高数自考(工本)笔记

合集下载

自考高等数学工专教材

自考高等数学工专教材

自考高等数学工专教材高等数学是大学专业课程中的一门重要学科,对于工专学生来说尤为重要。

自考高等数学工专教材是专门为工专学生编写的一本教材,旨在帮助他们系统学习和掌握高等数学的基本理论和应用方法。

本文将介绍该教材的内容概述、教学特点以及学习方法,希望能够为工专学生提供参考。

一、教材内容概述自考高等数学工专教材内容详实,涵盖了高等数学的基础知识和核心概念。

主要包括以下几个方面:1. 函数与极限:介绍了函数的概念、性质及其在数学和实际问题中的应用。

重点讲解了数列、极限以及极限的性质和计算方法。

2. 导数与微分:讲解了导数的概念、性质以及导数的运算法则。

阐述了导数的几何意义和物理意义,并应用导数解决相关问题。

3. 积分与定积分:介绍了积分的概念、性质和计算方法。

详细讲解了不定积分和定积分的概念和性质,以及应用积分解决问题的方法。

4. 一元函数的应用:以具体的实例和问题为背景,探讨了高等数学在工学领域的应用。

例如,最值问题、曲线的长度与曲面的面积、动力学中的应用等。

5. 二元函数与多元函数:介绍了二元函数和多元函数的概念、性质及其应用。

包括二元函数的极值与条件极值、多元复合函数的求导法则等内容。

二、教学特点自考高等数学工专教材具有一些独特的教学特点,以适应工专学生的学习需求:1. 理论联系实际:教材通过大量的实例和应用问题,将抽象的数学理论与实际工程问题相结合,增强学生的学习兴趣和理解力。

2. 实用性强:教材注重培养学生的计算和问题解决能力,通过丰富的例题和习题,引导学生掌握高等数学的实际应用。

3. 清晰易懂:教材语言通俗易懂,将抽象的数学概念和推导过程用简明的语言表达清晰,方便工专学生理解和掌握。

4. 系统性强:教材内容安排有序、层次清晰,从基础概念到高级应用逐步展开,帮助学生建立完整的高等数学知识体系。

三、学习方法为了更好地学习自考高等数学工专教材,学生可以采取以下学习方法:1. 注重基础知识的理解和掌握:高等数学的学习建立在扎实的数学基础上,学生应该重视基础知识的理解和记忆,做到理论联系实际。

高等数学(工本)自考教材

高等数学(工本)自考教材

高等数学(工本)自考教材高等数学(工本)自考教材高等数学是大学数学中的一门重要课程,对于理工类专业的学生尤为重要。

掌握高等数学的基本理论和方法,不仅有助于理解和应用其他学科的知识,还为进一步学习相关专业奠定了坚实的基础。

本文将针对高等数学(工本)自考教材进行详细讨论和分析。

一、教材概述高等数学(工本)自考教材以系统、全面地介绍高等数学的知识为主线,包含了数列、极限、微分学、积分学等多个重要章节,涵盖了高等数学所需的基本概念、理论和方法。

