人教版八年级上册数学 分式解答题单元测试卷(解析版)

合集下载

八年级数学上册《分式》单元测试卷(含答案解析)

八年级数学上册《分式》单元测试卷(含答案解析)

八年级数学上册《分式》单元测试卷(含答案解析)一.选择题1.下列各式﹣3x,,,,,,中,分式的个数为()A.1 B.2 C.3 D.42.下列各式中:①;②;③;④;⑤;⑥分式有()A.1个B.2个C.3个D.4个3.代数式中,,, +b,,分式有()A.1个B.2个C.3个D.4个4.下列约分中,正确的是()A.= B.=0 C.=x3 D.=5.把分式﹣约分结果是()A.﹣B.﹣C.﹣D.﹣6.已知=7,则的值是()A.B.2 C.D.7.下列运算中正确的是()A.= B.C.•=﹣ D.÷=8.当x=﹣2时,下列分式有意义的是()A. B.C. D.9.若分式的值为0,则x的值为()A.﹣5 B.5 C.﹣5和5 D.无法确定10.下列各式,从左到右变形正确的是()A.B. C. D.二.填空题11.当x时,分式有意义.12.约分=.13.写出一个含有字母m,且m≠2的分式,这个分式可以是.14.若分式的值为负数,则x的取值范围是.15.计算=.16.一组按规律排列的式子:,,,,,…,其中第7个式子是,第n个式子是(用含的n式子表示,n 为正整数).17.若式子的值为零,则x的值为.18.不改变分式的值,使分式的分子、分母中各项系数都为整数,=.19.化简:=.20.下列各式中中分式有个.三.解答题21.(1)=(2)=22.当x为何值时,分式的值为0?23.给定下面一列分式:,…,(其中x≠0)(1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式.24.下列分式,当x取何值时有意义.(1);(2).25.已知实数a,b满足,6a=2010,335b=2010,求+的值.26.定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如==+=1+,==a﹣1+,则和都是“和谐分式”.(1)下列分式中,属于“和谐分式”的是:(填序号);①;②;③;④(2)将“和谐分式化成一个整式与一个分子为常数的分式的和的形为:=.(3)应用:已知方程组有正整数解,求整数m的值.参考答案与解析一.选择题1.解:﹣3x,,的分母中均不含有字母,因此它们是整式,而不是分式.﹣,,,分母中含有字母,因此是分式.故选:D.2.解:①分母中含有π,是具体的数,不是字母,所以不是分式;②分母中含有字母a,是分式;③是等式,不是分式;④分母中没有字母,不是分式;⑤分母中含有字母x,是分式;⑥分母中没有字母,不是分式;分式有②⑤2个,故选:B.3.解;代数式, +b的分母中含有字母,是分式,故选:B.4.解:A、=,故此选项错误;B、,无法化简,故此选项错误;C、=x4,故此选项错误;D、=,正确.故选:D.5.解:﹣=﹣=﹣.故选:C.6.解:∵=7,∴=,∴x﹣4﹣=,∴x﹣=,∵的倒数为x﹣1﹣=﹣1=,∴=,故选:C.7.解:A、=≠,不正确;B、=﹣1,正确;C、=,不正确;D、==,不正确;故选:B.8.解:A、当x=﹣2时,x+2=0,无意义;B、当x=﹣2时,有意义;C、当x=﹣2时,x2﹣4=0,无意义;D、当x=﹣2时,x2+3x+2=4﹣6+2=0,无意义.故选:B.9.解:由题意得,|x|﹣5=0,解得x=±5,当x=5时,x2﹣4x﹣5=0,分式无意义;当x=﹣5时,x2﹣4x﹣5=40≠0,分式有意义;∴x的值为﹣5.故选:A.10.解:A、2前面是加号不是乘号,不可以约分,原变形错误,故本选项不符合题意;B、原式=﹣,原变形错误,故本选项不符合题意;C、原式==,原变形正确,故本选项符合题意;D、从左边到右边不正确,原变形错误,故本选项不符合题意;故选:C.二.填空题11.解:由题意得:2x+3≠0,解得:x≠﹣,故答案为:≠﹣.12.解:=.故答案为:.13.解:含有字母m,且m≠2的分式可以是,故答案为:(答案不唯一).14.解:∵分式的值为负数,∴﹣2x+3<0,解得:x>.故答案为:x>.15.解:原式=x=.故答案为:.16.解:∵=(﹣1)2•,=(﹣1)3•,=(﹣1)4•,…∴第7个式子是,第n个式子为:.故答案是:,.17.解:∵式子的值为零,∴x2﹣1=0,(x﹣1)(x+2)≠0,解得:x=﹣1.故答案为:﹣1.18.解:分式的分子,分母同时乘以500就可得到.故答案为:.19.解:原式==,故答案为:.20.解:中分式为:、+1,﹣共3个.故答案为:3.三.解答题21.解:(1)由分式的基本性质,可得故答案为:5y.(2)分式的分子分母同时乘以﹣1,得=,故答案为2﹣x.22.解:∵分式的值为0,∴,解得x=0且x≠3,∴x=0.∴当x=0时,分式的值为0.23.解:(1)﹣÷=﹣;÷(﹣)=﹣…规律是任意一个分式除以前面一个分式恒等于;(2)∵由式子:,…,发现分母上是y1,y2,y3,…故第7个式子分母上是y7,分子上是x3,x5,x7,故第7个式子是x15,再观察符号发现第偶数个为负,第奇数个为正,∴第7个分式应该是.24.解:(1)要使分式有意义,则分母3x+2≠0,解得:x≠﹣;(2)要使分式有意义,则分母2x﹣3≠0,x≠.25.解:∵6a=2010,335b=2010,∴6ab=2010b,335ab=2010a,∴6ab×335ab═2010b+a,(6×335)ab=2010 a+b,∴ab=a+b,∴+==1.26.解:(1)①=,故是和谐分式;②=,故不是和谐分式;③=,故是和谐分式;④=,故是和谐分式;故答案为①③④;(2)===,故答案为;(3)解方程组得,∵方程组有正整数解,∴m=﹣1或﹣7.。

