,则在第7组中抽取的号码是 63 .8.在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形的面积之和的14,且样本容量为160,则中间一组的频数为 32 . 9.某中学有员工160人,其中中高级教师48人,一般教师64人,管理人员16人,行政人员32人,从中抽取容量为20的一个样本.以此例说明,无论使用三种常用的抽样方法中的哪一种方法,总体中的每个个体抽到的概率都相同.10. 现有30个零件,需从中抽取10个进行检查,问如何采用简单随机抽样得到一个容量为10的样本?11.质检部门对甲、乙两种日光灯的使用时间进行了破坏性试验,10次试验得到的两 种日光灯的使用时间如下表所示,问:哪一种质量相对好一些?(2)画出频率分布直方图;(3)根据累积频率分布,估计小于134的数据约占多少百分比.13.为检测某种产品的质量,抽取了一个容量为30的样本,检测结果为一级品5件,二级品8件,三级品13件,次品4件。

高三数学第一轮复习--抽样方法与总体分布的估计

高三数学第一轮复习--抽样方法与总体分布的估计

1.为调查参加运动会的1000名运动员的年龄情况,从中抽查了100
名运动员的年龄,就这个问题来说,下列说法正确的是( D )
2.一个总体中共有10个个体,用简单随机抽样的方法从中抽取一个
容量为3的样本,则某特定个体入样的概率是(C )
A. 3
B. 3
C. 3
D. 1
C
3 10
10 9 8
10
10
系统抽样、分层抽样这三种方法中较合适的抽样方法是___________
0.18 0.47 分别是______________、_______(精确到0.01). 总体分布:从总体中抽取一个个体,就是一次随机试验,从总体中抽取一个容量为n的样本,就是进行了n次试验,试验连同所出现的
结果叫随机事件,所有这些事件的概率分布规律称为总体分布.
1.了解简单随机抽样、分层抽样及系统抽样的意义,会 用它们对简单实际问题进行抽样. 2.会用样本频率分布估计总体分布. 3.会用样本估计总体平均值和方差.
在本章的复习中,要理解几种抽样方法的区别与联 系.应充分注意一些重要概念的实际意义,理解概率统 计中处理问题的基本思想方法,掌握所学的概率统计 知识的实际应用.
2
5
6
简单随机抽样:一般地,设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率
分数段 [100,110) 相等,就称这样的抽样为简单随机抽样.
[110,120 )
[110,120
)[120,130)
频率分布:用样本估计总体,是研究统计问题的基本思想方法,样本中所有数据(或数据组)的频数和样本容量的比,就是该数据的
(2)样本数据落在范围
5.某班学生在一次数学考试中成绩分布如下表: 某单位有职工100人,不到35岁的有45人,35岁到49岁的有25人,剩下的为50岁以上的人,用分层抽样法从中抽取20人,各年龄段分别