教材内容丰富,层次分明,适合自学和复习使用。

二、教材特点1. 理论与实践相结合:教材既讲述了高等数学的基本理论,又通过大量的例题和习题,引导学生将理论应用于实际问题中,培养解决问题的能力。

2. 知识体系完整:教材将高等数学的各个分支知识有机地融合在一起,形成一个完整的知识体系。

从数列到极限,再到微分和积分,层层推进,层层深入,使学生能够系统地理解和掌握高等数学的核心内容。

3. 理论与实例并重:教材中穿插了大量的例题和习题,既展示了理论的应用,又提供了学生自我检测和巩固知识的机会。

学生在解题过程中能够不断地反复思考和总结,巩固理论知识。

三、教学方法高等数学(工本)自考教材适用于自学和复习,教学方法需要根据个人情况和学习进度来选择。

以下是几种常用的教学方法:1. 理论与实践相结合:在学习教材的过程中,要注重理论的学习,同时通过例题和习题的实际操作,加深对理论知识的理解和应用。

2. 多角度思考问题:在学习高等数学时,可以从不同的角度考虑问题,拓宽思维,培养解决问题的能力。

3. 合理规划学习时间:高等数学的学习需要一定时间和精力投入,因此要合理规划学习时间,保持学习的连续性和专注度。

四、学习建议1. 注重基础知识的学习:高等数学是建立在基础数学知识之上的,所以在学习过程中,要注重对基础概念和定理的理解和掌握。

只有打好基础,才能更好地理解和应用高等数学的知识。

2. 制定学习计划:制定一个合理的学习计划对于高等数学的学习非常重要。

专升本高数知识点汇总

专升本高数知识点汇总

专升本高数知识点汇总高等数学在专升本考试中占据着重要的地位,对于许多考生来说,掌握好高数的知识点是成功升本的关键之一。

以下是为大家汇总的专升本高数知识点,希望能对大家的学习有所帮助。

一、函数与极限1、函数的概念函数是一种从一个集合(定义域)到另一个集合(值域)的对应关系。

对于定义域内的每一个输入值,都有唯一的输出值与之对应。

2、函数的性质包括奇偶性、单调性、周期性和有界性。

奇函数满足 f(x) = f(x),偶函数满足 f(x) = f(x)。

单调性是指函数在某个区间内是递增或递减的。

周期性函数是指存在一个非零常数 T,使得 f(x + T) = f(x)。

有界性则是指函数的值域在某个范围内。

3、极限的定义极限是指当自变量趋近于某个值时,函数值趋近于的一个确定的值。

4、极限的计算包括利用极限的四则运算法则、两个重要极限(\(\lim_{x \to 0} \frac{\sin x}{x} = 1\),\(\lim_{x \to \infty} (1 +\frac{1}{x})^x = e\))以及等价无穷小代换来计算极限。

5、无穷小与无穷大无穷小是以零为极限的变量,无穷大是绝对值无限增大的变量。

无穷小的性质在极限计算中经常用到。

二、导数与微分1、导数的定义函数在某一点的导数是函数在该点的切线斜率。

2、导数的几何意义导数表示函数在某一点处的变化率,反映了函数图像的斜率。

3、基本导数公式包括常数函数、幂函数、指数函数、对数函数、三角函数等的导数公式。

4、导数的四则运算法则加法法则、减法法则、乘法法则和除法法则。

5、复合函数求导通过链式法则进行求导。

6、隐函数求导通过方程两边同时对自变量求导来求解。

7、微分的定义函数的微分等于函数的导数乘以自变量的微分。

8、微分的几何意义微分表示函数在某一点处切线的增量。

三、中值定理与导数的应用1、罗尔定理如果函数 f(x) 满足在闭区间 a,b 上连续,在开区间(a,b) 内可导,且 f(a) = f(b),那么在(a,b) 内至少存在一点ξ,使得 f'(ξ) = 0 。