人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)

人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)

人教版八年级上册数学第15章《分式》单元测试卷一.选择题(共10小题,满分30分)1.下列式子中,属于分式的是()A.B.C.D.2.分式的值是零,则x的值为()A.3B.﹣3C.3或﹣3D.03.已知某新型感冒病毒的直径约为0.000002022米,将0.000002022用科学记数法表示为()A.2.022×10﹣5B.0.2022×10﹣5C.2.022×10﹣6D.20.22×10﹣74.计算的结果是()A.B.C.D.5.在①x2﹣x+,②﹣3=a+4,③+5x=6,④=1中,其中关于x的分式方程的个数为()A.1B.2C.3D.46.如果把分式中的x、y的值都扩大2倍,那么分式的值()A.扩大2倍B.扩大4倍C.扩大6倍D.不变7.若将分式与通分,则分式的分子应变为()A.6m2﹣6mn B.6m﹣6nC.2(m﹣n)D.2(m﹣n)(m+n)8.分式,的最简公分母是()A.a B.ab C.3a2b2D.3a3b39.计算结果等于2的是()A.|﹣2|B.﹣|2|C.2﹣1D.(﹣2)0 10.已知,则的值是()A.66B.64C.62D.60二.填空题(共10小题,满分30分)11.分式的最简公分母是.12.要使分式有意义,则分式中的字母b满足条件.13.若表示一个整数,则整数x可取的个数有个.14.约分:=.15.方程的解是.16.若解分式方程产生增根,则m=.17.用漫灌方式给绿地浇水,a天用水10吨,改用喷灌方式后,10吨水可以比原来多用5天,那么喷灌比漫灌平均每天节约用水吨.18.已知若x﹣=3,则x2+=.19.将分式化为最简分式,所得结果是.20.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10000元,则这种水果今年每千克的平均批发价是元.三.解答题(共7小题,满分90分)21.神舟十三号飞船搭载实验项目中,四川省农科院生物技术研究所共有a粒水稻种子,每粒种子质量大约0.0000325千克;甘肃省天水市元帅系苹果的b粒干燥种粒,每粒种子质量大约0.002275千克,参与航天搭载诱变选育.(1)用科学记数法表示上述两个数.(2)若参与航天搭载这两包种子的质量相等,求的值.(3)若这两包种子的质量总和为1.04千克,水稻种子粒数是苹果种子粒数10倍,求a,b的值.22.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.23.下列分式中,哪些是最简分式?,,;,,,.24.(1)计算:;(2)解不等式组:.25.若关于x 的方程有增根,求实数m的值.26.一船在河流上游A港顺流而下直达B港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,A、B两地距离为150千米,则该船从A港出发到返回A港共用了7.25小时,如果设水流速度是x千米/时,那么x应满足怎样的方程?27.阅读理解材料:为了研究分式与分母x的变化关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234…10.50.0.25……﹣0.25﹣0.﹣0.5﹣1无意义从表格数据观察,当x>0时,随着x 的增大,的值随之减小,并无限接近0;当x<0时,随着x 的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,1+的值(增大或减小);当x<0时,随着x的增大,的值(增大或减小);(2)当x>1时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.。

