全国高等数学工专自考试题及答案解析.doc

合集下载

自考高数工专试题及答案

自考高数工专试题及答案

自考高数工专试题及答案一、选择题(每题4分,共20分)1. 函数f(x)=x^2+2x+1的导数是()A. 2x+2B. 2x+1C. x^2+2D. x+1答案:A2. 以下哪个是连续函数?()A. f(x) = x^2, x ≠ 0B. f(x) = 1/x, x ≠ 0C. f(x) = x^3D. f(x) = sin(x)答案:C3. 极限lim(x→0) (sin(x)/x)的值是()A. 0B. 1C. -1D. ∞答案:B4. 积分∫(0 to 1) x dx的值是()A. 1/2B. 1/3C. 2/3D. 1答案:B5. 以下哪个选项是二阶微分方程?()A. y'' - 3y' + 2y = 0B. y'' + y = 0C. y' + 2y = 0D. y'' = 0答案:A二、填空题(每题4分,共20分)1. 如果函数f(x) = 3x^2 + 5x - 2,则f'(x) = __________。

答案:6x + 52. 函数y = e^x 的不定积分是 __________。

答案:e^x + C3. 函数y = ln(x) 的导数是 __________。

答案:1/x4. 如果函数f(x) = x^3 - 6x^2 + 11x - 6,则f(2) = __________。

答案:35. 函数y = sin(x) 的周期是 __________。

答案:2π三、解答题(每题10分,共60分)1. 求函数f(x) = x^3 - 3x^2 + 4x 的极值点。

答案:首先求导数f'(x) = 3x^2 - 6x + 4,令f'(x) = 0,解得x =1 或 x = 4/3。

然后检查二阶导数f''(x) = 6x - 6,发现f''(1) = 0,f''(4/3) > 0,所以x = 4/3是极小值点,x = 1是极大值点。

(最新整理)7月全国自考高等数学(工专)试题及答案解析

(最新整理)7月全国自考高等数学(工专)试题及答案解析

全国2018年7月自考高等数学(工专)试题课程代码:00022一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.函数111arcsin 22-+-=x x y 的定义域是( ) A .[-2,2]B .[-2,-1)∪(1,2]C .[2,2-]D .(-∞,-1)∪(1,+∞)2.在同一坐标系下,方程x y 2=与y x 2log =代表的图形( )A .关于x 轴对称B .关于y 轴对称C .是同一条曲线D .关于直线y =x 对称3.=+++++→∞)5454544(lim 1232n n n Λ( ) A .4B .5C .10D .20 4.函数)1ln(2x x y +-=的极值( )A .是-1-ln2B .是0C .是1-ln2D .不存在5.设A 为3阶方阵,且行列式|A |=1,则|-2A |之值为( )A .-8B .-2C .2D .8二、填空题(本大题共10小题,每小题3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

6.xx x πsin lim ∞→=________. 7.曲线y =cos x 上点)21,3π(处的法线的斜率等于________. 8.设f (x )可导,则)6(2+x f dx d =________. 9.设xx y ln =,则dy =________. 10.曲线2sin 2-+=x x x y 的水平渐近线方程为________.11.已知⎩⎨⎧-=-=),cos 1(7),sin (7t y t t x 则dx dy =________. 12.如果⎰+=C x x dx x f ln )(,则f (x )________.13.设行列式1110212-k k=0,则k 的取值为________. 14.无穷限反常积分⎰+∞=e dx xx 2ln 1________. 15.设A =⎥⎦⎤⎢⎣⎡-2312,则A -1=________. 三、计算题(本大题共8小题,每小题6分,共48分)16.设⎪⎪⎪⎩⎪⎪⎪⎨⎧>--=<-=,1,11,1,0,1,cos 1)(x x x x x x x f π 问f (x )在x =1是否连续?若间断,指出间断点的类型.17.求极限.1cos )1(lim 0--→x e x x x 18.讨论曲线y =(x +1)4+e x 的凹凸性.19.求由方程y 2-2xy +9=0所确定的隐函数y =y (x )的导数dxdy . 20.一曲线通过点(1,1),且该曲线上任一点M (x ,y )处的切线垂直于此点与原点的连线,求这曲线的方程.21.求不定积分.⎰dx xe x22.计算定积分⎰-π053.sin sin xdx x23.当λ取何值时,线性方程组⎪⎩⎪⎨⎧=+-=+=++,0,02,0z y x y x z y x λ有非零解?在有非零解时求出它的通解.四、综合题(本大题共2小题,每小题6分,共12分)24.陆上C 处的货物要运到江边B 处,设江岸为一直线,C 到江岸的最近点为A ,C 到A 的距离为30公里,B 到A 的距离为100公里,已知每公里陆路运费为水路运费的2倍。

最新10月全国自学考试高等数学(工本)试题及答案解析

最新10月全国自学考试高等数学(工本)试题及答案解析

全国2018年10月自学考试高等数学(工本)试题课程代码:00023一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1. 向量a ={-1,-3,4}与x 轴正向的夹角α满足( )A. 0<1<α<2πB. α=2π C. 2π<α<π D. α=π2. 设函数f (x , y )=x +y, 则点(0,0)是f (x ,y )的( )A. 极值点B. 连续点C. 间断点D. 驻点3. 设积分区域D :x 2+y 2≤1, x ≥0, 则二重积分⎰⎰D ydxdy 的值( ) A. 小于零B. 等于零C. 大于零D. 不是常数 4. 微分方程xy ′+y =x +3是( )A. 可分离变量的微分方程B. 齐次微分方程C. 一阶线性齐次微分方程D. 一阶线性非齐次微分方程 5. 设无穷级数∑∞=1n p n收敛,则在下列数值中p 的取值为( )A. -2B. -1C. 1D. 2二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。