自考笔记 00020 高等数学(一) 完整免费版

自考笔记 00020 高等数学(一)  完整免费版

自考笔记 00020 高等数学(一)完整免费版小薇笔记免费提供各科自考笔记,完整版请访问前言《高等数学一》共6章第一章函数 1.主要是对高中知识的复习; 2.为今后知识打下良好的基础; 3.本章知识在历年考题中所占的分值并不多,一般是5分左右. 第二章极限和连续主要是学习极限与连续的概念,是后面章节的基础; 本章内容在历年考题中所占分值为20左右. 第三章导数与微分主要是学习函数的导数和微分,这是高数的核心概念. 本章内容在历年考题中所占分值为15分左右. 第四章微分中值定理和导数的应用主要是掌握微分中值定理的应用,这一章容易出大题、难题; 本章在历年考题中所占分值为20分左右. 第五章一元函数积分学主要学习不定积分和定积分,这又是高数的核心概念; 本章内容在历年考题中所占分值为25分左右. 第六章多元函数微积分主要是学习多元函数的微积分的计算; 本章内容在历年考试题中所占分值为15分左右. 第一章函数1.1 预备知识 1.1.1 初等代数的几个问题 1.一元二次方程 2关于x的方程ax,bx,c,0(a?0),称为一元二次方程,称为此方程的判别式. (1)求根公式: 当?,0时,方程有两个不同的实根: 当?,0时,方程有一个二重实根:当?,0时,方程有一对共轭复根: (2)根与系数的关系(韦达定理):2(3)一元二次函数(抛物线):y,ax,bx,c(a?0),当a,0时,开口向上,当a,0时,开口向下. 对称轴顶点坐标 322例1.若x,x,ax,b能被x,3x,2整除,则a、b是多少, 结论:多项式f(x),g(x).若f(x)能被g(x)整除,则g(x),0的根均为f(x),0的根. 2解:令x,3x,2,0,解得x,1或2,代入被除式得解得2.二元一次方程组两个未知量x,y满足的形如的方程组称为二元一次方程组. 当时,方程组有唯一解;当时,方程组无解;当时,方程组有无穷多解.例2.已知方程组 (1)若方程组有无穷多解,求a的值; (2)当a,6时,求方程组的解.解:(1)因为方程组有无穷多组解,所以, 解得a,4.(2)当,6是,原方程组变为, a解得 3.不等式 (1)一元二次不等式 22考虑不等式ax,bx,c,0,如果记一元二次方程ax,bx,c=0的两个不同实根分别为x,x,且x,x,根据一元二次函数的图形可知: 1212当a,0时,这个不等式的解集是{x?x,x或x,x}; 12当a,0时,它的解集是{x?x,x,x}. 12222用类似的方法可以求解不等式ax,bx,c?0,ax,bx,c,0和ax,bx,c?0. 2例3.解不等式x,5x,6?0. 2解:令,5,6,0,xx(x,2)(x,3),0, 得,2或=3, xx? 解集为(,?,2]?[3,,?). 2例4.解不等式x,(1,a)x,a,0. 2解:令x,(1,a)x,a,0, (x,a)(x,1),0, 得x,a或x,,1, ?若a,,1,解集为(a,,1), ?如a,,1,解集为Φ, ?若a,,1,解集为(,1,a). (2)绝对值不等式不等式?f(x)?,a,0等价于f(x),a或f(x),,a; 不等式?f(x)?,a等价于,a,f(x),a. 例5.解下列含有绝对值符号的不等式: (1)?2x,3??5 (2)?3x,1??7 解:(1)原不等式等价于,5?2x,3?5 解得:,1?x?4. 所以解集为[,1,4]. (2)原不等式等价于3x,1?,7或3x,1?7, 3x,1?,7的解集为x?,2,3x,1?7的解集为x?, 1小薇笔记免费提供各科自考笔记,完整版请访问所以解集为(,?,,2]?[,,?). 2例6.解不等式?x,2x,5?,3. 解:原不等式等价于2x,2x,5,,3的解集为(,?,]?[,,?), 2x,2x,5,3的解集为(,2,4),所以原不等式的解集为(,2,]?[,,4). 4.数列 (1)等差数列:相邻两项的差为定值,即a,a,d,d称为公差. n,1n通项公式:a,a,(n,1)d n1前n项和公式:当m,n,k,l时,a,a,a,a mnkl特别地有例7.设{a}是一个等差数列,且a,a,a,a,64,求a,a和S. 2310116712n解:因为 2,11,3,10,13 所以a,a,a,a,32, 211310又因为 6,7,13,所以a,a,32, 67S,(a,a)×12?2,6(a,a),6×32,192. 