人教版数学八年级上册 分式解答题单元测试卷(含答案解析)

人教版数学八年级上册 分式解答题单元测试卷(含答案解析)

一、八年级数学分式解答题压轴题(难)1.已知分式 A =2344(1)11a a a a a -++-÷-- (1)化简这个分式;(2)当 a >2 时,把分式 A 化简结果的分子与分母同时加上 4 后得到分式 B ,问:分式 B 的值较原来分式 A 的值是变大了还是变小了?试说明理由;(3)若 A 的值是整数,且 a 也为整数,求出符合条件的所有 a 值的和.【答案】(1)22a a +-;(2)原分式值变小了,见解析;(3)11 【解析】【分析】(1)根据分式混合运算顺序和运算法则化简即可得;(2)根据题意列出算式2622a a A B a a ++-=--+,化简可得16(2)(2)A B a a -=-+,结合a 的范围判断结果与0的大小即可得;(3)由24122a A a a +==+--可知,2a -=±1、±2、±4,结合a 的取值范围可得. 【详解】 解:(1)A=2344(1)11a a a a a -++-÷-- =221311(2)a a a a ---⨯-- =2(2)(2)11(2)a a a a a +--⨯-- =22a a +-; (2)变小了,理由如下: ∵22a A a +=-, ∴62a B a +=+, ∴261622(2)(2)a a A B a a a a ++-=-=-+-+; ∵2a >,∴20a ->,24a +>,∴0A B ->,∴分式的值变小了;(3)∵A 是整数,a 是整数, 则24122a A a a +==+--, ∴21a -=±、2±、4±, ∵1a ≠,∴a 的值可能为:3、0、4、6、-2;∴3046(2)11++++-=;∴符合条件的所有a 值的和为11.【点睛】本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.2.有甲、乙两名采购员去同一家公司分别购买两次饲料,两次购买的饲料价格分别为m 元/千克和n 元/千克,且m≠n ,两名采购员的采购方式也不同,其中甲每次购买800千克,乙每次用去800元,而不管购买多少千克的饲料。

人教版八年级上册数学《分式》单元测试卷(附答案)

人教版八年级上册数学《分式》单元测试卷(附答案)
信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.
根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.
参考答案
一.选择题(共6小题,满分30分,每小题5分)
1.在式子 ,10xy﹣2, 中,分式的个数是( )
A.5B.4C.3D.2
【答案】B
【解析】
【分析】
根据分式的定义:分子和分母都是整式,且分母含有字母,来进行判断即可.
【详解】解:0.00000104=1.04×10-6,
故答案为1.04×10-6.
【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
8.若分式 的值为0,那么x2=_____.
【答案】4
【解析】
【分析】
根据分式的值为零得 =0,再因为分母不能为0舍去一个答案,代入计算得到结果.
C.不变D.缩小到原来的
3.下列分式中,最简分式有( )
A. 2个B. 3个C. 4个D. 5个
4.若102y=25,则10﹣y等于( )
A B. C.﹣ 或 D.
5.已知 ,则 的值为( )
A 1B.0C.﹣1D.﹣2
6.”五一”期间,某中学数学兴趣小组的同学们租一辆小型巴士前去某地进行社会实践活动,租车租价为180元.出发时又增加了两位同学,结果每位同学比原来少分摊了3元车费.若小组原有x人,则所列方程为( )
信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;
信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.
根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.
【答案】甲、乙两个工厂每天分别能加工40件、60件新产品