错填、不填均无分。

6. 已知向量a ={3,0,-1}和b ={1,-2,1} 则a -3b =___________.7. 设函数z =2x 2+y 2,则全微分dz=___________.8. 设积分区域D 由y =x , x =1及y =0所围成,将二重积分⎰⎰Ddxdy y x f ),(化为直角坐标下的二次积分为___________.9. 微分方程y ″+3y =6x 的一个特解y *=___________.10. 无穷级数14332232323232+++++n nΛ+…的和为___________. 三、计算题(本大题共12小题,每小题5分,共60分)11. 求过点(-1,-2,3)并且与直线223-=-=z y x 垂直的平面方程. 12. 求曲线x =t , y =t 2, z =t 3在点(1,1,1)处的切线方程.13. 求函数f (x , y , z )=xy 2+yz 2+zx 2在点P (1,2,1)处的梯度.14. 设方程e z -x 2y +z =3确定函数z =z (x , y ), 求xz ∂∂. 15. 计算二重积分⎰⎰--Dy x dxdy e 22,其中积分区域D :x 2+y 2≤2. 16. 计算三重积分⎰⎰⎰Ωxdxdydz ,其中积分区域Ω是由x =0, y =0, z =0及x +y +z =1所围成.17. 计算对坐标的曲线积分⎰++C dy x y xdx )(, 其中C 为从点(1,0)到点(2,1)的直线段.18. 计算对面积的曲面积分⎰⎰∑xyzdS ,其中∑为球面x 2+y 2+z 2=a 2(a >0). 19. 求微分方程(1+x )dx -(1+y )dy =0的通解.20. 求微分方程y ″+ y ′-12y =0的通解.21. 判断级数∑∞=+⋅13)1(2n n n n 的敛散性. 22. 求幂级数∑∞=12n n nx 的收敛区间. 四、综合题(本大题共3小题,每小题5分,共15分)23. 求函数f (x , y )=x 3+3xy 2-15x -12y 的极值点.24. 求曲面z=22y x +(0≤z ≤1)的面积.25. 将函数f (x )=ln(1+x )展开为x 的幂级数.。

全国自学考试高等数学(工专)试题含答案09年至11年

全国自学考试高等数学(工专)试题含答案09年至11年

全国⾃学考试⾼等数学(⼯专)试题含答案09年⾄11年全国2011年4⽉⾼数(⼯专)试题课程代码:00022⼀、单项选择题1.设f (x )=ln x ,g (x )=x +3,则f [g(x )]的定义域是( ) A.(-3,+∞) B.[-3,+∞) C.(-∞ ,3] D.(-∞,3) 2.当x →+∞时,下列变量中为⽆穷⼤量的是( )A.x 1B.ln(1+x )C.sin xD.e -x 3.=∞→)πsin(1lim 2n nn ( ) A.不存在 B.π2 C.1 D.04.=+++?-1122)111(dx x x x ( ) A.0 B.4π C.2π D.π5.设A 为3阶⽅阵,且A 的⾏列式|A |=a ≠0,⽽A *是A 的伴随矩阵,则|A *|等于( ) A.a B.a1C. a 2D.a 3⼆、填空题(本⼤题共10⼩题,每⼩题3分,共30分) 6.=++++--∞→)3131313(lim 12n n _________. 7.设函数=≠=0,,0,1sin )(2x a x xx x f 在x =0连续,则a=_________. 8.=∞→xx x 1sinlim _________. 9.y '=2x 的通解为y =_________. 10.设y =sin2x ,则y 〃=_________.11.函数y =e x -x -1单调增加的区间是_________. 12.设?=xdt t x f 0)sin(ln )(,则f '(x )=_________.13.若⽆穷限反常积分4112π=+?+∞dx xA ,则A =_________. 14.⾏列式=aa a 111111_________.15.设矩阵300220111=A ,则=A A '_________.三、计算题(本⼤题共8⼩题,每⼩题6分,共48分)16.设f (x )=(x -a )g (x ),其中g (x )在点x =a 处连续且g (a )=5,求)('a f .18.求微分⽅程0=+xdy y dx 满⾜条件y |x =3=4的特解. 19.已知参数⽅程-=-=,3,232t t y t t x 求22dx y d .20.求函数f (x )=x 3-3x 2-9x +5的极值. 21.求不定积分?+dx e x 13.22.计算定积分1dx xe x .23.问⼊取何值时,齐次⽅程组=-+=-+-=+--,0)2(,0)3(4,0)1(312121x x x x x x λλλ有⾮零解?四、综合题(本⼤题共2⼩题,每⼩题6分,共12分) 24.已知f (x )的⼀个原函数为xx sin ,证明C x xx dx x xf +-=?sin 2cos )('. 25.欲围⼀个⾼度⼀定,⾯积为150平⽅⽶的矩形场地,所⽤材料的造价其正⾯是每平⽅⽶6元,其余三⾯是每平⽅⽶3元.问场地的长、宽各为多少⽶时,才能使所⽤材料费最少?2011年4⽉⾼数⾃考试题答案全国2011年1⽉⾃学考试⾼等数学(⼯专)试题⼀、单项选择题(本⼤题共5⼩题,每⼩题2分,共10分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将其代码填写在题后的括号内。

