乙烯基硅烷偶联剂合成方法的研究进展

乙烯基硅烷偶联剂合成方法的研究进展
乙烯基硅烷偶联剂合成方法的研究进展

,2007,21(6):360~363SIL ICON E MA TERIAL

乙烯基硅烷偶联剂合成方法的研究进展

徐少华,邓锋杰3,李卫凡,温远庆,李凤仪

(南昌大学化学系,南昌330031)

摘要:介绍了合成乙烯基硅烷偶联剂的方法:直接合成法、有机金属合成法、热缩合法、硅氢加成法、氯代乙基硅烷脱氯化氢法等,并简明地分析了各种方法的优缺点。

关键词:乙烯基硅烷,偶联剂中图分类号:TQ264.1+2

文献标识码:B

文章编号:10094369(2007)0620360204

收稿日期:20070628。

作者简介:徐少华(1977—

),男,硕士生,主要从事有机硅化学和有机合成的研究。3

联系人,E 2mail :fengjiedeng @ncu 1edu 1cn 。

硅烷偶联剂是应用领域较多、使用量较大的偶联剂。在它的分子中,同时存在能与无机材料和有机材料结合的两种不同化学性质的基团。通常,有机材料和无机材料很难结合,硅烷偶联剂的特殊结构使它成为有机材料和无机材料结合的媒介。乙烯基硅烷偶联剂的通式为(C H 2C H )R a Si X 3-a (式中,R 为甲基烷基等;a 为0、1;X 为卤素、甲氧基、乙氧基、甲氧基乙氧基、乙酰氧基等),是用途较广的硅烷偶联剂品种之一,可用作玻璃纤维、无机填料的表面处理剂,密封剂、粘接剂、涂料的增黏剂,聚烯烃的交联剂等[1]。随着其用量的扩大,了解并研究它们的合成方法以降低生产成本就显得尤为重要。

1 直接法

直接法是指在较高温度和催化剂存在下直接

反应,生成烃基卤硅烷的方法[2]。此法由美国化学家Rochow 于1941年发现。用此法制备乙烯基硅烷偶联剂时,通常是在加热及铜催化剂存在下,将含有乙烯基的卤代烷与硅粉直接反应(如式1)。

CH 2

CHCl +Si

Cu

(CH 2

CH 2)SiCl 3+(CH 2

CH 2)2SiCl 2

(1)

原苏联有机硅化学家M 1F 1Shoes -Takoskii 等人尝试了各种合成乙烯基氯硅烷的方法,发表了大量的研究报告和专利。对直接法合成乙烯基氯硅烷作出了巨大的贡献。他们发现,用Cu 的

合金(铜镍硅合金、铜硅合金等)为催化剂,在N 2保护下,硅与氯乙烯直接反应合成乙烯基氯硅烷的产率仅有1013%~14%。G.S Popeleva 发现,在氧化铜存在下,氯乙烯和硅块在460℃下接触10~35s ,乙烯基氯硅烷的收率为45%~60%[3]。使用硅镍合金或硅锡合金作催化剂时,虽然可以提高反应活性及产物的收率,但产物收率还是比较低,总收率难以超过50%[4]。

直接法虽然可以用于合成乙烯基硅烷偶联剂;但是由于乙烯基卤化物中的卤原子与双键直接相连,反应活性较差,且副产物多,导致目标产物收率较低。再者反应能耗又大。因此,此法在实际生产中未能获得广泛应用。

2 有机金属合成法

有机金属合成法是以有机金属化合物为媒介,使有机基与硅化合物中的硅原子连接,生成有机硅化合物的方法[5]。它主要包括:格氏试剂法、有机锂法以及钠缩合法等。211 格氏试剂法

格氏试剂法一般是在有机溶剂存在下,将含乙烯基的格氏试剂与含Si —X 键或Si —OR 键的硅烷进行反应,使乙烯基与硅原子相连而得到乙烯基硅烷偶联剂的方法。常用的溶剂有:二甲苯、石油醚、乙醇、四氢呋喃、氯苯以及烷氧基

第6期徐少华等.乙烯基硅烷偶联剂合成方法的研究进展?361

 ?硅烷等。如果从含有Si—OR键的硅烷出发,不

使用溶剂也可获得良好的收率(如式2)。

CH2CHMgCl+Si(OC2H5)4

CH2CHSi(OC2H5)3+Mg(O H)Cl(2)

格氏试剂法是实验室合成乙烯基硅烷偶联剂的主要方法之一。采用此法所得的产物比较单纯,易于分离,且能引入多类型的有机基;但由于此法需使用大量可燃溶剂,不太安全。

212 有机锂法

有机锂的性质与格氏试剂相似,但比格氏试剂更为活泼;因此,含乙烯基的有机锂试剂更容易和Si—X、Si—H及Si—OR等键反应而生成乙烯基硅烷偶联剂。此法的优缺点和格氏试剂法很相似。

213 钠缩合Wurtz-Fittig法

钠缩合法可使乙烯基氯化物与含Si—X键(或Si-OR键)的硅烷进行反应;或者是有机氯硅烷直接与乙烯基钠反应即可得到目标物(如式3~4)[6]。

CH2CHCl+2Na+CH3Si(O Et)3

Me(CH2CH)Si(OC2H5)2+C2H5ONa+NaCl

(3)

CH2CHCl+2Na+Si(OC2H5)4

(CH2CH)Si(OC2H5)3+EtONa+NaCl(4)

钠缩合法的特点与格氏试剂法也相差不多,都需使用大量金属钠,不安全。

另外,以上三种方法的主要原料氯乙烯对人体伤害很大,既使在很低的浓度下长期接触也容易导致肝癌;所以,现在这三种方法都主要是在实验室里使用。

3 热缩合法

在高温(一般大于450℃)下,含Si—H 键的氯硅烷与乙烯或氯代乙烯反应,可制得乙烯基硅烷偶联剂。但从乙烯出发的缩合反应由于活性较差、需要更高的温度,而且目标产物收率很低(质量分数常常低于20%);所以在工业生产中未能获得应用(如式5)。

CH3Si HCl2+CH2CH2

600℃

CH3(CH2CH)SiCl2+H2(5)

而氯代乙烯,如氯乙烯则比较容易和HSiCl3、C H3Si HCl2等进行缩合反应,相应的目标产物收率可达50%~70%[4]。反应如式6~7。

HSiCl3+CH2CHCl

500~600℃

(CH2CH)SiCl3+HCl(6) CH3Si HCl2+CH2CHCl

500~600℃

CH3(CH2CH)SiCl2+HCl(7)

在热缩合反应中,物料配比、反应温度以及接触时间是三个重要的因素,合理调配这三者能明显地提高原料的转化率及目标产物的收率;另外,使用合适的催化剂或添加剂也是提高反应选择性和目标产物收率的有效方法。

热缩合法工艺稳定、操作安全、产率可观,是工业上合成乙烯基氯硅烷的常用方法之一,如美国联合碳化学公司用此法生产乙烯基单体,其乙烯基氯硅烷的收率达到9414%,甲基乙烯基二氯硅烷的含量85%[7];此法的不足之处是能耗大、副产物多、分离困难,并伴有大量的HCl 气体产生而污染环境。

4 硅氢加成法

硅氢加成反应于20世纪40年代发现,现已成为实验室和有机硅工业生产的重要方法之一。紫外光、γ-射线、高温、过氧化物、偶氮化物以及铂、钯等均能引发硅氢加成反应(如式8~10)[8]。

HSiCl3+HC≡CH

(t-BuO)2

CH2CHSiCl3(8) HSiCl3+HC≡CH

Pd/Al2O3

CH2CHSiCl3(9) HC≡CH+HSi(OCH2CH3)3

铂催化剂

90~130℃

CH2=CHSi(OCH2CH3)3(10)含Si—H键的化合物与乙炔等进行硅氢加成反应时,第八族过渡金属的配合物的催化效果最好。李凤仪等人用铂催化剂催化乙炔和甲基二氯硅烷的硅氢加成反应,高收率(>95%)地合成了甲基乙烯基二氯硅烷[9-10]。Watanabe Hamao等人用干冰和丙酮作致冷剂、用Pt Cl2(PPh3)2作催化剂、用苯作溶剂,在80℃