12112112(2)等比数列:相邻两项的商为定值,即,q称为公比. n-1通项公式:a,aq n1前n项和公式: 当m,n,k,l时,aa,aa mnkl特别地有例8.设{a}是一个等比数列,且a,12,a,48,求a,a和aa的值.n3511026解: 所以q,?25a,a?q,48×(?2),?1536 1055因为2,6,3,5,8 所以a?a,a?a,12×48,576. 26351.1.2 集合与逻辑符号 1.集合的概念集合是指由一些特定的对象汇集的全体,其中每个对象叫做集合的元素. 数集分类: N——自然数集Z——整数集 Q——有理数集R——实数集 C——复数集合 2.元素与集合的关系元素a在集合A中,就说a属于A,记为a?A;否则就说a不属于A,记为aA. 3.集合与集合的关系集合A中的任何一个元素都是集合B中的元素,称为A包含于B,或B包含A,也说A是B的子集,记为A?B或者B?A. 若A?B,且B?A,就称集合A与B相等,记作A,B. 2例9.A,{1,2},C,{x?x,3x,2,0},则A和C是什么关系, 2解:解方程x,3x,2,0,得x,1或x,2. 所以C,{1,2},从而A,C. 4.空集不含任何元素的集合称为空集(记作Φ).规定空集为任何集合的子集. 2例10.{x?x?R,x,1,0},Φ 5.集合的表示方法:列举法,描述法一般的,有限集用列举法,无限集用描述法闭区间:[a,b],{x?a?x?b,x?R}; 开区间:(a,b),{x?a,x,b,x?R}; 半开半闭区间: 左开右闭区间:(a,b],{x?a,x?b,x?R},左闭右开区间:[a,b),{x?a?x,b,x?R}; (,?,b],{x?x?b,x?R},[a,,?],{x?x?a,x?R}; 点a的邻域:U(a,ε),(a,ε,a,ε),ε,0,即U(a,ε)是一个以a为中心的开区间.在不强调邻域的大小时,点a的邻域也用U表示; a点a的去心邻域:N(a,ε),(a,ε,a)?(a,a,ε),ε,0.点a的去心邻域也可以表示为N. a6.集合之间的运算 (1)并:由A、B中所有元素组成的集合称为A和B的并集,记为A?B. A?B,{x?x?A或x?B},A?B,B?A. 例11.已知:A,{1,2,3,4},B,{2,4,6,8,10,12},求:A?B. 解:A?B,{1,2,3,4,6,8,10,12}. 例12.已知:,{?1,,5},,{?,3,?2},求:?. AxxBxxAB解:A?B,{x?,3,x,5}. (2)交:由既属于A又属于B的元素组成的集合称为A和B的交集,记为A?B. A?B,{x?x?A且x?B},A?B,B?A 例13.已知:A,{1,2,3,4},B,{2、4、6、8、10、12},求:A?B. 解:A?B,{2,4}. 例14.已知:A,{x?1,x,4},B,{x?,3,x?3},求:A?B. 解:A?B,{x?1,x?3}. (3)余集(差集):由中不属于的元素组成的集合称为与的差集,记为,. ABABABA,B,{x?x?A但xB}. 例15.已知:A,{1,2,3,4},B,{2,4,6,8,10,12},求:A,B. 解:A,B,{1,3}. 7.一些逻辑符号p能推出q,记为pq,此时称p是q的充分条件,q是p的必要条件. 如果pq,qp 同时成立,就成p与q等价,或者说p与q互为充分必要条件(充要条件),记作pq. 1.2 函数的概念与图形 1.2.1 函数的概念 1.定义设D是一个非空数集,f 是定义在D上的一个对应关系,如果对于任意的实数x?D,都有唯一的实数y通过f与之对应,则称f是定义在D上的一个函数,记作y,f(x),x?D. 也称是的函数,其中称为自变量,称为因变量.当?时,称()为函数在点处的函数值.数集叫做这个函数的定义域,函数值全体组成的数,{?,(),?}称为函数的值域. yxxyxDfxxDWyyfxxD000例1.已知:,求:y的定义域、值域. 2解:令1,x?0,解得:,1?x?1, 所以定义域为[,1,1]. 2因为0?1,x?1,所以0??1,所以值域为[0,1].例2.已知:,求:y的定义域、值域.解:根据题意,得,解得,1,x,1,所以定义域为(,1,1), 2小薇笔记免费提供各科自考笔记,完整版请访问因为 0,?1,从而,所以值域为[1,,?). 2.函数的三要素:定义域、对应法则、值域. 