4月全国高等数学(工专)自考试题及答案解析

4月全国高等数学(工专)自考试题及答案解析

1全国2019年4月高等教育自学考试高等数学(工专)试题课程代码:00022一、单项选择题(本大题共30小题,1-20每小题1分,21-30每小题2分,共40分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

(一)(每小题1分,共20分) 1.函数xx)x (f -+=11 的定义域是( ) A .(-∞,+∞) B .(0,+∞) C .(-1,1)D .[)11,-2.函数3x )x (f =,则=+)y x (f ( ) A .)y (f )x (f B .)x (f 2 C .)x (fD .)y (f3.函数|x |)x (f -=2是( ) A .偶函数B .非奇非偶函数C .奇函数D .周期函数4.=→x x x 1sin lim 20( )A .1B .∞C .0D .不存在 5.曲线y =sin x 在点(π,0)处的法线斜率为( ) A .-1B .1C .0D .26.设x )x(f =1,则=')x (f ( )A .1B .21xC .-21x D .2x7.设⎪⎩⎪⎨⎧-==ty t x 122,则=dy dx ( )2A .tB .-1C .-t1D .-t8.函数x x y -=sin 在[0,2π]上( ) A .单调减少 B .单调增加 C .无界D .没有最大值 9.曲线y=x 4( ) A .的拐点为(0,0)B .有两个拐点C .有一个拐点D .没有拐点10.曲线x xy ln 2=的垂直渐近线是( )A .x =0B .x =1C .y =0D .y =111.=⎰)dx )x(f (d 1( ) A .dx )x (fB .dx )x (f x 21-C .dx )x(f x112-D .dx )x(f 112.=⎰dx x x 2( )A .C x +2992B .C x +2772C .2992xD .2772x13.广义积分⎰+∞22ln )x (x dx( ) A .发散 B .收敛于1C .收敛于2ln 1D .的敛散性不能判定14.过点(2,-1,2)且与直线211z y x =-=垂直的平面方程为( ) A .072=-+-z y x B .02=+-z y x C .032=+-+z y xD .0922=-+-z y x15.设)y x (e )y ,x (f x +=arctg ,则='),(f y 10( ) A .0B .13216.区域(σ)由抛物线2x y =与直线x y =围成,函数)y ,x (f 在(σ)上连续,二重积分⎰⎰)(d )y ,x (f σσ化为累次积分应为( ) A .⎰⎰102xx dydx )y ,x (f B .⎰⎰102x x dydx )y ,x (fC .⎰⎰101dydx )y ,x (fD .⎰⎰xx dydx )y ,x (f 2117.空间区域(V )由抛物面22y x z +=与平面z =1围成,三重积分⎰⎰⎰++)V (dV )z y x(222可化为累次积分( ) A .⎰⎰⎰+πρθρρ20101222d dzd )z (B .⎰⎰⎰+πρθρρρ20101222d dzd )z ( C .⎰⎰⎰+πθρρρ20101022d dzd )z (D .⎰⎰⎰+πρθρρρ20101222d dzd )z (18.微分方程023=+'-''y y y 的通解为( ) A .x x e C e C y 221+= B .x x e C e C y 221+=- C .x x e C e C y -+=221D .x x e C e C y --+=22119.级数∑∞=++-111n n nn )(( ) A .绝对收敛 B .发散C .收敛D .的部分和S n 无界20.幂级数∑∞=-01n n nnx )(的收敛半径为( )A .R =0B .R =1C .R =2D .R =+∞(二)(每小题2分,共20分)21.=⎥⎦⎤⎢⎣⎡+-++⨯+⨯+⨯+∞→)n )(n (15451161111161611lim n Λ( ) A .1 B .6145422.设⎪⎩⎪⎨⎧>-=<=010001x ,x ,,x ,)x (f ,则x =0为)x (f 的( )A .连续点B .无穷间断点C .可去间断点D .跳跃间断点23.设)x (y +=1ln ,则=)(y )(09( ) A .8!B .-9!C .-8!D .9!24.⎰=-dx x 112( ) A .|x |1ln 2-B .C |x |+-1ln 2C .|x x |11ln 21-+D .C |x x |++-11ln 2125.=⎰→2x sin lim x tdt x ( )A .∞B .0C .21D .126.直线521221+=-+=-z y x 与平面034=-+z y x 的关系是( ) A .直线与平面垂直B .直线在平面上C .直线与平面无公共点D .直线与平面相交于一点27.设y x z 2=,则=dz ( ) A .xdy x dx x y y y ln 22212+•- B .dy x dx x y y y 21222+•- C .dy x dx x y y 222+D .dy x dx x y y 22+28.设区域(σ)为42π≤22y x +≤2π,则⎰⎰++)(d yx y x σσ2222cos =( )A .0B .π2C .-π2D .π3529.微分方程xy y dx dy +=62是( ) A .一阶线性齐次方程 B .一阶线性非齐次方程 C .二阶线性微分方程D .六阶线性微分方程30.级数∑∞=12sinn nπ( )A .发散B .的部分和n S 无界C .是交错级数D .收敛二、计算题(本大题共7小题,每小题6分,共42分)31.求2301cos lim /x x x -+→. 32.设⎪⎩⎪⎨⎧=≠=0001sin 2x x ,xx )x (f , ,求)x (f '. 33.求) (022>++⎰a dx xa x a .34.计算⎰1xarctgxdx .35.求方程 011=+-+xydy y xdx满足10=)(y 的特解. 36.计算⎰⎰)(d xy σσ3,其中(σ)是由直线x y ,y ==2及y 轴围成的三角区域.37.判别级数∑∞=12n nn n!n 的敛散性.三、应用和证明题(本大题共3小题,每小题6分,共18分) 38.求心形线)a ()cos (a 01>-= θρ所围成的平面图形的面积. 39.求函数y x y xy x )y ,x (f --+-=22的极值. 40.证明:当x >0时,e x >1+x .。