?362 ?第21卷

反应10h ,乙烯基三乙氧基硅烷的产率可达到97%[11]。陈新兰等人用自制的WD -铂催化剂Ⅱ催化乙炔和三甲氧基硅烷的加成反应,乙烯基三甲氧基硅烷的收率为85%[12]。同一年,O.Masaki 等人在聚乙二醇上锚合Pt (PPh 3)4Cl 2,然后将其负载于硅胶上,合成了一种固载液相催化剂,并用于催化乙炔与三甲氧基硅烷的硅氢加成反应,可获得67%的乙烯基三甲氧基硅烷[13]。

用硅氢加成法制备乙烯基硅烷偶联剂要考虑多种因素,其中最关键的因素是催化剂。硅氢加成反应的催化剂可分为均相催化剂和多相催化剂。其中均相催化剂又可分为过渡金属的简单化合物(如氯铂酸H 2Pt Cl 6,一般溶解在异丙醇等溶剂中使用)和均相低分子有机金属络合物(络合剂多为醇类、胺类、羰基化合物和CO 等)[14];对于多相催化剂,根据载体种类不同又可分为无机物负载型多相催化剂(通常是用常规的无机多孔材料浸渍活性组分,经干燥或焙烧而成)和有机物负载型多相催化剂(通常是由高分子配体和金属配合物在适当条件下配合而成)[15]。

均相催化剂的特点是催化活性高、催化剂很难回收、重复利用率很低;无机物负载型多相催化剂虽然具有稳定性比较高、容易回收再利用的优点,但其活性和选择性与均相催化剂比相对较低,且一般反应温度较高些;有机物负载型多相催化剂具有均相络合催化剂的高活性、高选择性特点,并兼有经典多相催化剂的高稳定性、易于回收再利用等优点,但是制备较复杂。

硅氢加成法的不足之处是对反应条件的控制要求较严,如果控制不好的话,会发生二次加成反应,导致一次加成产物收率降低。相对于其它方法来讲,硅氢加成法还是具有反应条件较温和、产率较高、实用面广等特点,并且避免了采用其它方法放出氯化氢气体的不足;因而在乙烯基硅烷的合成中占有重要地位,是目前应用较多的方法[12,16-17]。

5 氯代乙基硅烷脱HCl 法

由氯代乙基硅烷脱HCl 可制得乙烯基硅烷偶联剂。常用的脱HCl 剂是仲胺和叔胺。如:

二乙胺、三甲胺、二乙基苯胺、吡啶、喹啉、哌啶以及脂肪族二腈等;其中,喹啉特别适用于氯

代乙基硅烷的脱HCl 反应,它既不引起硅碳键的断裂,也不易与硅卤键反应,可使目标产物收率达60%左右。反应如式11。

ClCH 2CH 2SiCl 3

C 9H 7N

CH 2CHSiCl 3+C 9H 7N ?HCl (11)

AlCl 3可作为氯代烷基硅烷脱HCl 的催化

剂;此外,还可用硅、铁或铜粉作HCl 化氢的吸收剂[17]。反应可在氯代乙基硅烷的沸点以下进行。反应活性较低的氯代烷基硅烷(如ClC H 2C H 2SiC H 3Cl 2)不适用于此法。

此法通常只用于实验室里制备乙烯基硅烷偶联剂[7]。

6 展望

合成乙烯基硅烷偶联剂的方法很多,各种方法各有优缺点,适用范围和适用条件均有差别。对于一些特别的乙烯基硅烷偶联剂来讲,又有特别的制备方法。其中以硅氢加成法适用面较广、目标产物收率较高且较为环保,最具有发展潜力,有待于有机硅工作者作进一步的研究,使较其更加完善。

参考文献

[1]沈玺,高雅男,徐政.硅烷偶联剂的研究与应用

[J ].上海生物医学工程,2006,26(1):15216.[2]黄世强,孙争光,李盛彪,等.新型有机硅高分子

材料[M ].北京:化学工业出版社,2004:36240.

[3]胡文斌,殷青.乙烯基氯硅烷的合成研究[J ].江

西化工,1999(4):30231.

[4]周宁琳.有机硅聚合物导论[M ].北京:科学出版

社,2000:63263.

[5]伟明.乙烯基特种有机硅单体和中间体的生产[J ].

有机硅材料及应用,1997(3):11211.

[6]幸松民,王一璐.有机硅合成工艺及产品应用[M].

北京:化学工业出版社,2000.2092210.

[7]潘斌,胡文斌,李风仪.乙烯基单体重要合成方法

研究[J ].江西化工,2004(3):60261.

[8]赵明.乙烯基三乙氧基硅烷合成新工艺的研究[J ].

化学工程师,1996(52):9211.

[9]兰支利,李凤仪,刘文明等.利用硅氢加成法高选

择性合成甲基乙烯基二氯硅烷[J ].化学通报,

1997(10):39241.

第6期徐少华等.乙烯基硅烷偶联剂合成方法的研究进展?363

 ?

[10]盛晓莉,李凤仪,杨健.环状和链状烯烃的硅氢

加成研究[J].南昌大学学报(理科版),2000, 24(2):1312135.

[11]HAMAO W,MUN EO A,YOICHIRO N.[J].J

Organometalli Chem,1980,195:3632373. [12]陈新兰,兰鲲,左洪武,等.乙炔与烷氧基硅烷

硅氢化反应催化剂的研究[C]//中国氟硅有机材料工业协会有机硅专业委员会.2002年中国有机硅学术交流会论文集,杭州,2002.成都:中国氟硅有机材料工业协会有机硅专业委员会,2002:

2862289.

[13]MASA KI O,HIRONARI KIYA,HIROMI Y,et

al.A novel catalyst containing a platinum complex in polyethylene glycol medium supported on Silica

gel for vapor2phase hydrosilylation of acetylene with

trichlorosilane or trimethoxysilane[J].Chem Com2 mun,2002,2:163421635.

[14]赵培真,王洪涛,阚成友.硅氢加成反应催化剂

[J].有机硅材料及应用,1995(1):125.

[15]赵建波,孙雨安,张宁,等.负载型金属配合物

催化硅氢加成反应研究进展[J].工业催化,

2005,13(12):11214.

[16]李凤仪,戴延凤,萧斌.不对称烯烃硅氢加成制

备β-加成物方法:CN,1865263[P].20062 11222.

[17]盛晓莉.乙炔和三氯硅烷的加成反应探讨[J].科

技进展,2002(6):25228.

研发动态

端硅烷基聚醚

华南理工大学的唐涛等人通过红外光谱、核磁共振和凝胶渗透色谱等对XZ-J34型端硅烷基聚醚样品的结构及其流变性质进行了研究。结果表明,XZ-J34型端硅烷基聚醚样品的主链为聚环氧丙烷,端基为含有硅甲基和硅甲氧基的硅烷;数均摩尔质量为21044g/mol,多分散系数为1112,黏度在0~40℃时对温度变化敏感,而在40~60℃时随温度变化不大。

有机硅季铵盐

东华大学的项伟等人以十二烷基叔胺、γ-氯丙基三甲氧基硅烷为原料,合成了3-(三甲氧基硅烷基)丙基十二烷基二甲基氯化铵(HSQA)。讨论了反应温度、反应时间、溶剂种类、反应物物质的量之比对产率的影响。优化的反应条件为:n(十二烷基叔胺)∶n(-氯丙基三甲氧基硅烷)为111∶1,溶剂为N0N-二甲基甲酰胺与异丙醇的混合溶液,KI为催化剂;所制得的有机硅季铵盐可以显著降低水溶液的表面张力,其表面张力最小值为28107mN/m。亲水性氨基硅油织物整理剂