新人教版八年级数学上册《分式》单元测试卷含有答案详细解析

新人教版八年级数学上册《分式》单元测试卷含有答案详细解析

新人教版八年级数学上册《分式》单元测试卷一、选择题1、若代数式有意义,则实数x的取值范围是()A.x=0 B.x=3 C.x≠0 D.x≠32、若将分式中的字母与的值分别扩大为原来的10倍,则这个分式的值()A.扩大为原来的10倍B.扩大为原来的20倍C.不改变D.缩小为原来的倍3、下列分式是最简分式的是()A.B.C.D.4、某工厂原计划完成120个零件,每天生产x个,采用新技术后,每天可多生产2个零件,结果提前3天完成.可列方程( )A.B.C.D.5、下列各式是分式的有()个,,,,,,;A.个B.个C.个D.个6、若关于x的方程-3=有增根,则增根为( )A.x=6 B.x=5 C.x=4 D.x=3 7、已知a2-3a+1=0,则分式的值是( )A.3 B.C.7 D.8、关于的方程的解为x=1,则a的值为( )A.1 B.3 C.-1 D.-39、将分式方程去分母后得到正确的整式方程是()A.x﹣2=x B.x2﹣2x=2x C.x﹣2=2x D.x=2x﹣410、分式的值等于零时,的值是().A.B.C.D.不存在二、填空题11、分式方程的解是____________.12、若关于x的分式方程=3的解为正实数,则实数m的取值范围是____________。