自考高等数学试卷及答案

自考高等数学试卷及答案

高等数学(工专)试卷(课程代码:00022)本试卷共四页,满分100分;考试时间150分钟。

一、填空题(本题共10小题,每小题2分,满分20分): 1.函数xxy sin =的定义域为 . 2.极限=+-+∞→132lim 233x x xx x .3.函数⎩⎨⎧≤<+≤≤=21,10,e )(x x A x x f x ,在区间[0,2]上连续,则A = .4.设a>0且a ≠1,则函数x a y =的导数为 . 5.函数29323+--=x x x y 的单调减少区间为 .6.曲线122-+=x x y 的水平渐近线有 . 7.设)(x f 在区间[–1,1]上连续,则定积分32121()d 1cos x f x x x -+⎰= .8.⎰2π4π2d cot x x = .9.微分方程082=-'-''y y y 的通解为 .10.椭圆12222=+by a x 绕x 轴旋转一周而形成的旋转体的体积可用定积分表示为 .二、选择题(本题共5小题,每小题3分,满分15分):1.函数⎩⎨⎧≤->=0,1e ,0,sin )(x x x x f x在0=x 处( ) (A )可微. (B )连续但不可导.(C )左连续. (D )既不左连续又不右连续.2.下列等式不成立的是( )(A )1sin lim0=→x x x . (B )0sin lim =∞→xxx .(C )e )11(lim =+-∞→x x x . (D )e )11(lim 0=+→xx x.3.设)(x F 是连续函数)(x f 的原函数,则下列结论错误的是( ) (A ))()(x f x F ='. (B )⎰+=C x F x x f )(d )(.(C )())(d )(x f x x F ='⎰. (D ))()(d )(a F b F x x f b a-=⎰.4.设⎩⎨⎧+==)1ln(arctan 2t y t x ,则下列结论错误的是( ) (A )t t t y d 12d 2+=. (B ))d(11d 22t ty +=. (C )x t y d 2d =. (D )x tty d 12d 2+=. 5.关于微分方程x y y x d d 2=,下列说法错误的是( ) (A )这是一阶微分方程. (B )这是一阶齐次微分方程. (C )这是可分离变量的微分方程. (D )0=y 是微分方程的解. 三、解答题(本题共6小题,每小题6分,满分36分): 1.计算极限.)1(16121lim ⎥⎦⎤⎢⎣⎡++++∞→n n n2.计算极限⎰+-→x x tt t xx 0)d ln(1tan lim.3.计算定积分⎰40d e x x .4.求不定积分x x d 1e 1⎰+或⎰x x xx d cos sin 3(选择其中之一完成).5.设函数ln(y x =y ''.6.求微分方程x xy y 62=-'满足初始条件00==x y 的解.四、(本题满分10分):试确定正数t 的值,使曲线x y ln =与三直线t x x y ==,和1+=t x 所围图形的面积最小.五、(本题满分10分):证明:当x >0时,.21e 2x x x++>六、(本题共2小题,学生只需选择其中之一完成,本题满分9分): 1.叙述并证明拉格朗日(Lagrange )中值定理.2.设函数)(x f y =在区间],[b a 上连续,在),(b a 内可导,证明:存在),(b a ∈ξ,使)()()()(ξξξf a f b f '-+=.《高等数学》试题参考解答一、填空题1.}.|{为整数,k k x x π≠ 2.21. 3.1e -. 4. .ln a a x5. )3,1(-(或]3,1[-).6..0=y7.0.8..41π-9. .2241xxec ec y -+= 10..d )(2222x x a a b a a⎰--π二、选择题1. A.2.D.3.C.4.D.5.B.三、解答题(本题共6小题,每小题6分,满分36分)1.原式=)11131212111(lim +-++-+-∞→n n n=)111(lim +-∞→n n=1.2.原式=.1tan lim )1ln(1sec lim22020==+-→→x xx x x x x 3.令t x =,则.2e 2e )1(2d e 2d e 22240+=-==⎰⎰tt x t t t x4..)1e ln(1e )1e (d d 1e e 1e d 1e 1C x x x x xx x x x x x ++-=++-=+-+=+⎰⎰⎰⎰⎰⎰⎰-===x x x x x x x x x x x x x xd tan 21tan 2tan 21d d sec tan d cos sin 22223.21tan 21tan 22C x x x x ++-=5.1y ⎛⎫'=+= ⎝y ''== 6.通解为 )e 3(e d e 6e 22d )2(d )2(C C x x y x x x x xx +-=⎥⎦⎤⎢⎣⎡+⎰⎰=----⎰, 又当0=x 时0=y ,故3=C .所求特解为)1e (32-=x y . 四、解:设所围图形的面积为)(t f ,则).1ln()1(ln 1)ln (2d )ln ()(121++-++=⎥⎦⎤⎢⎣⎡--=-=++⎰t t t t t x x x x x x x t f t tt t令,0)(='t f 即,01)1ln(ln =++-t t 从而得驻点.1e 1-=t 又,0111)(<+-=''t t t f 故当1e 1-=t 时,)(t f 取得极小值。

历年全国自考高等数学(工本)试题及答案(更新至4月)

全国20XX 年4月高等教育自学考试高等数学(工本)试题课程代码:00023一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题号的括号内。