山西二印秦阳化工厂的王辉等人将氨基硅油乳化,制成固体质量分数为30%的的氨基硅油乳液(ASE),再和聚醚环氧硅油(C GF)复配,制得亲水性氨基硅油织物整理剂(ZH-4)。最佳反应条件:氨基硅油黏度2510mPa?s(氨值为016mmol/g、ASE和C GF质量比为3∶2~1∶1。结果表明,ZH-4与阴离子型树脂和助剂的配伍性良好,拼混使用不会产生漂油、分层或沉淀。在相同的条件下,经ZH-4整理织物的柔软性虽略逊于ASE,但优于C GF,整理后织物的静态吸水性优良。

中国专利

免预干全除鳞钢坯用抗高温氧化涂料

/CN1935921A

一种精制挥发油及其制备方法/CN1935965A

来自取代氨基硅烷的聚合物反应产物

/CN1938350A

固化性组合物/CN1938356A

具有多个季铵基团的聚硅氧烷/CN1938364A

洗涤剂组合物/CN1938413A

使用烷氧基硅烷化合物的丙烯聚合物的制造方法/CN1939939A

聚氨酯泡沫体制备用硅烷醇官能化化合物

/CN1939948A

两部分可固化HCR聚硅氧弹性体

/CN1939973A

阻燃的硅氧烷组合物/CN1939974A

倍半硅氧烷树脂蜡/CN1942507A

连续制备聚硅氧烷乳液的方法/CN1942509A

聚酰亚胺硅氧烷溶液组合物/CN1942524A

第6期ABSTRACT?377

 ?

Engineering,Hunan Normal U niversity,Chang2 sha410081,Hunan;2.State Key Lab of New Ceramic Fibers&Composites,College of Aero2 space and Materials Engineering,National Uni2 versity of Defense Technology,Changsha 410073,Hunan).Y oujigui Cailiao,2007,21 (6):345

Abstract:The Si-H reaction degree and homo2 geneity of t he polycarbosilane PCS fibers were investigated wit h t hree types of cure f urnaces in2 cluding vertical,t unnel and side f urnance.Re2 sult s showed t hat t he variability coefficient of PCS f rom side f urnance was6614%lower t han t hat from vertical,t unnel and side f urnance. When PCS t reated wit h side f urnance,as t he homogeneity increased,t he oxygen content of PCS deceased,t he oxygen content of Sic fiber was during1118%fro m1413%,wit h mechani2 cal p roperty to213GPa.

K eyw ords:cured f urnace,polycarbosilane fiber, Si-H reaction degree,homogeneity Comprehensive utilization method for spent silicon contact mass.FU Xue-hong,ZA I Rong-xia, YAN G Jin-sheng,L I Cheng-ye,SON G Gui -jun(1.Research instit ute of Pet roChina,Ji2 lin Pet rochemical Company,Jilin132021; 2. Mass Equip ment Center of Pet roChina,Jilin Pet rochemical Company,Jilin132021).Y oujigui Cailiao,2007,21(6):349

Abstract:The main utilization met hods of t he spent silicon contact mass,which was oxidation, dept h conversion,combustion,inactivation, were int roduced,and t he suggestio ns of devel2 op ment on t he comp rehensive utilization of spent silicon contact mass in China were introduced.

K eyw ords:spent silicon contact mass,organha2 losilane,copper,silicon

P rocess in the synthesis of polyhedral oligom eric sils2 esquioxane.WU Han-zhen1,SUN Ning1,NIE Jiao-rong2,L I Hou-bin1,HUAN G Chi1, W AN G Chen-guang3,L IAO J un1(1.Research Center of OrganoSilicon Compound&Material En2 gineering,Ministry of Education,College of Chem2 ical and Molecular Science,Wuhan University,Wu2 Han430072,Hubei; 2.Jianghe Chemical Plant,China Sanjiang Aerospace Group,Yuan’an444200, Hubei;3.West Stock,Wuhan).Y oujigui Cailiao, 2007,21(6):354

Abstract:The struct ures,p roperties and synt he2 sis of polyhedral oliogmeric silsesquioxane (POSS)are reviewed.In particular t he synt he2 sis of homo-POSS,monof unctional,dif unc2 tio nal,mulf unctional POSS were int roduced. The disadvantages and advantages of each met h2 ods were analyzed and f ut ure develop ment of POSS was proposed

K eyw ords:POSS,synt hesis,monof uction,di2 f unctional,mulf unctional

Advances in synthesis of vinylsilane coupling a2 gents.XU Shao-hua,D EN G Feng-jie,L I Wei -fan,WEN Yuan-qing,L I Feng-yi(Chem2 ist ry Depart ment of Nanchang University,Nan2 chang330031,Jiangxi).Y oujigui Cailiao,2007, 21(6):360

Abstract:The synt hesis met hods of vinylsilane coupling agent s were int roduced,including di2 rect synt hesis met hod,organometallic synt hesis met hod,heat condensation met hod and hydrosi2 lylatio n met hod,etc.The advantage and disad2 vantage of each met hod were discussed.Key2 words:vinylsilane,coupling agent

The spheric microparticles of silicone resin(Con2 tinued).HUAN G Wen-run(Chengrand Re2 search Instit ute of Chemical Indust ry Co.,Lt d, China National Blue Star,Chengdu610041,Si2 chuan).Y oujigui Cailiao,2007,21(6):364 Abstract:This paper int roduced t he preparation met hods for amino-modified,epoxy-modified and vinyl-modified polysilsesquioxane sp heric microparticles,sp heric microparticles polymet h2 ylsilsesquioxane and polyp henylsilsesquioxane wit h double struct ures,hydrop hobic sp heric sili2 cone resin microparticles,sp heric silicone resin microparticles covered wit h polydimet hyl silox2 ane,sp heric silicone resin microparticles wit h ul2 t raviolet absorption,and sp heric silicone resin microparticles wit h varies f unctional links.

K eyw ords:t rimet hoxymet hylsilane,sp heric mi2 croparticles of silicone resin,polymet hylsils2 esquioxane,hydrop hobic,ult raviolet

乙烯基硅烷偶联剂合成方法的研究进展

综 述 ,2007,21(6):360~363SIL ICON E MA TERIAL 乙烯基硅烷偶联剂合成方法的研究进展 徐少华,邓锋杰3,李卫凡,温远庆,李凤仪 (南昌大学化学系,南昌330031) 摘要:介绍了合成乙烯基硅烷偶联剂的方法:直接合成法、有机金属合成法、热缩合法、硅氢加成法、氯代乙基硅烷脱氯化氢法等,并简明地分析了各种方法的优缺点。 关键词:乙烯基硅烷,偶联剂中图分类号:TQ264.1+2 文献标识码:B 文章编号:10094369(2007)0620360204 收稿日期:20070628。 作者简介:徐少华(1977— ),男,硕士生,主要从事有机硅化学和有机合成的研究。3 联系人,E 2mail :fengjiedeng @ncu 1edu 1cn 。 硅烷偶联剂是应用领域较多、使用量较大的偶联剂。在它的分子中,同时存在能与无机材料和有机材料结合的两种不同化学性质的基团。通常,有机材料和无机材料很难结合,硅烷偶联剂的特殊结构使它成为有机材料和无机材料结合的媒介。乙烯基硅烷偶联剂的通式为(C H 2C H )R a Si X 3-a (式中,R 为甲基烷基等;a 为0、1;X 为卤素、甲氧基、乙氧基、甲氧基乙氧基、乙酰氧基等),是用途较广的硅烷偶联剂品种之一,可用作玻璃纤维、无机填料的表面处理剂,密封剂、粘接剂、涂料的增黏剂,聚烯烃的交联剂等[1]。随着其用量的扩大,了解并研究它们的合成方法以降低生产成本就显得尤为重要。 1 直接法 直接法是指在较高温度和催化剂存在下直接 反应,生成烃基卤硅烷的方法[2]。此法由美国化学家Rochow 于1941年发现。用此法制备乙烯基硅烷偶联剂时,通常是在加热及铜催化剂存在下,将含有乙烯基的卤代烷与硅粉直接反应(如式1)。 CH 2 CHCl +Si Cu △ (CH 2 CH 2)SiCl 3+(CH 2 CH 2)2SiCl 2 (1) 原苏联有机硅化学家M 1F 1Shoes -Takoskii 等人尝试了各种合成乙烯基氯硅烷的方法,发表了大量的研究报告和专利。对直接法合成乙烯基氯硅烷作出了巨大的贡献。他们发现,用Cu 的 合金(铜镍硅合金、铜硅合金等)为催化剂,在N 2保护下,硅与氯乙烯直接反应合成乙烯基氯硅烷的产率仅有1013%~14%。G.S Popeleva 发现,在氧化铜存在下,氯乙烯和硅块在460℃下接触10~35s ,乙烯基氯硅烷的收率为45%~60%[3]。使用硅镍合金或硅锡合金作催化剂时,虽然可以提高反应活性及产物的收率,但产物收率还是比较低,总收率难以超过50%[4]。 直接法虽然可以用于合成乙烯基硅烷偶联剂;但是由于乙烯基卤化物中的卤原子与双键直接相连,反应活性较差,且副产物多,导致目标产物收率较低。再者反应能耗又大。因此,此法在实际生产中未能获得广泛应用。 2 有机金属合成法 有机金属合成法是以有机金属化合物为媒介,使有机基与硅化合物中的硅原子连接,生成有机硅化合物的方法[5]。它主要包括:格氏试剂法、有机锂法以及钠缩合法等。211 格氏试剂法 格氏试剂法一般是在有机溶剂存在下,将含乙烯基的格氏试剂与含Si —X 键或Si —OR 键的硅烷进行反应,使乙烯基与硅原子相连而得到乙烯基硅烷偶联剂的方法。常用的溶剂有:二甲苯、石油醚、乙醇、四氢呋喃、氯苯以及烷氧基