约定:定义域是自变量所能取的使算式有意义的一切实数值.在具体问题中定义域会根据实际需要而有所变化. 例3.判断下列两个函数是否相等,(1)y,x,3; (2).例4.求函数的定义域. 解:根据题意,得解得:2?x,3或3,x,5,所以定义域为[2,3)?(3,5). 3.函数的表示法:表达式法(解析法)、图形法、数表法. 1.2.2 函数的图形 1.函数图形的概念函数y,f(x),x?D的图形是指在xOy平面上的点集{(x,y)?y,f(x),x?D}. 常见的几个幂函数的图形:2.函数的性质 (1)有界性函数f(x),x?D,存在两个实数m、M,满足条件:对于D中所有的x都有不等式m?f(x)?M,则称函数f(x)在D上有界,否则称无界.例5.判断下面函数在其定义域是否有界,(1)y=sinx, (2). (2)单调性设函数f(x)在区间D上有定义,如果对于区间D上任意两点x及x,当x,x时,恒有f(x),f(x),则称函数f(x)在区间D上是单调增加,称f(x)是D上的单调增加函数,称D是函数f(x)的单调增加区间. 121212设函数及,当,时,恒有),),则称函数f(x)在区间D上有定义,如果对于区间D上任意两点xxxxf(xf(xf(x)在区间D上是单调减少,称f(x)是D上的单调减少函数,称D是函数f(x)的单调减少区间. 1212122例6.求的单调性. y, x解:任取,,0, xx1222,,)(,),0, xx,(xxxx121212所以y,x在(,?,0)上单调减少.22同理可得:y, x在(0,,?)上单调增加. 例7.求y ,sinx的单调性. 解:y,sinx的图像如图,y=sinx在(2kπ,,2kπ,)上单调增加,在(2kπ,,2kπ,)上单调减少. (3)奇偶性设D关于原点对称,对于任意的x?D,有 f(,x),f(x),称 f(x) 为偶函数;设D关于原点对称,对于任意的x?D,有 f(,x),,f(x),称 f(x) 为奇函数.例8.判断下面函数的奇偶性(1)(2)解:(1)因为,所以定义域为R.3小薇笔记免费提供各科自考笔记,完整版请访问所以f(x)为奇函数.(2) x-x因为a,a?0,故x ?0,所以定义域为(,?,0)?(0,,?).所以()为奇函数. fx(4)幂函数的性质α形如y,x的函数为幂函数,其中α为任意常数. 性质: α对任意实数α,曲线y,x都通过平面上的点(1,1);αα,0时,y,x在(0,+?)单调增加; αα,0时,y,x在(0,+?)单调减少; ,+?); α为正整数时,幂函数的定义域是(,?αα为偶数时,,为偶函数; yxαα为奇数时,, 为奇函数; yxα为负整数时,幂函数的定义域是 (,?,0)?(0,+?). α幂函数y,x(α是常数)的图形:1.2.3 分段函数在自变量的不同变化范围中,对应法则用不同的式子来表示的函数,称为分段函数. 例9.画出符号函数的图形:例10.画出下面分段函数的图形:例11.求下面分段函数定义域并画出图形.1.3 三角函数、指数函数、对数函数… … (剩余部分略)完整免费版请访问—— 1.4 函数运算 1.4.1函数的四则运算定义1.10 设函数f(x),g(x)都在D上有定义,k?R,则对它们进行四则运算的结果还是一个函数,它们的定义域不变(除法运算时除数为0的点除外),而函数值的对应定义如下: (1)加法运算 (f,g)(x),f(x),g(x),x?D . (2)数乘运算(kf)(x),kf(x),x?D. (3)乘法运算 (fg)(x),f(x)g(x),x?D .(4) 除法运算 g(x)?0, x?D. 其中等号左端括号表示对两个函数f,g 进行运算后所得的函数,它在x处的值等于右端的值.例1. 已知f(x)=ln(1,x),g(x)=1,cosx,求 . 因为函数f(x)=ln(1,x)的定义域为(,1,+?),函数g(x)=1,cosx 的定义域为(,?,+?),且当x=2 kπ(k为整数)时,g(x)=0,所以,解,x?(,1, +?)\{2kπ}(k为整数) 1.4.2复合函数如有函数()和(),它们的定义域分别为和,值域分别是和当时,对于任意?,都有唯一的()?,,从而有唯一的(())?与?对应,这样就确定了一个从到的函数,此函数称fxgxDD ZZ.ZD xDgxZDfgxZxDDZfgf g.gfggffggf为 f和g的复合函数,记作重点是学会函数的分解与复合。