13、分式:,,的最简公分母是__.14、已知9x-6x+1=0,则代数式3x+的值为________15、若代数式的值为零,则=______________.16、化简:=_______________.17、已知关于x的分式方程=1无解,则a=________.18、已知a2-6a+9与|b-1|互为相反数,则式子÷(a+b)的值为________.19、如图,点A,B在数轴上,它们所表示的数分别是-4,,且点A到原点的距离是点B到原点距离的2倍,则x=________.20、一根蜡烛在凸透镜下成一实像,物距,像距和凸透镜的焦距满足关系式:.若=6厘米,=8厘米,则物距= ___________厘米.三、计算题21、计算①②22、先化简,再求值:,其中a=﹣1.四、解答题元购进水果若干千克,第二次又用600元购进该水果,但这次每千克的进价比第一次进价的提高了25%,购进数量比第一次少了30千克.(1)求第一次每千克水果的进价是多少元?(2)若要求这两次购进的水果按同一价格全部销售完毕后获利不低于420元,问每千克售价至少是多少元?24、列方程解应用题:A、B两地的距离是80公里,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B地,求两车的速度.25、小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生.若校车的速度是他骑车速度的2倍,则现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同,试求小军骑车的速度.参考答案1、D2、C3、C4、B5、C6、B7、D8、D9、C10、B11、12、m<6且m≠213、a2(a+1)(a﹣1)14、215、216、a17、118、19、-120、2421、(1)、;(2)、22、原式=,当a=﹣1时,原式=1﹣.23、(1)第一次每千克水果的进价为4元.(2)每千克水果售价至少是6元.24、公共汽车和小汽车的速度分别是20公里/时,60公里/时.25、15答案详细解析【解析】1、分析:根据分式有意义的条件进行求解即可.详解:由题意得,x﹣3≠0,解得,x≠3,故选:D.点睛:此题考查了分式有意义的条件.注意:分式有意义的条件事分母不等于零,分式无意义的条件是分母等于零.2、试题分析:当x和y都扩大10倍时,分式的分子和分母也同时扩大10倍,则分式的值不改变.考点:分式的值的大小.3、A选项:化简该分式,得,故A选项不符合题意.B选项:化简该分式,得,故B选项不符合题意.C选项:对该分式的分子进行因式分解,得. 由此可见,该分式的分子与分母没有公因式,符合最简分式的定义,故C选项符合题意.D选项:化简该分式,得,故D选项不符合题意.故本题应选C.4、由题意得原计划完成任务所需天数为,实际完成所需天数为,所以=+3.故选B.5、是整式;是分式;是整式;是分式;是分式;x+y是整式;是方程.分式有3个.故选C.点睛:分式的定义: 形如,A、B是整式,B中含有字母且B不等于0的式子叫做分式,分式不含等号和不等号.6、试题解析:∵方程-3=有增根,∴x-5=0,解得x=5.故选B.7、本题考查分式条件求值,根据已知a2-3a+1=0可得: a2 +1=3a,所以,所以分式,因此正确的选项是D.8、∵关于x的方程的解为x=1,∴,解此关于a的分式方程得,经检验,是此方程的根,故选D.9、试题分析:方程两边同时乘以可以得到x﹣2=2x,故选C10、∵分式的值为0,∴,解得:,故选B.点睛:求使分式值为0的字母的取值时,要注意需同时满足两点:(1)分子的值为0;(2)分母的值不为0;11、试题解析:方程的两边同乘(x+1)(x−1),得x−1+x+1=0,解得x=0.检验:把x=0代入(x+1)(x−1)=−1≠0.∴原方程的解为:x=0.故答案为:x=0.12、=3,方程两边同乘(x−2)得,x+m−2m=3x−6,解得,x=,由题意得, >0,解得,m<6,∵≠2,∴m≠2,故答案为:m<6且m≠2.13、试题解析:先把分母因式分解,再找出最简公分母a2(a+1)(a﹣1).14、9x2-6x+1=0利用完全平方公式对方程左侧的整式进行因式分解,得 (3x-1)2=0,∴3x-1=0,∴.当时,.故本题应填写:2.15、由题意,得(x−2)(x−3)=0且2x−6≠0,解得x=2,故答案为:2.16、试题解析:.所以本题的正确答案为.17、两边都乘以x+2,得a﹣1=x+2,由方程无解,得x=﹣2.当x=2时,a﹣1=0,解得a=1,故答案是:1.18、根据题意可得: a2-6a+9+|b-1|=0,即,利用非负数的非负性可求出:即把代入到式子÷(a+b)得;19、试题解析::∵点A、B在数轴上,它们所对应的数分别是-4与,点A、B到原点的距离相等,∴4=,∴x=-1.检验:把x=-1代入5x+1≠0,∴分式方程的解为:x=-1.20、∵,∴=−=∴u=,∵f=6,v=8∴u==24.故答案为:24.21、试题分析:①先对分子分母因式分解,再约分即可;②先对分子分母因式分解,再约分即可.试题解析:①原式=•=;②原式=•==.考点:分式的乘除法.22、试题分析:先进行通分得到原式=,再进行同分母的加法运算,然后把分子分解因式后约分得到原式=,再把a的值代入计算即可.试题解析:原式====,当a=﹣1时,原式==1﹣.考点:分式的化简求值.23、试题分析:(1)设第一次每千克水果的进价为x元,则第二次每千克水果的进价为(1+25%)x元,根据题意可列出分式方程解答;(2)设售价为y元,求出利润表达式,然后列不等式解答.解:(1)设第一次每千克水果是进价为x元,根据题意列方程得,﹣=30,解得x=4,经检验:x=4是原分式方程的解.答:第一次每千克水果的进价为4元.(2)设售价为y元,第一次每千克水果的进价为4元,则第二次每千克水果的进价为4×(1+25%)=5(元)根据题意列不等式为:×(y﹣4)+×(y﹣5)≥420,解得y≥6.答:每千克水果售价至少是6元.考点:分式方程的应用;一元一次不等式的应用.24、试题分析:设公共汽车的速度为x公里/小时,则小汽车的速度是3x公里/小时.根据题意,知小汽车所用的时间比公共汽车所用的时间少3小时﹣20分=小时,列方程求解.解:设公共汽车的速度为x公里/小时,则小汽车的速度是3x公里/小时.依题意,得,解,得x=20.经检验x=20是原方程的根,且符合题意.∴3x=60.答:公共汽车和小汽车的速度分别是20公里/时,60公里/时.考点:分式方程的应用.25、整体分析:设骑车的速度是x千米/时,用含x的式子表示骑自行车到校的时间与乘校车到校的时间,用等量关系“现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同”列方程求解.设骑车的速度是x千米/时,则校车的速度是2x千米/时,根据题意,解得,x=15.经检验:x=15是该方程的解且符合题意.答:小军骑车的速度是每小时15千米。