硅烷偶联剂的使用(完整篇)

硅烷偶联剂的使用(完整篇) 一、选用硅烷偶联剂的一般原则 已知,硅烷偶联剂的水解速度取于硅能团Si-X,而与有机聚合物的反应活性则取于碳官能团C-Y。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验预选,并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeCOO、Vi及 CH2-CHOCH2O-的硅烷偶联剂;环氧树脂多选用含CH2-CHCH2O及H2N-硅烷偶联剂;酚醛树脂多选用含H2N-及H2NCONH-硅烷偶联剂;聚烯烃选用乙烯基硅烷;使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接可度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而,光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应;改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕3种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中Y与聚合物所含官能团的反应活性;后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 二、使用方法 如同前述,硅烷偶联剂的主要应用领域之一是处理有机聚合物使用的无机填料。后者经硅烷偶联剂处理,即可将其亲水性表面转变成亲有机表面,既可避免体系中粒子集结及聚合物急剧稠化,还可提高有机聚合物对补强填料的润湿性,通过碳官能硅烷还可使补强填料与聚合物实现牢固键合。但是,硅烷偶联剂的使用效果,还与硅烷偶联剂的种类及用量、基材的特征、树脂或聚合物的性质以及应用的场合、方法及条件等有关。本节侧重介绍硅烷偶联剂的两种使用方法,即表面处理法及整体掺混法。前法是用硅烷偶联剂稀溶液处理基体表面;后法是将硅烷偶联剂原液或溶液,直接加入由聚合物及填料配成的混合物中,因而特别适用于需要搅拌混合的物料体系。 1、硅烷偶联剂用量计算 被处理物(基体)单位比表面积所占的反应活性点数目以及硅烷偶联剂覆盖表面的厚度是决定基体表面硅基化所需偶联剂用量的关键因素。为获得单分子层覆盖,需先测定基体的Si-OH含量。已知,多数硅质基体的Si-OH含是来4-12个/μ㎡,因而均匀分布时,1mol硅烷偶联剂可覆盖约7500m2的基体。具有多个可水解基团的硅烷偶联剂,由于自身缩合反应,多少要影响计算的准确性。若使用Y3SiX处理基体,则可得到与计算值一致的单分子层覆盖。但因Y3SiX价昂,且覆盖耐水解性差,故无实用价值。此外,基体表面的Si-OH数,也随加热条件而变化。例如,常态下Si-OH数为5.3个/μ㎡硅质基体,经在400℃或800℃下加热处理后,则Si-OH值可相应降为2.6个/μ㎡或<1个/μ㎡。反之,使用湿热盐酸处理基体,则可得到高Si-OH含量;使用碱性洗涤剂处理基体表面,则可形成硅醇阴离子。硅烷偶联剂的可润湿面积(WS),是指1g硅烷偶联剂的溶液所能覆盖基体的面积(㎡/g)。若将其与含硅基体的表面积值(㎡/g)关连,即可计算出单分子层覆盖所需的硅烷偶联剂用量。以处理填料为例,填料表面形成单分子

硅烷偶联剂的使用说明资料

硅烷偶联剂的使用说 明

硅烷偶联剂使用说明 一、选用硅烷偶联剂的一般原则 已知,硅烷偶联剂的水解速度取于硅能团Si-X,而与有机聚合物的反应活性则取于碳官能团C-Y。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验预选,并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeCOO、Vi及CH2-CHOCH2O-的硅烷偶联剂;环氧树脂多选用含CH2-CHCH2O及H2N-硅烷偶联剂;酚醛树脂多选用含H2N-及H2NCONH-硅烷偶联剂;聚烯烃多选用乙烯基硅烷;使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接可度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而,光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。 硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应;改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕3种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中Y与聚合物所含官能团的反应活性;后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 二、使用方法 如同前述,硅烷偶联剂的主要应用领域之一是处理有机聚合物使用的无机填料。后者经硅烷偶联剂处理,即可将其亲水性表面转变成亲有机表面,既可避免体系中粒子集结及聚合物急剧稠化,还可提高有机聚合物对补强填料的润湿性,通过碳官能硅烷还可使补强填料与聚合物实现牢固键合。但是,硅烷偶联剂的使用效果,还与硅烷偶联剂的种类及用量、基材的特征、树脂或聚合物的性质以及应用的场合、方法及条件等有关。本节侧重介绍硅烷偶联剂的两种使用方法,即表面处理法及整体掺混法。前法是用硅烷偶联剂稀溶液处理基体表面;后法是将硅烷偶联剂原液或溶液,直接加入由聚合物及填料配成的混合物中,因而特别适用于需要搅拌混合的物料体系。 1、硅烷偶联剂用量计算 被处理物(基体)单位比表面积所占的反应活性点数目以及硅烷偶联剂覆盖表面的厚度是决定基体表面硅基化所需偶联剂用量的关键因素。为获得单分子层覆盖,需先测定基体的Si-OH含量。已知,多数硅质基体的Si-OH含是来4-12个 /μ㎡,因而均匀分布时,1mol硅烷偶联剂可覆盖约7500m2的基体。具有多个可水解基团的硅烷偶联剂,由于自身缩合反应,多少要影响计算的准确性。若使用 Y3SiX处理基体,则可得到与计算值一致的单分子层覆盖。但因Y3SiX价昂,且覆

常用硅烷偶联剂 (2)

常用硅烷偶联剂——K H550、KH560、KH570、KH792、DL602 1.KH550 KH550硅烷偶联剂CAS号:919-30-2 一、国外对应牌号 A-1100(美国联碳),Z-6011(美国道康宁),KBM-903(日本信越)。本品有碱性,通用性强,适用于环氧、PBT、酚醛树脂、聚酰胺、聚碳酸酯等多种热塑性和热固性树脂。 二、化学名称分子式: 名称:γ-氨丙基三乙氧基硅烷 别名:3-三乙氧基甲硅烷基-1-丙胺 【3-TriethoxysilylpropylamineAPTES】, γ-氨丙基三乙氧基硅烷或3-氨基丙基三乙氧基硅烷【3-AminpropyltriethoxysilaneAMEO】 分子式:NH2(CH2)3Si(OC2H5)3 分子量:221.37 分子结构: 三、物理性质:

外观:无色透明液体 密度(ρ25℃):0.946 沸点:217℃ 折光率nD25:1.420 溶解性:可溶于有机溶剂,但丙酮、四氯化碳不适宜作释剂;可溶于水。在水中水解,呈碱性。 本品应严格密封,存放于干燥、阴凉、避光的室内。 四、KH550主要用途: 本品应用于矿物填充的酚醛、聚酯、环氧、PBT、聚酰胺、聚碳酸酯等热塑性和热固体树脂,能大幅度提高增强塑料的干湿态抗弯强度、抗压强度、剪切强度等物理力学性能和湿态电气性能,并改善填料在聚合物中的润湿性和分散性。 本品是优异的粘结促进剂,可用于聚氨酯、环氧、腈类、酚醛胶粘剂和密封材料,可改善颜料的分散性并提高对玻璃、铝、铁金属的粘合性,也适用于聚氨酯、环氧和丙烯酸乳胶涂料。 在树脂砂铸造中,本品增强树脂硅砂的粘合性,提高型砂强度抗湿性。 在玻纤棉和矿物棉生产中,将其加入到酚醛粘结剂中,可提高防潮性及增加压缩回弹性。 在砂轮制造中它有助于改进耐磨自硬砂的酚醛粘合剂的粘结性及耐水性。 2.KH560

偶联剂的研究进展和应用

偶联剂的研究进展和应用 赵 贞1 张文龙1 陈 宇1,2 (1.哈尔滨理工大学材料科学与工程学院,哈尔滨,150040;2.广东华南精细化工研究院,新会,529100) 摘要综述了国内外表面处理用硅烷、钛酸酯及锆酸酯、铝酸酯、双金属及稀土等偶联剂的性能、应用及研究进展,并指出其发展趋势。 关键词 偶联剂 硅烷 钛酸酯 锆酸酯 铝酸酯 稀土 表面处理 述评 ApplicationsandResearchProgressesofCouplingAgents ZhaoZhen1ZhangWen-long1ChenYu1,2 (1,CollegeofMaterialScience&Engineering,HarbinUniversityofScienceandTechnology,Harbin,150040; 2,GuangdongHuananFineChemicalResearchInstitute,Xinhui,529100) Abstract:Theproperties,applicationsandresearchprogressesofmaincouplingagents,suchassilane, titanateandzirconate,aluminate,bismetalsandrareearthcouplingagents,athomeandabroadwerere-viewed;andthedevelopmenttendencyofcouplingagentswerealsoputforward. Keywords:couplingagent;application;silane;titanate;zirconate;aluminate;rareearth;sarfacetreat-ment;review 收稿日期:2007-03-25 偶联剂是一种在无机材料和高分子材料的复合体系中,能通过物理和/或化学作用把二者结合,亦或能通过物理和/或化学反应,使二者的亲和性得到改善,从而提高复合材料综合性能的一种物质。 作为提高高分子复合材料性能及降低成本的关键材料,偶联剂广泛适用于塑料、橡胶、玻璃钢、涂料、颜料、造纸,粘合剂、磁性材料、油田化工等行业。而聚合物共混物及填料的不断发展,对于新型多功能偶联剂的需求更为迫切。 偶联剂按其化学结构可分为硅烷偶联剂、钛酸酯偶联剂、锆酸酯偶联剂、铝酸酯偶联剂、双金属偶联剂(铝-锆酸酯、铝钛复合偶联剂)、稀土偶联剂、含磷偶联剂、含硼偶联剂等。 1硅烷偶联剂 硅烷偶联剂最早是20世纪40年代由美国联 合化合物公司和道康宁公司首先开发的,主要用于以硅酸盐、二氧化硅为填料的塑料和橡胶的加工及其性能改进。1947年RalphKW等,发现用烯丙基二乙氧基硅烷处理玻璃纤维制成的聚酯复合材料可以得到双倍的强度,开创了硅烷偶联剂实际应用的历史。从20世纪50年代至60年代相继出现了氨基和改性氨基硅烷,随后又开发了耐热硅烷、阳离子硅烷、重氮和叠氮硅烷以及α-官能团硅烷等一系列新型硅烷偶联剂。硅烷偶联剂独特的性能与显著的改性效果使其应用领域不断扩大,产量大幅度上升[1]。 1.1研究进展 史保川[2]等将二乙烯三胺分别与五种氯烃基 烷氧基硅烷反应,合成了N′-β′-氨乙基-N-β-氨乙基-γ-氨丙基甲基二甲氧基硅烷等5种偶联剂,它们不仅是制备织物柔软剂的原料,而且是制备硅树脂固胰酶载体的原料。另外还以甲基二氯硅烷、烯丙基氯和环己胺为原料,经硅氢化、醇解和

硅烷偶联剂的使用方法

一、选用硅烷偶联剂的一般原则 已知,硅烷偶联剂的水解速度取于硅能团Si-X ,而与有机聚合物的反应活性则取于碳官能团C-丫。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验预选,并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeC、OOVi 及CH2-CHOCH-2O 的硅烷偶联剂;环氧树脂多选用含CH2- CHCH2及H2N-硅烷偶联剂;酚醛树脂多选用含H2N-及H2NC0NH硅烷偶联剂;聚烯烃选用乙烯基硅烷;使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接可度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而, 光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应;改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕 3 种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中丫与聚合物所含官能团的反应活性;后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 二、使用方法 如同前述,硅烷偶联剂的主要应用领域之一是处理有机聚合物使用的无机填料。后者经硅烷偶联剂处理,即可将其亲水性表面转变成亲有机表面,既可避免体系中粒子集结及聚合物急剧稠化,还可提高有机聚合物对补强填料的润湿性,通过碳官能硅烷还可使补强填料与聚合物实现牢固键合。但是,硅烷偶联剂的使用效果,还与硅烷偶联剂的种类及用量、基材的特征、树脂或聚合物的性质以及应用的场合、方法及条件等有关。本节侧重介绍硅烷偶联剂的两种使用方法,即表面处理法及整体掺混法。前法是用硅烷偶联剂稀溶液处理基体表面;后法是将硅烷偶联剂原液或溶液,直接加入由聚合物及填料配成的混合物中,因而特别适用于需要搅拌混合的物料体系。 1、硅烷偶联剂用量计算 被处理物(基体)单位比表面积所占的反应活性点数目以及硅烷偶联剂覆盖表面的厚度是决定基体表面硅基化所需偶联剂用量的关键因素。为获得单分子层覆盖,需先测定基体的Si—OH含量。已知,多数硅质基体的Si —OH含是来4-12 个/卩叭因而均匀分布时,1mol硅烷偶联剂可覆盖约7500m2的基体。具有多个可水解基团的硅烷偶联剂,由于自身缩合反应,多少要影响计算的准确性。若使用丫3SiX处理基体,则可得到与计算值一致的单分子层覆盖。但因丫3SiX价昂,且覆盖耐水解性差,故无实用价值。此外,基体表面的Si-OH数,也随加热条件而变化。例如,常态下Si —OH数为5.3个/卩川硅质基体,经在400C或800C 下加热处理后,则Si —OH值可相应降为2.6个/卩卅或V 1个/卩讥反之,使用湿热盐酸处理基体,则可得到高Si —OH含量;使用碱性洗涤剂处理基体表面,则可形成硅醇阴离子。硅烷偶联剂的可润湿面积(WS,是指ig硅烷偶联剂的溶液所能覆

硅烷偶联剂使用说明

硅烷偶联剂使用说明 一、选用硅烷偶联剂的一般原则 已知,硅烷偶联剂的水解速度取于硅能团Si-X,而与有机聚合物的反应活性则取于碳官能团C-Y。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验预选,并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeCOO、Vi及CH2-CHOCH2O-的硅烷偶联剂;环氧树脂多选用含CH2-CHCH2O及H2N-硅烷偶联剂;酚醛树脂多选用含H2N-及H2NCONH-硅烷偶联剂;聚烯烃多选用乙烯基硅烷;使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接可度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而,光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。 硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应;改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕3种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中Y与聚合物所含官能团的反应活性;后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 二、使用方法 如同前述,硅烷偶联剂的主要应用领域之一是处理有机聚合物使用的无机填料。后者经硅烷偶联剂处理,即可将其亲水性表面转变成亲有机表面,既可避免体系中粒子集结及聚合物急剧稠化,还可提高有机聚合物对补强填料的润湿性,通过碳官能硅烷还可使补强填料与聚合物实现牢固键合。但是,硅烷偶联剂的使用效果,还与硅烷偶联剂的种类及用量、基材的特征、树脂或聚合物的性质以及应用的场合、方法及条件等有关。本节侧重介绍硅烷偶联剂的两种使用方法,即表面处理法及整体掺混法。前法是用硅烷偶联剂稀溶液处理基体表面;后法是将硅烷偶联剂原液或溶液,直接加入由聚合物及填料配成的混合物中,因而特别适用于需要搅拌混合的物料体系。 1、硅烷偶联剂用量计算 被处理物(基体)单位比表面积所占的反应活性点数目以及硅烷偶联剂覆盖表面的厚度是决定基体表面硅基化所需偶联剂用量的关键因素。为获得单分子层覆盖,需先测定基体的