2019年自学考试《高等数学(一)》复习笔记精品文档12页

2019年自学考试《高等数学(一)》复习笔记精品文档12页

2019年自学考试《高等数学(一)》复习笔记一、函数1.知识范围(1)函数的概念函数的定义函数的表示法分段函数隐函数(2)函数的性质单调性奇偶性有界性周期性(3)反函数反函数的定义反函数的图像(4)基本初等函数幂函数指数函数对数函数三角函数反三角函数(5)函数的四则运算与复合运算(6)初等函数2.要求(1)理解函数的概念。

会求函数的表达式、定义域及函数值。

会求分段函数的定义域、函数值,会作出简单的分段函数的图像。

(2)理解函数的单调性、奇偶性、有界性和周期性。

(3)了解函数与其反函数之间的关系(定义域、值域、图像),会求单调函数的反函数。

(4)熟练掌握函数的四则运算与复合运算。

(5)掌握基本初等函数的性质及其图像。

(6)了解初等函数的概念。

(7)会建立简单实际问题的函数关系式。

二、极限1.知识范围(1)数列极限的概念数列数列极限的定义(2)数列极限的性质唯一性有界性四则运算法则夹逼定理单调有界数列极限存在定理(3)函数极限的概念函数在一点处极限的定义左、右极限及其与极限的关系趋于无穷时函数的极限函数极限的几何意义(4)函数极限的性质唯一性四则运算法则夹通定理(5)无穷小量与无穷大量无穷小量与无穷大量的定义无穷小量与无穷大量的关系无穷小量的性质无穷小量的阶(6)两个重要极限2.要求(1)理解极限的概念(对极限定义中“ ”、“ ”、“ ”等形式的描述不作要求)。

会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

(2)了解极限的有关性质,掌握极限的四则运算法则。

(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。

会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。

会运用等价无穷小量代换求极限。

(4)熟练掌握用两个重要极限求极限的方法。

-------------------------------------0114三、连续1.知识范围(1)函数连续的概念函数在一点处连续的定义左连续与右连续函数在一点处连续的充分必要条件函数的间断点及其分类(2)函数在一点处连续的性质连续函数的四则运算复合函数的连续性反函数的连续性(3)闭区间上连续函数的性质有界性定理最大值与最小值定理介值定理(包括零点定理)(4)初等函数的连续性2.要求(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在一点处的连续性的方法。

自考00023《高等数学(工本)》考点押题版

自考00023《高等数学(工本)》考点押题版

1. a b a x bx a y b y a z bz
2. a b 的充要条件是: a b 0

3. cos( ab)
ab ab
2:向量的向量积{一级重点}{选择、计算} 公式:
i
1. a b a x
j ay by
k a z (a y bz a z b y )i (a z bx a x bz ) j (a x b y a y bx )k bz

2
1
dx
r2 ( )
r1 ( )
rdr
z 2 ( r , )
z1 ( r , )
f (r cos , r sin , z )dz
x r cos sin 3. 利用球面坐标计算: 为 y r sin sin y r cos
z z u z v x u x v x
z z u z v y u y v y
2. 设 z f (u, v), u ( x, y ), v ( x, y )
dz z du z dv dx u dx v dx
3. 设 F ( x, y, z ) 0
f ( x, y)dxdy, 曲面 : z
D

f ( x, y )
2. 设 V 为 的体积: V dv
3. 设 为曲面 z f ( x, y )
曲面的面积为 S


1 f x2 f y2 d
第四章 曲线积分与曲面积分
1:两类曲线积分的计算{一类重点}{计算题} 公式: 1. 对弧长的曲线积分计算: {1}若 L: y f ( x), a x b ,则