抽样方法跟总体分布的估计

抽样方法跟总体分布的估计

抽样方法跟总体分布的估计抽样方法是指从总体中选取一部分样本来进行研究或调查的方法,其目的是通过对样本数据的分析,推断或估计总体的特征和参数。

抽样方法的选择对研究的结果至关重要,因为不恰当的抽样方法可能导致样本偏倚,从而使总体的估计结果失真。

常见的抽样方法包括简单随机抽样、分层抽样、整群抽样、系统抽样和多阶段抽样等。

下面对这些方法进行详细说明。

简单随机抽样是从总体中随机选取样本的方法,每个样本都有相同的被选中的概率。

这种方法可以减少样本选择的主观因素,并能够反映总体特征。

但在实际操作过程中,随机选样的困难度较高,需要随机数发生器进行操作。

分层抽样是将总体划分为若干个相互独立的层,并从每个层中随机选取一定数量的样本。

这种抽样方法适用于总体分层特征明显的情况,可以确保每个层都能被充分代表。

整群抽样则是将总体划分为若干个相互不重叠但完全相似的整群,随机选取其中若干群作为样本进行研究。

这种方法适用于总体内群体特征相近的情况,可以减少样本选择的成本。

系统抽样是根据其中一种规律从总体中选取样本,如每隔一定间隔选取一个样本。

这种方法的优势在于实施简单,适用于总体有明显的排列顺序的情况。

多阶段抽样是将总体按照多个层次划分,并在每个层次中随机选择样本。

这种方法适用于总体复杂,样本选择难度大的情况,可以减少样本选择的成本。

抽样方法的选择应根据研究目的、总体属性和可行性来确定。

在进行抽样之前,需要对总体进行充分了解,确定抽样框架,制定合理的抽样方案。

总体分布的估计是通过对样本数据的分析,利用统计模型和方法来推断总体的特征和参数。

常用的估计方法有点估计和区间估计。

点估计是利用样本数据得出总体参数点估计值的方法,常见的点估计方法有最大似然估计、矩估计和贝叶斯估计等。

点估计可以得到总体参数的一个具体估计值,但缺点是无法给出估计值的准确性。

区间估计是利用样本数据得出总体参数区间估计值的方法,常见的区间估计方法有置信区间和可信区间等。

版高考数学一轮总复习概率统计中的抽样与估计计算

版高考数学一轮总复习概率统计中的抽样与估计计算

版高考数学一轮总复习概率统计中的抽样与估计计算高考数学一轮总复习概率统计中的抽样与估计计算概率统计是高考数学中的重要部分,其中抽样与估计计算是一个核心概念。

在这篇文章中,我们将详细探讨抽样与估计计算的方法和应用。

一、抽样方法在统计学中,抽样是指从总体中选取一部分个体进行测量或调查的方法。

常用的抽样方法包括随机抽样、分层抽样和系统抽样。

1. 随机抽样随机抽样是指从总体中按照一定的概率分布随机选取样本的方法。

它的特点是每个个体都有相同的概率被选入样本,从而保证样本的代表性和可靠性。

2. 分层抽样分层抽样是将总体按照某种特征分成若干层,然后从每一层中随机选取样本。

这种方法可以保证每一层都有代表性的样本,从而提高估计的准确性。

3. 系统抽样系统抽样是指按照一定的规则,从总体中选取样本。

例如,从总体中每隔一定的间隔选取一个个体作为样本,这样就能保证样本的随机性和均匀性。

二、估计计算方法抽样得到的样本是我们对总体的一个估计。

估计计算是根据样本数据,推断总体参数的方法。

常用的估计计算方法有点估计和区间估计。

1. 点估计点估计是根据样本数据,用一个确定的数值来估计总体参数。

常见的点估计方法有样本均值、样本方差和样本比例。

例如,根据样本均值估计总体均值。

2. 区间估计区间估计是指根据样本数据,给出一个范围,来估计总体参数落在该范围内的概率。

常见的区间估计方法有正态分布的置信区间和二项分布的置信区间。

例如,根据正态分布的置信区间估计总体均值。

三、应用举例下面通过一个具体的例子来说明抽样与估计计算的应用。

假设我们想要估计某个城市的失业率。

我们可以采用随机抽样的方法,在整个城市的居民中随机选取一部分进行调查。

得到的样本数据可以用来计算样本的失业率。

假设我们得到的样本数据中有1000个人,其中有200人失业。

那么,我们可以用样本的失业率来估计总体的失业率。

样本的失业率为200/1000=0.2,即20%。

通过区间估计,我们可以得到总体失业率落在一定范围内的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第76课时 课题:抽样方法、总体分布的估计
2019-2020年高三数学第一轮复习讲义(76)抽样方法、总体分布的
估计
一.复习目标: 抽样方法、总体分布的估计
1.会用简单随机抽样法、系统抽样法、分层抽样法等常用方法从总体中抽取样本;
2.了解统计的基本思想,会用样本频率估计总体分布.
二.知识要点:
1.(1)统计的基本思想是 .
(2)平均数的概念 .
(3)方差公式为 .
2.常用的抽样方法是 .
三.课前预习:
1.某公司甲、乙、丙、丁四个地区分别有150 个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是 ( B ) ()A 分层抽样法,系统抽样法 ()B 分层抽样法,简单随机抽样法 ()C 系统抽样法,分层抽样法
()D 简单随机抽样法,分层抽样法 2.已知样本方差由10
221
1(5)10i i s x ==-∑,求得,则1210x x x +++= 50 . 3.设有n 个样本12,,,n x x x ,其标准差为x s ,另有n 个样本12,,,n y y y ,且35k k y x =+ (1,2,,)k n =,其标准差为y s ,则下列关系正确的是 ( B )
()A 35y x s s =+ ()B 3y x s s = ()C 3y x s s = ()D 35y x s s =+
4.某校为了了解学生的课外阅读情况,随机调查了50
名学生,得到他们在某一天各自课外阅读所用时间的数
据,结果用右侧的条形图表示. 根据条形图可得这50
名学生这一天平均每人的课外阅读时间为 ( B )
()A 0.6小时 ()B 0.9小时 ()C 1.0小时 ()D 1.5小时
5.x 是12100,,x x x 的平均数,a 是1240,,x x x 的平均数,b 是4142100,,x x x 的平均数,则x ,a ,b 之间的关系为4060100
a b x +=. 6.某校有老师200人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n 的样本;已知从女学生中抽取的人数为80人,则n =112.
7.一个总体中有100个个体,随机编号0,1,2,…,99,依编号顺序平均分成10个小 组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m k +的个位数字相同,若6m =,则在第7组中抽取的号码是 63 .
8.在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他
10个小长方形的面积之和的14,且样本容量为160,则中间一组的频数为 32 . 四.例题分析: 0.5 人数(人) 时间(小时) 20 10
5
0 1.0 1.5 2.0 15
例1.某中学有员工160人,其中中高级教师48人,一般教师64人,管理人员16人,行政人员32人,从中抽取容量为20的一个样本.以此例说明,无论使用三种常用的抽样方法中的哪一种方法,总体中的每个个体抽到的概率都相同.
解:(1)(简单随机抽样)可采用抽签法,将160人从1到160编号,然后从中抽取20个
签,与签号相同的20个人被选出.显然每个个体抽到的概率为
2011608
=. (2)(系统抽样法)将160人从1到160编号,,按编号顺序分成20组,每组8人,先在第一组中用抽签法抽出k 号(18k ≤≤),其余组的8k n +(1,2,3,19)n =也被抽到,显然每个个体抽到的概率为18
. (3)(分层抽样法)四类人员的人数比为3:4:1:2,又34206,2081010
⨯=⨯= 12202,2041010
⨯=⨯=,所以从中高级教师、一般教师、管理人员、行政人员中分别抽取6人、8人、2人、4人,每个个体抽到的概率为18. 例2.质检部门对甲、乙两种日光灯的使用时间进行了破坏性试验,10次试验得到的两种日光灯的使用时间如下表所示,问:哪一种质量相对好一些?
解:甲的平均使用寿命为:
甲x =
10
1214032130321202211012100⨯+⨯+⨯+⨯+⨯ =2121(h ), 甲的平均使用寿命为 : 乙x =10
1214022130521201211012100⨯+⨯+⨯+⨯+⨯=2121(h ), 甲的方差为:2甲S =10
199919114212
2222+⨯+⨯+⨯+=129(h 2), 乙的方差为:2乙S =10
1214022130521201211012100⨯+⨯+⨯+⨯+⨯=109(h 2), ∵甲x =乙x ,且2甲S >2乙S ,∴乙的质量好一些.
例3.下表给出了某学校120名12岁男生的身高统计分组与频数(单位:cm ). 区间 [122,126) [126,130) [130,134) [134,138) [138,142) [142,146) [146,150) [150,154) [154,158) 人 5 8 10 22 33 20 11 6 5
甲 使用时间(h ) 频数 2100 1 2110 2 2120 3 2130 3 2140 1 乙 使用时间(h ) 频数
2100 1 2110 1 2120 5 2130 2 2140 1