新型硅烷偶联剂YC-618的合成及应用

γ-氨乙基哌嗪基丙基甲基二乙氧基硅烷的合成与应用研究 闫蕾1,杨涛2 (1.浙江省羊毛衫质量检验中心,嘉兴314502; 2.杭州业诚有机硅有限公司,杭州311200)摘要:对氨乙基哌嗪基丙基甲基二乙氧基硅烷的合成方法进行了介绍,探讨了主要反应条件对其性能的影 响,并用红外光谱和核磁共振氢谱对其结构进行了表征。并通过合成的氨基改性硅油,与传统的偶联剂在 后整理应用中进行了比较,发现:对比普通三胺基偶联剂在软滑性有明显提升,而黄变性大大降低;对比 普通哌嗪基偶联剂在蓬松性和滑弹性则有明显提升。 主题词:氨乙基哌嗪硅烷偶联剂氨基改性硅油应用 前言 γ-氨乙基哌嗪基丙基甲基二乙氧基硅烷是一种新型二官能团受阻型三胺基硅烷偶联剂,其分子结构上有别于二乙烯三胺基丙基甲基二甲氧基硅烷(以下简称YC-603)的高反应性,含有伯氨基、仲氨基和叔氨基三种氨基团,同时因哌嗪基的引入,在保持原有YC-603偶联剂滑弹、蓬松性的基础上,极大地降低了织物的黄变性。经其乳液处理过的织物,具有以下特点:柔软及平滑性优于三胺硅油;蓬松及弹性优于哌嗪硅油;而织物整理后黄变性较之二乙烯三胺基偶联剂(YC-603)大大降低,可获得极好的白度;同时由于哌嗪基具有一定的亲水性,其整理液不易粘辊等。 1.合成反应原理 1.1胺化反应式 2.试验 2.1试剂和仪器 原料(胺化) 氯丙基甲基二甲氧基硅烷:纯度≥98% 氯丙基甲基二乙氧基硅烷:纯度≥98% 江苏晨光偶联剂有限公司 氨乙基哌嗪:纯度≥99% 大连连晟贸易有限公司 甲苯:分析纯南京试剂厂 原料(本体聚合) DMC:浙江新安化工集团股份有限公司 四甲基氢氧化铵;AR,市售 γ-氨乙基哌嗪基丙基甲基二甲氧基硅烷(YC-618): 工业品,杭州业诚有机硅有限公司 乙酸、异丙醇:AR。西安化学试剂厂 碳酸钠:AR,上试一厂 复合乳化剂:非离子异构十三醇型,自配 织物:针织丝光棉布、桃皮绒坯布、针织全毛织物 仪器(合成及分析)

长链硅烷偶联剂的合成和表征研究进展【文献综述】

毕业论文文献综述 化学工程与工艺 长链硅烷偶联剂的合成和表征研究进展 一、前言部分 纳米粒子,又称超细微粒子(ultra fine powders,简称UFP),统指1-100nm的细微颗粒(结晶的或非结晶的)。纳米粒子既不同于微观原子、分子团簇,又不同于宏观体相材料,是一种介于宏观固体和分子间的亚稳中间态物质。当粒子尺寸进入纳米量级(1-100nm)时,由于纳米粒子的表面原子与体相总原子数之比随粒径尺寸的减少而急剧增大,使其显示出强烈的小尺寸效应或体积效应、表面效应等、量子尺寸效应及宏观量子隧道效应等,从而展现出许多奇特的性质。它断裂强度高、韧性好、耐高温、纳米复合时能提高材料的硬度、弹性模量等,并对热膨胀系数、热导率、抗热震性产生影响。在宇航技术、电子、冶金、化工、生物和医学等方面有广阔的应用前景[1,2]。 纳米SiO2具有粒径小(一般小于100nm)、比表面积大(一般大于100m2/g)等特征,从而以其优越的稳定性、补强性、增稠性和触变性而在橡胶、涂料、医药、胶粘剂等领域中得到广泛的运用。大量的文献表明,SiO2等无机粒子和聚合物复合时,复合时无机粒子的粒径大小以及无机粒子与聚合物基体之间的相互作用是非常重要的。粒径越小,特别是当无机粒子的粒径降至纳米级时,复合物材料的性能的改进将发生本质性的提高。然而无机粒子的粒径越小,表面能越大,表面原子所占比例极高,特别是纳米颗粒表面原子是缺少临近配位原子,具有悬空键,众多的表面基团形成氢键、配位键和静电力、范德华力作用,极易发生颗粒之间、颗粒与聚合物之间的键联。因此纳米粒子与聚合物复合时,团聚现象十分严重,纳米粒子无法在聚合物材料中均匀分散,反而造成材料性能下降。为了提高纳米粒子的分散能力,需要对其表面进行改性。改性的目的为:(1)降低粒子表面能,如减少悬空键和表面活性基团;(2)消除表面电荷;(3)增加分散性能;(4)提高粒子与有机相亲和力[3]。 在常用的纳米SiO2改性剂中,硅烷偶联剂是一种增强无机材料与有机聚合物之间亲和力的有机化合物。通过硅烷偶联剂对纳米SiO2的物理化学处理,可以使其由亲水性表面变成亲油性,从而达到与有机聚合物之间的紧密结合,改进塑料复合材料的各种性能。它不仅能够提高塑料的力学性能,还可以改装其电气性能、耐热性、耐水性和耐候性等性能。因此,硅烷偶联剂已成为目前纳米SiO2改性的一种助剂,它的类型及用量对改性结果影响起着非常重要的作用。

常用硅烷偶联剂介绍

常用硅烷偶联剂介绍标准化管理部编码-[99968T-6889628-J68568-1689N]

常用硅烷偶联剂介绍 1.KH550 KH550硅烷偶联剂CAS号:919-30-2 一、国外对应牌号 A-1100(美国联碳),Z-6011(美国道康宁),KBM-903(日本信越)。本品有碱性,通用性强,适用于环氧、PBT、酚醛树脂、聚酰胺、聚碳酸酯等多种热塑性和热固性树脂。 二、化学名称分子式: 名称:γ-氨丙基三乙氧基硅烷 别名:3-三乙氧基甲硅烷基-1-丙胺 【3-TriethoxysilylpropylamineAPTES】, γ-氨丙基三乙氧基硅烷或3-氨基丙基三乙氧基硅烷【3-AminpropyltriethoxysilaneAMEO】 分子式:NH 2(CH 2 ) 3 Si(OC 2 H 5 ) 3 分子量:221.37 分子结构: 三、物理性质: 外观:无色透明液体 密度(ρ25℃):0.946

沸点:217℃ 折光率nD25:1.420 溶解性:可溶于有机溶剂,但丙酮、四氯化碳不适宜作释剂;可溶于水。在水中水解,呈碱性。 本品应严格密封,存放于干燥、阴凉、避光的室内。 四、KH550主要用途: 本品应用于矿物填充的酚醛、聚酯、环氧、PBT、聚酰胺、聚碳酸酯等热塑性和热固体树脂,能大幅度提高增强塑料的干湿态抗弯强度、抗压强度、剪切强度等物理力学性能和湿态电气性能,并改善填料在聚合物中的润湿性和分散性。 本品是优异的粘结促进剂,可用于聚氨酯、环氧、腈类、酚醛胶粘剂和密封材料,可改善颜料的分散性并提高对玻璃、铝、铁金属的粘合性,也适用于聚氨酯、环氧和丙烯酸乳胶涂料。 在树脂砂铸造中,本品增强树脂硅砂的粘合性,提高型砂强度抗湿性。 在玻纤棉和矿物棉生产中,将其加入到酚醛粘结剂中,可提高防潮性及增加压缩回弹性。 在砂轮制造中它有助于改进耐磨自硬砂的酚醛粘合剂的粘结性及耐水性。 2.KH560 一、国外对应牌号: A-187(美国联碳公司)。