自考《高等数学(工专)》课后习题答案详解

自考《高等数学(工专)》课后习题答案详解

自考《高等数学(工专)》课后习题答案详解《高等数学(工专)》真题:积分的性质单选题正确答案:A答案解析:本题考查积分的性质。

由于在[0,1]上,根号x大于x,所以I1>I2。

《高等数学(工专)》真题:微分概念单选题《高等数学(工专)》真题:驻点的概念单选题1.函数f(x,y)=x2+xy+y2+x-y+1的驻点为()。

A.(1,-1)B.(-1,-1)C.(-1,1)D.(1,1)正确答案:C答案解析:本题考查驻点的概念。

对x的偏导数为2x+y+1,对y的偏导数为x+2y-1,由于求驻点,也就是偏导数为0的点,所以2x+y+1=0,x+2y-1=0,得到x=-1,y=1。

《高等数学(工专)》真题:矩阵逆的求法单选题1.如果A2=10E,则(A+3E)-1=()。

A.A-2EB.A+2EC.A+3ED.A-3E正确答案:D答案解析:本题考查矩阵逆的求法。

A2-9E=E,(A+3E)(A-3E)=E,(A+3E)-1=A-3E《高等数学(工专)》真题:连续的概念单选题A.f(x)在(-∞,1)上连续B.f(x)在(-1,+∞)上连续C.f(x)在(-∞,0)∪(0,+∞)上连续D.f(x)在(-∞,+∞)上连续正确答案:C答案解析:本题考查连续的概念。

《高等数学(工专)》真题:矩阵的计算性质单选题1.设A是k×l阶矩阵,B是m×n阶矩阵,如果A·CT·B有意义,则C是()矩阵。

A.k×nB.k×mC.l×mD.m×l正确答案:D答案解析:本题考查矩阵的计算性质。

首先我们判断CT是l×m阶矩阵,所以C是m×l阶矩阵。

《高等数学(工专)》真题:连续的定义单选题1.试确定k的值,使f(x)在x=1处连续,其中()A.k=-2B.k=-1C.k=0D.k=2正确答案:D答案解析:本题考查连续的定义。

《高等数学(工专)》真题:矩阵的性质单选题1.关于矩阵的乘法的说法,正确的是()。

成人自考00023《高等数学(工本)》考点

成人自考00023《高等数学(工本)》考点

成人自考00023《高等数学(工本)》考点成人自考00023《高等数学(工本)》的考点主要包括以下内容:1. 函数与极限:函数的概念、函数的性质、函数的极限、无穷小与无穷大、极限存在准则、函数的连续性等。

2. 导数与微分:导数的定义、导数的运算法则、高阶导数、隐函数与参数方程的导数、微分的定义、微分的运算法则、微分中值定理等。

3. 微分中值定理与导数的应用:罗尔定理、拉格朗日中值定理、柯西中值定理、洛必达法则、泰勒公式、函数的单调性与极值、函数的凹凸性与拐点等。

4. 不定积分与定积分:不定积分的概念与性质、基本积分表、换元积分法、分部积分法、定积分的概念与性质、定积分的计算方法、定积分的应用等。

5. 微分方程:微分方程的基本概念、一阶微分方程的解法、高阶线性微分方程的解法、常系数线性微分方程的解法、变系数线性微分方程的解法等。

6. 无穷级数:数列极限的概念与性质、数列极限存在准则、无穷级数的概念与性质、正项级数的审敛法、交错级数的审敛法、幂级数的收敛半径等。

7. 空间解析几何:空间直线的方程与位置关系、平面的方程与位置关系、空间曲线的方程与位置关系、空间曲面的方程与位置关系、空间直线与平面的位置关系等。

8. 多元函数微分学:偏导数与全微分、多元函数的极值与条件极值、隐函数与参数方程的偏导数、多元函数的泰勒公式等。

9. 重积分与曲线积分:二重积分的概念与性质、二重积分的计算方法、三重积分的概念与性质、三重积分的计算方法、曲线积分的概念与性质、曲线积分的计算方法等。

以上是成人自考00023《高等数学(工本)》的主要考点,考生在备考过程中应重点掌握这些内容,并进行大量的练习和习题的解析,以提高自己的理解和应用能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档