人教版八年级数学上册 分式解答题单元测试卷(含答案解析)

人教版八年级数学上册 分式解答题单元测试卷(含答案解析)

一、八年级数学分式解答题压轴题(难)1.如图,小刚家、王老师家、学校在同一条路上,小刚家到王老师家的路程为3千米,王老师家到学校的路程为0.5千米.由于小刚的父母战斗在抗震救灾第一线,为了使他能按时到校,王老师每天骑自行车送小刚上学.已知王老师骑自行车的速度是步行的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车的速度各是多少?【答案】王老师的步行速度是5km /h ,则王老师骑自行车的速度是15km /h .【解析】【分析】王老师接小刚上学走的路程÷骑车的速度-平时上班走的路程÷步行的速度=2060小时. 【详解】设王老师的步行速度是km /h x ,则王老师骑自行车是3km /h x ,由题意可得:330.50.520360x x ++-=,解得:5x =, 经检验,5x =是原方程的根,∴315x =答:王老师的步行速度是5km /h ,则王老师骑自行车的速度是15km /h .【点睛】本题考查列分式方程解应用题.重点在于准确地找出相等关系,需注意①王老师骑自行车接小刚所走路程是(3+3+0.5)千米;②注意单位要统一.2.已知下面一列等式:111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;… (1)请你按这些等式左边的结构特征写出它的一般性等式: (2)验证一下你写出的等式是否成立; (3)利用等式计算:11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++. 【答案】(1)一般性等式为111=(+11n n n n -+);(2)原式成立;详见解析;(3)244x x+. 【解析】【分析】(1)先要根据已知条件找出规律;(2)根据规律进行逆向运算;(3)根据前两部结论进行计算.【详解】解:(1)由111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;…, 知它的一般性等式为111=(+11n n n n -+); (2)1111(1)(1)n n n n n n n n +-=-+++111(1)1n n n n ==⋅++, ∴原式成立;(3)11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++ 1111112x x x x =-+-+++11112334x x x x +-+-++++ 114x x =-+ 244x x=+. 【点睛】解答此题关键是找出规律,再根据规律进行逆向运算.3.某小麦改良品种后平均每公顷增加产量a 吨,原来产m 吨小麦的一块土地,现在小麦的总产量增加了20吨.(1)当a =0.8,m =100时,原来和现在小麦的平均每公顷产量各是多少?(2)请直接接写出原来小麦的平均每公顷产量是 吨,现在小麦的平均每公顷产量是 吨;(用含a 、m 的式于表示)(3)在这块土地上,小麦的改良品种成熟后,甲组收割完需n 小时,乙组比甲组少用0.5小时就能收割完,求两组一起收割完这块麦田需要多少小时?【答案】(1)原来和现在小麦的平均每公顷产量各是4吨,4.8吨;(2)20ma ,+2020ma a ;(3)两组一起收割完这块麦田需要2241n n n --小时. 【解析】【分析】(1)设原来小麦平均每公顷产量是x 吨,根据题意列出分式方程求解并验根即可;(2)设原来小麦平均每公顷产量是y 吨,根据题意列出分式方程求解并验根即可;(3)由题意得知,工作总量为m+20,甲的工作效率为:20m n +,乙的工作效率为:200.5m n +-,再由工作总量除以甲乙的工作效率和即可得出工作时间.【详解】 解:(1)设原来平均每公顷产量是x 吨,则现在平均每公顷产量是(x +0.8)吨, 根据题意可得:100100200.8x x +=+ 解得:x =4,检验:当x =4时,x (x +0.8)≠0,∴原分式方程的解为x =4,∴现在平均每公顷产量是4.8吨,答:原来和现在小麦的平均每公顷产量各是4吨,4.8吨.(2)设原来小麦平均每公顷产量是y 吨,则现在玉米平均每公顷产量是(y +a )吨, 根据题意得:20m m y y a+=+ 解得;y =20ma , 经检验:y =20ma 是原方程的解, 则现在小麦的平均每公顷产量是:202020ma ma a a ++= 故答案为:20ma ,2020ma a +; (3)根据题意得:()20.5202202020.5410.5n n m n n m m n n n n -+-==++--+- 答:两组一起收割完这块麦田需要2241n n n --小时. 【点睛】本题考查的知识点主要是根据题意列分式方程并求解,找出题目中的等量关系式是解题的关键.4.阅读下面的解题过程:已知2113x x =+,求241x x +的值。