硅烷偶联剂的使用方法

硅烷偶联剂的使用方法 硅烷偶联剂的使用方法主要有表面预处理法和直接加入法,前者是用稀释的偶联剂处理填料表面,后者是在树脂和填料预混时,加入偶联剂的原液。 (1)表面预处理法 将硅烷偶联剂配成0.5~1%浓度的稀溶液,使用时只需在清洁的被粘表面涂上薄薄的一层,干燥后即可上胶。所用溶剂多为水、醇(甲氧基硅烷选择甲醇,乙氧基硅烷选择乙醇)、或水醇混合物,并以不含氟离子的水及价廉无毒的乙醇、异丙醇为宜。除氨烃基硅烷外,由其它硅烷偶联剂配制的溶液均需加入醋酸作水解催化剂,并将pH值调至3.5~5.5。长链烷基及苯基硅烷由于稳定性较差,不宜配成水溶液使用。氯硅烷及乙氧基硅烷水解过程中伴随有严重的缩合反应,也不宜配成水溶液或水醇溶液使用,而多配成醇溶液使用。水溶性较差的硅烷偶联剂,可先加入0.1~0.2%(质量分数)的非离子型表面活性剂,然后再加水加工成水乳液使用。硅烷偶联剂配成溶液,有利于硅烷偶联剂在材料表面的分散,溶剂是水和醇配制成的溶液,溶液一般为硅烷(20%)、醇(72%)、水(8%),醇一般为乙醇(对乙氧基硅烷)甲醇(对甲氧基硅烷)及异丙醇(对不易溶于乙醇、甲醇的硅烷)因硅烷水解速度与PH值有关,中性最慢,偏酸、偏碱都较快,因此一般需调节溶液的PH值,除氨基硅烷外,其他硅烷可加入少量醋酸,调节PH值至4—5,氨基硅烷因具碱性,不必调节。因硅烷水解后,不能久存,最好现配现用,最好在一小时内用完。 (2)直接添加方法 将硅烷偶联剂直接加入到胶粘剂组分中,一般加入量为基体树脂量的1~5%。涂胶后依靠分子的扩散作用,偶联剂分子迁移到粘接界面处产生偶联作用。对于需要固化的胶粘剂,涂胶后需放置一段时间再进行固化,以使偶联剂完成迁移过程,方能获得较好的效果。实际使用时,偶联剂常常在表面形成一个沉积层,但真正起作用的只是单分子层,因此,偶联剂用量不必过多。 硅烷偶联剂具体使用方法 (1)预处理填料法 将填料放入固体搅拌机(高速固体搅拌机HENSHEL(亨舍尔)或V型固体搅拌机等),并将上述硅烷溶液直接喷洒在填料上并搅拌,转速越高,分散效果越好。

硅烷偶联剂改性酚醛树脂的合成

CHINA?SYNTHETIC?RESIN?AND?PLASTICS 研究与开发合?成?树?脂?及?塑?料?,?2017,?34(6):?17 酚醛树脂是酚类与醛类在酸性或碱性催化剂作用下形成树脂的统称,是工业化最早的合成高分子材料,具有优异的黏接强度、耐水、耐热、耐磨、耐化学药品腐蚀性及化学稳定性等特点,特别是耐沸水性能最佳。目前,酚醛树脂仍是相当重要的合成高分子材料,特别在生产耐水、耐候性木制品等,具有十分特别的意义。酚醛树脂同样有着一些缺点,颜色太深、脆性易裂等,所以在应用上有着一定的限制[1-4]。许多科研工作者从分子结构、聚合工艺以及共混等方面对其进行了研究,取得了一定的成效[5-9]。由于传统的酚醛树脂在耐热性能和韧性等方面存在缺陷,在很大程度上限制了其进一步应用,而有机硅树脂具有良好的耐热性能和韧性。本工作针对普通酚醛树脂的脆性和耐热性能的不足,采用硅烷偶联剂KH560改性酚醛树脂,在结构中引入Si—O—Si和环氧基,通过优化实验条件,对树脂的性能进行分析,期望改善树脂的耐热性能和韧性,为酚醛树脂的改性提供一种可供选择的参考方法,拓展酚醛树脂的应用领域,对推动酚醛树脂产业发展具有重要的意义。 硅烷偶联剂改性酚醛树脂的合成 游胜勇1,戴润英2*,董晓娜1,李?玲1,陈衍华1,曹?修1 (1.江西省科学院应用化学研究所,江西省南昌市 330029;2.江西农业大学,江西省南昌市 330045) 摘要:以硅烷偶联剂KH560作为改性剂,采用化学合成方法合成了KH560改性酚醛树脂。通过傅里叶变换红外光谱、热重分析以及力学性能测试研究了硅烷偶联剂KH560对酚醛树脂热性能和力学性能的影响。结果表明: 当w(KH560)为2.5%时,改性酚醛树脂在318 ℃时开始分解,树脂质量损失约为17.0%,耐热性能较好;与改性前相 比,改性酚醛树脂的拉伸强度提高了32.9 MPa,冲击强度提高了4.03 kJ/m2,力学性能得到了改善。 关键词:酚醛树脂 硅烷偶联剂 韧性 耐热性能 改性 中图分类号:TB 332文献标识码: B 文章编号:1002-1396(2017)06-0017-03 Synthesis and properties of phenolic resin modi?ed by silane coupling agent You Shengyong1, Dai Runying2, Dong Xiaona1, Li Ling1, Chen Yanhua1, Cao Xiu1 (1. Institute of Applied Chemistry,Jiangxi Academy of Sciences,Nanchang 330029,China; 2. College of Science,Jiangxi Agricultural University,Nanchang 330045,China) Abstract: The phenolic resin was modified by silane coupling agent KH560 to prepare KH560 modified phenolic resin. The effect of KH560 on the thermal and mechanical properties of phenolic resin were investigated by Fourier transform infrared spectroscope, thermogravimetry analyzer, and mechanical property tests. The results show that the phenolic resin decomposes at 318 ℃ when the mass fraction of KH560 modifier is 2.5%, and the mass loss is approximately 17.0%, which represents better thermal resistance. The mechanical properties of the resin modified such as the tensile strength and the impact strength are improved by 32.9 MPa and 4.03 kJ /m2 respectively. Keywords: phenolic resin; silane coupling agent; toughness; heat resistance; modification 收稿日期:2017-08-01;修回日期:2017-09-25。 作者简介:游胜勇,男,1981年生,硕士,2008年毕业于江 西师范大学有机化学专业,研究方向为有机硅新材料加工 与应用。E-mail:ysygood1981@https://www.360docs.net/doc/0f13410565.html,。 基金项目:江西省科学院预研项目和杰出青年基金项目 (2016-JCQN-02)。 通信联系人。E-mail: runyingdai@https://www.360docs.net/doc/0f13410565.html,。 *