错选、多选或未选均无分。

1.下列曲面中,母线平行于y 轴的柱面为( )A .z =x 2B .z = y 2C .z = x 2 + y 2D .x + y + z =12.已知函数h (x,y )=x –y+f (x+y ),且h (0,y )=y 2,则f (x+y )为( )A .y (y + 1)B .y (y - 1)C .( x + y )( x + y -1)D .( x + y )( x + y +1)3.下列表达式是某函数u (x,y )的全微分的为( )A .x 2y d x + xy 2d yB .x d x + xy d yC .y d x - x d yD .y d x + x d y4.微分方程y xy d d =x 的阶数是( ) A .0B .1C .2D .35.无穷级数∑∞=2!1n n 的和为( )A .e + 1B .e - 1C .e - 2D .e + 2 二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。

错填、不填均无分。

6.已知向量a ={ -2, c, 6}与向量b ={ 1, 4, -3}垂直,则常数c=______.7.函数z =224y x --ln(x 2+y 2-1)的定义域为______.8.二次积分I =⎰⎰--21011d d y x f ( x, y )y ,交换积分次序后I =______.9.已知y =sin2x +ce x 是微分方程y ''+4y =0的解,则常数c =______.10.幂级数∑∞=+013n n n x 的收敛半径R =______. 三、计算题(本大题共12小题,每小题5分,共60分)11.将直线⎩⎨⎧=-++=++0432023z y x z y x 化为参数式和对称式方程. 12.设方程f ( x + y + z, x, x + y )=0确定函数z = z ( x, y ),其中f 为可微函数,求x z ∂∂和y z ∂∂. 13.求曲面z = 2y + ln yx 在点(1,1,2)处的切平面方程. 14.求函数z = x 2 - y 2在点(2,3)处,沿从点A (2,3)到点B (3,3+3)的方向l 的方向导数.15.计算二重积分()⎰⎰+D y x x yd d sin 32,其中积分区域D 是由y = | x |和y =1所围成.16.计算三重积分I =⎰⎰⎰Ωz y x xy d d d ,其中积分区域Ω是由x 2+y 2=4及平面z =0,z =2所围的在第一卦限内的区域. 17.计算对弧长的曲线积分I =⎰L ds y 2,其中L 为圆周x 2+y 2=9的左半圆. 18.计算对坐标的曲线积分I =⎰-++L y y x x x y d )1(d )1(22,其中L 是平面区域D :x 2 + y 2 ≤4的正向边界.19.验证y 1 = e x ,y 2 = x 都是微分方程(1 – x )y ''+y x '-y = 0的解,并写出该微分方程的通解。

最新10月自考高等数学(工专)试题及答案解析

2018年10月自考高等数学(工专)试题课程代码:00022一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.下列函数中在所给的区间上是有界函数的为( )A. f (x )=e -x (-∞,+∞)B. f (x )=cot x (0,π)C. f (x )=sin x1 (0,+∞) D. f (x )= x 1 (0,+∞) 2.函数y =lg(x -1)的反函数是( )A.y =e x +1B.y =10x +1C.y =x 10-1D.y =x -10+1 3.级数∑∞=+1)1(1n n n 的前9项的和s 9为( ) A.9001 B.32 C.0.9 D.14.下列无穷限反常积分收敛的是( ) A.⎰+∞dx x 211 B.⎰+∞dx x11 C. ⎰+∞xdx ln 1 D. ⎰+∞dx e x 1 5.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=z y x A 000000,则行列式|-2A |的值为( )A.2xyzB.-2xyzC.8xyzD.-8xyz二、填空题(本大题共10小题,每小题3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

6.=+∞→xx x arctan lim _______. 7.设f (x )=⎪⎪⎩⎪⎪⎨⎧>=<+.0,2sin ,0,,0,1x xx x k x e x 在x =0处连续,则常数k =______.8.⎰=-dx x 211________.9.设y =e x +sin x ,则dy =______.10.曲线y =2ln 33-+xx 的水平渐近线方程为________. 11.设函数)2)(1()(-+=x x x x f ,则方程0)(='x f 的两个根所在的区间分别为_______.12.A ,B 均为3阶方阵,且|A |=3,|B |=-2,则|B A '|=_______.13.设方程y -xe y =0确定了隐函数y =y (x ),则dxdy =_______. 14.=⎰→x dt t x x 20cos 0lim _______. 15.设⎥⎦⎤⎢⎣⎡-2001X =⎥⎦⎤⎢⎣⎡-1021,则矩阵X =______. 三、计算题(本大题共8小题,每小题6分,共48分)16.求极限3lim xe xx +∞→. 17.求曲线⎩⎨⎧==ty t x 2cos sin 在6π=t 处相应的点处的切线方程和法线方程. 18.求不定积分⎰-.)sin (cos 2dx x x19.求微分方程x e x y y sin cos -=+'满足初始条件0)0(=y 的特解.20.已知⎪⎩⎪⎨⎧π≤<ππ-π≤≤-=,2,2,2,sin )(x x x x x x f 求⎰ππ-2.)(dx x f21.确定函数0)(x x8x 2y >+=的单调区间. 22.求曲线2x e y -=的拐点.23.用消元法求解线性方程组⎪⎩⎪⎨⎧=-+=--=--.x x x ,x x x ,x x x 05231322321321321四、综合题(本大题共2小题,每小题6分,共12分)24.求函数x x f(x)-+=1在区间[-5,1]上的最大值和最小值.25.求由曲线xy =1与直线y=2,x =3所围成的平面图形的面积.。