(1)列出样本的频率分布表(含累积频率);
(2)画出频率分布直方图;
(3)根据累积频率分布,估计小于134的数据约占多少百分比.
解:(1)样本的频率分布表与累积频率表如下: (2)频率分布直方图如下:
(3)根据累积频率分布,小于134的数据约占
23100%19.2%120
⨯≈. 区间 [122,126) [126,130) [130,134) [134,138) [138,142) [142,146) [146,150) [150,154) [154,158) 人数 5 8 10 22 33 20 11 6 5
频率 241 151 121 6011 4011 61
12011 201 241 累积频率 241 12013 12023 81
2013 6049 120109 2423 1 频率/组距
122 126 130 134 138 142 146 150 154 158 身高(cm )
961 24011 16011 48011 241 481 601 801 · · ·· · ·
五.课后作业: 班级 学号 姓名
1.一个单位有职工160人,其中业务人员96人,管理人员40人,后勤人员24人,为了解职工身体情况,要从中抽取一个容量为20的样本,如用分层抽样,则管理人员应抽到多少个 ( )
()A 3 ()B 12 ()C 5 ()D 10
2.欲对某商场作一简要审计,通过检查发票及销售记录的2%来快速估计每月的销售总额.现采用如下方法:从某本50张的发票存根中随机抽一张,如15号,然后按序往后将65号,115号,165号,…发票上的销售额组成一个调查样本.这种抽取样本的方法是 ( )
()A 简单随机抽样 ()B 系统抽样 ()C 分层抽样 ()D 其它方式的抽样
3.在抽查某产品的尺寸过程中,将其尺寸分成若干组,[,]a b 是其中一组,抽查出的个体数在该组上的频率为m ,该组上的直方图的高为h ,则||a b -等于 ( )
()A hm ()B h m ()C m h
()D 与,m h 无关 4.一个总体的个数为n ,用简单随机抽样的方法,抽取一个容量为2的样本,个体a 第一次未被抽到,个体a 第一次未被抽到第二次被抽到,以及整个过程中个体a 被抽到的概率分别是 .
5.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号产品有16件,那么此样本的容量n = .
6.有一组数据:)(,,,,321321n n x x x x x x x x ≤≤≤≤ ,它们的算术平均值为10,若去掉其中最大的n x ,余下数据的算术平均值为9;若去掉其中最小的1x ,余下数据的算术平均值为11,则1x 关于n 的表达式为 ;n x 关于n 的表达式为 .
7.为了比较甲、乙两位划艇运动员的成绩,在相同的条件下对他们进行了6次测验,测得他们的平均速度(/m s )分别如下:
甲:2.7 3.8 3.0 3.7 3.5 3.1
乙:2.9 3.9 3.8 3.4 3.6 2.8
试根据以上数据,判断他们谁更优秀.
8.有一个容量为100的样本,数据的分组及各组的频数如下:
区间 [12,15) [15,18) [18,21) [21,24) [24,27) [27,30) [30,133)
频数 6 16 18 22 20 10 8
(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)估计数据小于30的概率.
9.100名学生分四个兴趣小组参加物理、化学、数学、计算机竞赛辅导,人数别是30、27、23、20.(1)列出学生参加兴趣小组的频率分布表;
(2)画出表示频率分布的条形图.。

相关文档
最新文档