新型硅烷偶联剂研究进展

1.前言 (1) 2.硅烷试剂的结构和偶联机理 (2) 2.1 硅烷试剂的结构 (2) 2.2硅烷试剂的偶联机理 (3) 2.2.1 化学键理论 (3) 2.2.2表面浸润理论 (3) 3.新型硅烷偶联剂的介绍 (4) 3.1 有机硅过氧化物偶联剂 (4) 3.2 环氧基类硅烷偶联剂 (4) 3.3长链烷基硅烷偶联剂 (5) 3.4改性氨基硅烷偶联剂 (6) 3.5其他的一些新型硅烷偶联剂 (6) 4.展望 (7) 新型硅烷偶联剂研究进展 摘要:硅烷偶联剂是应用最广的一类偶联剂。本文通过对硅烷偶联剂的结构、 性能、作用机理及使用方法等得详细论述, 并对国内外的现阶段的新近开发的硅烷偶联剂产品进行了简单介绍。 关键词:硅烷偶联剂、结构、偶联机理、研究进展 1.前言 偶联剂是一种在无机材料和高分子材料的复合体系中, 能通过物理和/或化学作用把二者结合,亦或能通过物理和/或化学反应, 使二者的亲和性得到改善, 从而提高复合材料综合性能的一种物质。偶联剂按其化学结构可分为硅烷偶联剂、钛酸酯偶联剂、锆酸酯偶联剂、铝酸酯偶联剂、双金属偶联剂( 铝- 锆酸酯、铝钛复合偶联剂) 、稀土偶联剂、含磷偶联剂含硼偶联剂等目前应用范围最广的是硅烷偶联和钛酸酯偶联剂[1] [2]。 硅烷偶联剂是一种具有特殊结构的有机硅化合物。在它的分子中, 同时具有能与无机材料( 如玻璃、水泥、金属等) 结合的反应性基团和与有机材料( 如合成树脂等) 结合的反应性基团。因此, 通过硅烷偶联剂可使两种性能差异很大的材料界面偶联起来, 以提高复合材料的性能和增加粘接强度, 从而获得性能优异、可靠的新型复合材料[3]。硅烷偶联剂在有机硅工业中的地位日趋重要,已成为现代有机硅工业、有机高分子工业、复合材料工业及相关技术领域中不可缺少的配套化学助剂。硅烷偶联剂的应用十分广泛,主要有以下几个方面: (1)用作表面处理剂,以改善室温固化硅橡胶与金属的粘合性能; (2)用于无机材料填充塑料时,可以改善其分散性和粘合性; (3)用作增粘剂,在水电站工程中提高水泥与环氧树脂的粘合性; (4)用作密封剂,具有耐水!耐高温!耐候等性能,用于氯橡胶与金属的粘合密

常用硅烷偶联剂

常用硅烷偶联剂 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

常用硅烷偶联剂——KH550、KH560、KH570、KH792、DL602 1.KH550 KH550硅烷偶联剂CAS号:919-30-2 一、国外对应牌号 A-1100(美国联碳),Z-6011(美国道康宁),KBM-903(日本信越)。本品有碱性,通用性强,适用于环氧、PBT、酚醛树脂、聚酰胺、聚碳酸酯等多种热塑性和热固性树脂。 二、化学名称分子式: 名称:γ-氨丙基三乙氧基硅烷 别名:3-三乙氧基甲硅烷基-1-丙胺 【3-TriethoxysilylpropylamineAPTES】, γ-氨丙基三乙氧基硅烷或3-氨基丙基三乙氧基硅烷 【3-AminpropyltriethoxysilaneAMEO】 分子式:NH 2(CH 2 ) 3 Si(OC 2 H 5 ) 3 分子量:221.37 分子结构: 三、物理性质: 外观:无色透明液体

密度(ρ25℃):0.946 沸点:217℃ 折光率nD25:1.420 溶解性:可溶于有机溶剂,但丙酮、四氯化碳不适宜作释剂;可溶于水。在水中水解,呈碱性。 本品应严格密封,存放于干燥、阴凉、避光的室内。 四、KH550主要用途: 本品应用于矿物填充的酚醛、聚酯、环氧、PBT、聚酰胺、聚碳酸酯等热塑性和热固体树脂,能大幅度提高增强塑料的干湿态抗弯强度、抗压强度、剪切强度等物理力学性能和湿态电气性能,并改善填料在聚合物中的润湿性和分散性。 本品是优异的粘结促进剂,可用于聚氨酯、环氧、腈类、酚醛胶粘剂和密封材料,可改善颜料的分散性并提高对玻璃、铝、铁金属的粘合性,也适用于聚氨酯、环氧和丙烯酸乳胶涂料。 在树脂砂铸造中,本品增强树脂硅砂的粘合性,提高型砂强度抗湿性。 在玻纤棉和矿物棉生产中,将其加入到酚醛粘结剂中,可提高防潮性及增加压缩回弹性。 在砂轮制造中它有助于改进耐磨自硬砂的酚醛粘合剂的粘结性及耐水性。 2.KH560 一、国外对应牌号: A-187(美国联碳公司)。 KBM-403(日本信越化学工业株式会社) 二、化学名称及分子式 化学名称:γ-缩水甘油醚氧丙基三甲氧基硅烷

硅烷偶联剂的产品分类与用途.pdf

硅烷偶联剂介绍

目录 1 硅烷偶联剂 (1) 有机硅烷偶联剂的选择原则 (3) 偶联剂用量 (4) 硅烷偶联剂作用机理 (5) 硅烷偶联剂使用方法 (6) 硅烷偶联剂分类与用途 (7) 硅烷偶联剂A-151 (7) 硅烷偶联剂A-171 (8) 硅烷偶联剂A-172 (9) 硅烷偶联剂KH-540 (9) 硅烷偶联剂KH-550 (10) 硅烷偶联剂KH-551 (10) 硅烷偶联剂KH-560 (11) 硅烷偶联剂KH-570 (12) 硅烷偶联剂KH-580 (13) 硅烷偶联剂KH-602 (13) 硅烷偶联剂KH-791 (14) 硅烷偶联剂KH-792 (15) 硅烷偶联剂KH-901 (16) 硅烷偶联剂KH-902 (16) 硅烷偶联剂nd-22 (17) 硅烷偶联剂ND-42(南大42) (17) 硅烷偶联剂ND-43 (17) 硅烷偶联剂SI-69 (18) 苯基三甲氧基硅烷 (18) 苯基三乙氧基硅烷 (19) 甲基三乙氧基硅烷 (20)

钛酸酯偶联剂 (20) 钛酸酯偶联剂101(钛酸酯TTS) (20) 钛酸酯偶联剂102 (21) 钛酸酯偶联剂105 (21) 有机硅烷偶联剂的选择原则 有机硅烷偶联剂的选择一般凭借对有机硅烷偶联剂侧试数据进行经脸总结,准确.地预测有机硅烷偶联剂是非常困难的。使用有机硅烷偶联剂后增大的键强度是一系列复杂因素的综合,如浸润、表面能、边界层的吸附、极性吸附,酸碱相互作用等. 预选有机硅烷偶联剂可遵循以下规津:不饱和聚醋可选用乙烯纂、环氧基及甲基丙烯陈氧基型有机硅烷偶联剂;环氧树脂宜选用环氧基或氨基型有机硅烷偶联剂;酚醛树脂宜选用氨基或服基型有机硅烷偶联剂;烯烃聚合物宜选用乙烯基型右机硅烷偶联剂;硫磺硫化的橡胶宜选用疏基型有机硅烷偶联剂等, 一、选用硅烷偶联剂的一般原则已知,硅烷偶联剂的水解速度取于硅能团Si-X,而与有机聚合物的反应活性则取于碳官能团C-Y。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验,预选并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeCOOVi及CH2-CHOCH2O的硅烷偶联剂:环氧树脂多选用含CH2CHCH2O及H2N硅烷偶联剂:酚醛树脂多选用含H2N及H2NCONH硅烷偶联剂:聚烯烃多选用乙烯基硅烷:使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接强度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而,光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。 硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应:改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕3种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中Y与聚合物所含官能团的反应活性:后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 硅烷偶联剂牌号偶联剂应用领 域 偶联剂作用 KH-540 KH-550 胶黏剂行业●提高粘接力及粘接寿命 ●在潮湿和干燥的条件下仍具有良好的粘结效果●更佳的耐溶剂性、提高储存寿命 KH-560 KH-570 KH-792 Si-602 Si-563 KH-540 KH-550 涂料行业●有机聚合物和无机表面之间的附着力促进剂●粘合体系的交联剂和固化剂,共聚单体 ●填料和颜料的分散剂 ●在抗刮和抗腐蚀涂料中充当粘结组分及涂层 KH-560 KH-570 KH-792 Si-602 Si-563 A-151

相关文档
最新文档