4月全国自考高等数学(工本)试题及答案解析

1全国2018年4月自学考试高等数学(工本)试题课程代码:00023一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.在空间直角坐标系中,方程1222222=++cz b y a x 表示的图形是( )A.椭圆抛物面B.圆柱面C.单叶双曲面D.椭球面2.设函数z =x 2y ,则=∂∂xz( ) A.212-y yxB.x xyln 2C.x x yln 22 D.()12-y yx3.设Ω是由平面01=-+-z y x 及坐标面所围成的区域,则三重积分=⎰⎰⎰Ωdxdydz ( ) A.81 B.61 C.31 D.21 4.已知微分方程)()(x Q y x P y =+'的两个特解为y 1=2x 和y 2=cos x ,则该微分方程的通解是y =( ) A.2C 1x +C 2cos x B.2Cx +cos x C.cos x +C (2x -cos x ) D.C (2x -cos x )5.设幂级数∑∞--1)3(n n nx a在x =1处收敛,则在x =4处该幂级数( )A.绝对收敛B.条件收敛2C.发散D.敛散性不定二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。

错填、不填均无分。

6.设函数y x y z cos sin =,则=∂∂xz. 7.已知dy e dx e y x yx +++是某函数()y x u ,的全微分,则()=y x u , .8.设∑是上半球面()01222≥=++z z y x ,则对面积的曲面积分⎰⎰∑=dS .9.微分方程x y 2sin =''的通解为y= .10.无穷级数∑∞=0!2n nn 的和为 .三、计算题(本大题共12小题,每小题5分,共60分) 11.求过点P (3,-1,0)并且与直线321-=-=z y x 垂直的平面方程. 12.设函数()y x x f z -=,3,其中f 是可微函数,求x z ∂∂,yz∂∂. 13.设方程xyx ln=确定函数()y x z z ,=,求全微分dz. 14.求函数()22,xy y x y x f +=在点(1,-1)沿与x 轴正向成30°角的方向l 的方向导数.15.求空间曲线t z t y t x ===,sin ,cos 在点⎪⎪⎭⎫⎝⎛4,22,22π处的切线方程.16.计算二重积分()dxdy e I Dy x⎰⎰+-=22,其中区域D :.0,422≥≤+y y x17.计算二次积分⎰⎰=22sin ππydx xxdy I . 18.计算对弧长的曲线积分()⎰+-L ds y x 132,其中L 是直线2-=x y 上从点(-1,-3)到点(1,-1)的直线段. 19.计算对坐标的曲线积分⎰+Lydx xdy 其中L 是抛物线2x y =上从点(-2,4)到点(2,4)的一段3弧.20.求微分方程034=+'-''y y y 满足初始条件()8)0(,40='=y y 的特解. 21.判断级数()∑∞=-+-131321n n nn 是否收敛,如果收敛,是条件收敛还是绝对收敛?22.设函数()⎩⎨⎧<≤<≤-=ππx x x x f 0,0,0的傅里叶级数展开式为()∑∞=++10sin cos 2n n n nx b nx a a ,求系数b 7.四、综合题(本大题共3小题,每小题5分,共15分) 23.求函数()y x xy y x y x f 311381021,22-----=的极值.24.设曲线()x y y =在其上点(x ,y )处的切线斜率为x +y ,且过点(-1,e -1),求该曲线方程. 25.将函数()2312+-=x x x f 展开为(x +1)的幂级数.。

10月全国高等数学(工专)自考试题及答案解析

1全国2019年10月高等教育自学考试高等数学(工专)试题课程代码:00022一、项选择题(本大题共30小题,1—20每小题1分,21—30每小题2分,共40分。

在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内) (一)(每小题1分,共20分)1.函数y=xcos2x+32x x 1x++是( ) A. 奇函数B.偶函数C. 非奇非偶函数D. 有界函数2. 函数y=2cos(2x+4π)的周期是( ) A. 2πB. πC.2π D. 03.设数列a n ,b n 及c n 满足:对任意的n,a n n n c b ≤≤,且2a lim n n =∞→,0)a c (lim n n n =-∞→,则=∞→n n b lim ( ) A. 0 B. 1 C.2 D. -24. =-+-→xx 1x 2x lim 321x ( )A.21B. 0C. 1D. ∞5. 在抛物线y=x 2上点M 的切线的倾角为4π,则点M 的坐标为( ) A. (41,21)B. (1,1)C. (21,41)D. (-1,1)6. 设y=tgx+secx, 则dy=( ) A. sec 2x+secxtgx B. (sec 2x+secxtgx)dxC. (sec 2x+tg 2x)dxD. sec 2 x+tg 2x7. f(x)在点x 0可导是f(x)在点x 0连续的( ) A. 充分条件B. 必要条件C.充分必要条件D. 无关条件8. 函数y=2x 1+单调减少的区间是( ) A. (-+∞∞,) B. (-∞,-2) C. (+∞---∞,2(),2,)D. (-2,+∞)29. 曲线y=e x1-1的水平渐近线方程为( ) A. x=1B. y=1C.x=0D. y=010. ⎰=xdx 3sin ( )A.C x 3cos 31+ B. -C x 3cos 31+C. –cos3x+CD. cos3x+C11. 设⎰+=Φ2x sin 2dt t 11)x (,则=Φ')x (( )A.xsin 112+B.xsin 1xcos 2+ C. x sin 1xcos 2+-D. xsin 112+-12. 函数5x 5e 的一个原函数为( ) A. e 5xB. 5e 5xC.x 5e 51D. –e 5x13.=⎰ππ-223xdx cos x ( )A.π32B.34 C. 0 D.32 14. 下列广义积分收敛的是( )A. ⎰+∞1xdxB.⎰-22)x 1(dxC.⎰+∞+1dx x11D.⎰-a22xa dx (a>0)15. 下列集合可作为一条有向直线在空间直角坐标系中的方向角γβα,,的是( ) A. 45ο,45ο,60ο B. 45ο,60ο,60ο C. 30ο,45ο,60οD. 45ο,60ο,90ο16. 设函数f(x,y)=xy+xy,则)1,1(f x '=( ) A. 0B. 1C. –1D. 217. 设函数u=ln(x 2+y 2+z 2),则du|(1,1,1)=( )A. )dz dy dx (31++B. )dz dy dx (32++C. dz dy dx ++D.)dz dy dx (34++ 18.dy xy dx 11⎰⎰=( )3A. 0B.41 C.21 D. 119. 级数∑∞=+1n n 1n( ) A. 收敛 B. 绝对收敛 C. 的敛散性无法判断D. 发散20. 微分方程20y y 3y =+'+''的通解为( ) A. y=C 1e -2x+C 2e -3xB. y=e -x+C 22xe-C. y=C 1e -x +C22x e -D. y=e -x +e 2x(二)(每小题2分,共20分) 21. =π∞→xsinx lim x ( ) A. 1 B. π C. 不存在 D. 022. 设f(x)=⎩⎨⎧>-≤-1x ,x 31x ,1x 则x=1为f(x)的( )A. 连续点B. 无穷间断点C. 跳跃间断点D. 可去间断点23. 设3x 2+4y 2-1=0,则=dxdy( )A. x 3y 4B. y 4x 3C. -y4x3 D. -x3y 4 24. 如果f(x 0)=0且f '(x 0)存在,则=-→0x x x x )x (f lim 0( ) A. f '(x 0)B. 0C. 不存在D. ∞25. 设F(x)是f(x)的一个原函数,则⎰=-dx )x 21(f ( ) A. F(1-2x)+C B.C )x 21(F 21+- C. –F(1-2x)+CD. -C )x 21(F 21+-26. 下列平面中过点(3,-1,5)且与直线0z 1y 2x =-=平行的平面为( ) A. z-5=0 B. x-3=0 C. y+1=0D.11y 23x -+=- 27. 设函数z=x 2+y 2-2x-4y,则( )4A. 在点(1,2)处取最大值5B. 在点(1,2)处取最小值-5C. 在点(0,0)处取最大值0D. 在点(0,0)处取最小值028. 设区域(σ)为:10y ,0x ,4y x 22≥≥≤+≤,则=σ+⎰⎰σ+d yx e22y x 22( )A. )e e (22-πB. )e e (2-πC. )e e (22-πD. )e e (42-π29. 用待定系数法求方程5y 2y ='+''的特解时,应设( ) A. a y =B. 2ax y =C. ax y =D. bx ax y 2+=30. 级数∑∞=+1n )n 11ln(( )A. 收敛B. 绝对收敛C. 不一定发散D. 发散二、计算题(每小题6分,共42分)31. 求0x lim →[x 1)x 1ln(1-+].32. 设⎩⎨⎧+==)t 1ln(y arctgt x 2,求dx dy与22dx y d . 33. 求xx 1x 3x lim ⎪⎭⎫⎝⎛++∞→.34. 求⎰+dx )x 1(x4.35. 求方程22x1y 1dx dy--=的通解. 36. 求⎰⎰σ+σ)(y x d e ,其中区域(σ)由y=lnx,y=0,x=e 所围成.37. 求幂级数∑∞=--1n n1n nx )1(的收敛区间(不考虑端点). 三、应用和证明题(每小题6分,共18分)38.求由y=x ,y=0,x=4围成的平面图形绕y 轴旋转而成的旋转体的体积.39.制作一个上、下均有底的圆柱形容器,要求容积为定值V. 问底半径r 为多大时,容器的表面积最小?并求此最小面积.540. 证明:⎰⎰ππ=22n n,xdx cos xdx sin 其中n 为正整数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯精品自学考试资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
全国 2019 年 7 月高等教育自学考试
高等数学(工专)试题
课程代码: 00022
一、单项选择题(本大题共30 小题, 1— 20 每小题 1 分, 21— 30 每小题 2 分,共 40 分)在每
小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的
括号内。

错选、多选或未选均无分。

(一)(每小题 1 分,共 20 分)
1.函数y x 2 4x 3 的定义域是()
A. , 3
B. ,
C. ,1 , 3,
D.( 1, 3)
2.函数 y=xsinx+cos2x+1 是()
A. 奇函数
B. 偶函数
C.周期函数
D.非奇非偶函数
3.数列有界是数列收敛的()
A. 充分条件
B. 必要条件
C.充分必要条件
D.无关条件
4. lim
(1 n) 3
()n 3 5n 2 1
n
A.0
1
C.1
6
B. D.
5 5
5.曲线 y=sinx 在点, 3 处的法线斜率是()
3 2
3 1 2
D. -2 A. B. C.
3
2 2
6.设 y=arcsinx+arccosx, 则 y′ =()
A.0
2
C.
2 2
B.
x 2 x 2
D.
1 1 1 x 2
7.函数 f(x)=x 2+1 在0,1 上使拉格朗日中值定理结论成立的 c 是()
A.1
1 1
D.-1
B. C.
2 2
1
8.曲线 y
e x
2


A. 仅有垂直渐近线
B. 仅有水平渐近线
C.既有垂直渐近线又有水平渐近线
D.无渐近线
9.一条处处具有切线的连续曲线 y=f (x) 的上凹与下凹部分的分界点称为曲线的(

A. 驻点
B. 极大值点
C.拐点
D.极小值点
10. ( 1+2x ) 3
的原函数是( )
A. 1
(1 2x )
4 B. (1 2x )4
8
C. 1 (1 2x )4
D. 6(1 2x )
2
4
11. 1


x 2 dx
4
A. arcsin
x
B. x
C
arcsin
2
2
C. ln x
x 2
4
D. ln x
x 2 4 C
12. 广义积分
xe x 2 dx


1
A.
1
B.
1
2e
2e
C.e
D.+∞
13.
2
cos 3 xdx (

2
A.
2
B.
2
C.
4
4
3
3
3
D.
3
14. 设物体以速度 v=t 2
作直线运动, v 的单位为米 / 秒,物体从静止开始经过时间 T ( T>0 )秒
后所走的路程为( )
A.Tt 2

B. T
t 2 米
C. T 3

D. T 3

2
3
2
15. 直线
x
1
y 2 z
3
位于平面(

2
1
A.x=1 内
B.y=2 内
C.z=3 内
D.x-1=z-3 内
16. 设函数 f (x,y)=(x 2-y 2)+arctg(xy 2
),则 f x (1,0)


A.2
B.1
C.0
D.-1
17. 函数 z 2
x 2 y 2 在点( 0, 0)(

2
A. 取得最小值 2
B. 取得最大值 2
C.不取得极值
D. 无法判断是否取极值
18.区域(σ)为:x 2+y 2 -2x ≤ 0,二重积分
x 2
y 2 d 在极坐标下可化为累次积分 (

( )
A.
2
1 2
d d B.
2
2 cos
2
d d
0 0
C.
2
2 cos
2
d d
D.
2cos
2
d d
0 0
2
19.级数
1


n(n
n
1
1)
A. 收敛
B. 发散
C.绝对收敛
D. 无法判断敛散性
20.微分方程 y
2y 5y
0 的通解为(

A.y=C 1e x +C 2e -2x
B.y=e -2x (C 1 cosx+C 2sinx)
C.y=e x (C 1cos2x+C 2sin2x)
D.y=e 2x (C 1cosx+C 2sinx)
(二)(每小题 2 分,共 20 分)
21.设 f (x )
x 1

x
,则 x=2 为 f (x) 的(
2
A. 可去间断点
B. 连续点
C.跳跃间断点
D. 无穷间断点
22.函数 y
1 x 5 1
x 3 单调减少的区间是(

5
3
A.[-1 , 1]
B. ( -1, 0)
C.( 0,1)
D. ( 1, +∞)
23.
cos 3
x sin xdx =( )
A.
1 c os 4 x C B.
1 cos 4 x
4 1 4 1
C.
cos 4 x C
D.
cos 4 x 4
dy
4


24.设 y 5
+2y-x=0 ,则
dx
A. 5y 4
2
B.
1
2
5y 4
C.
1
D.
1
5y
4
2
5y
4
1
3
25.设 f (x )
x 1, x
1
,则 lim f (x ) (

2 x 2
, x 1
x 1
A. 不存在
B.-1
C.0
f (x 0 h)
f (x 0 )

26.如果函数 f (x) 在点 x 0 可导,则 lim h
h
A. f (x 0 )
B.f
(x 0 )
C.不存在
27.曲线
2x 2 3y 2 z 2 16
x
2
2y 2
z
2
在 xoy 坐标平面上的投影方程为(
12
x 2 z 2 0
x 2 z 2 A.
B.
0 x
y
x 2 y 2 4
x 2 y 2 C.
D.
z
x
D.1 )
D. f ( x 0 )

4
4
28.用待定系数法求方程 y 3y 2y e 5x 的特解时,应设特解(

A. y ae 5x
B. y axe 5 x
C. y
ax 2 e 5x
D. y (ax b)e 5 x
29.函数 f (x)
1
的麦克劳林级数为(

1 2x
A.
2n x n , x 2
B.
( 2) n x n , x
1
n 0
n
2 C.
2n x n , x 1
D.
2 n x n , x
1 n 1
n
2
dy
y 2

30.微分方程
y 4 是(
dx x
A. 一阶线性齐次方程
B. 一阶线性非齐次方程
C.二阶微分方程
D.四阶非齐次微分方程
二、计算题(本大题共
7 小题,每小题 6 分,共 42 分)
1 x
3 x
31.求 lim
x
2 1 .
x 1
4
32.求
x
dx .
1 x 4
x a cost d 2 y
33. 设
y
,求
dy

dx
2
.
b sin t dx
34. 求 lim ln sin x 2 .
x ( 2x )
2
35. dy
sin x 的通解和满足初始条件y|x=0=1 的特解 .
求微分方程
dx
36. 求x2 d ,其中区域(σ)由xy=1,y=x,x=2 所围成 .
( )
y
37.将函数f (x ) 1
x
展开成 (x-3) 的幂级数 .
三、应用和证明题(本大题共 3 小题,每小题 6 分,共 18 分)
38. 设函数 f (x)=alnx+bx 2+x 在 x1=1 和 x2=2 都取得极值,试求出a, b 的值 ,并问此时 f (x) 在x1与 x2处取得极大值还是极小值?
39. 一曲边梯形由 y=x 2-1, x 轴和直线 x=-1 ,x 1
所围成 ,求此曲边梯形的面积 A. 2
40. 设 f (x , y)=x 4+y 4+4x 2y2
验证: (1)f (tx , ty)=t 4f(x , y);
(2) xf x yf y4f (x , y).
5。

相关文档
最新文档