人教版八年级上册数学《分式》试卷(含答案)

人教版八年级上册数学《分式》试卷(含答案)

八年级上册数学单元测试题(分式)一、选择题(每题3分,共30分) 1、在分式22,2,,1y x x ab b a c a --π中,分式的个数为( ) A 、2个 B 、3个 C 、4个 D 、5个 2、使分式x-31有意义的x 的取值范围是( ) A 、0≠x B 、3±≠x C 、3-≠x D 、3≠x 3、下列等式从左到右的变形一定正确的是( )A 、11++=a b a b B 、am bm a b = C 、a b a ab =2 D 、22a b a b =4、分子223ba a -的分母经过通分后变成)()(22b a b a +-,那么分子应变为( ) A 、)()(62b a b a a +- B 、)(2b a - C 、)(6b a a - D 、)(6b a a +5、计算332)()()(xyx y y x -÷-⋅-的结果是( )A 、y x 2B 、yx 2- C 、y x D 、y x -6、计算)1(111+++a a a 的结果是( ) A 、11+a B 、1+a a C 、a 1 D 、aa 1+ 7、化简xyx x y y x -÷-)(的结果是( ) A 、y 1 B 、y y x + C 、yy x - D 、y 8、计算:1)21(--等于( )A 、21 B 、21- C 、2 D 、2-9、将数据37000用科学记数法表示为n107.3⨯,则n 的值为( ) A 、3 B 、4 C 、5 D 、6 10、把分式方程xx 142=+转化为一元一次方程时,方程两边需同乘( ) A 、x B 、x 2 C 、4+x D 、)4(+x x 二、填空题(每题4分,共24分)11、计算:xy xy 3232÷-= .12、计算:24123a ab += . 13、化简)11()12(x x x x -÷--的结果是 .14、若0112=--x ,则x = .15、若分式方程a x ax =+-1无解,则a 的值为 .16、杭州到北京的铁路长1487km .火车的原平均速度为h xkm /,提速后平均速度增加了h km /70,由杭州到北京的行驶时间缩短了3h ,则可列方程为 .三、解答题一(每题6分,共18分)17、通分:22-x x ;.23+x x 18、计算:cd b a c ab 4522223-÷19、计算:3132)(y x y x --四、解答题二(每题7分,共21分)20、先化简,再求值:)12(442-÷+-xx x x ,其中.22-=x21、解方程:21482-=+-x xx22、当k 为何值时,关于x 的方程)3)(2(321+-+=+--+x x kx x x x x 的解为负数.五、解答题三(每题9分,共27分)23、为了美化环境,某地政府计划对辖区内602km 的土地进行绿化,为了尽快完成任务,实际平均每月的绿化面积是原计划的1.5倍,结果提前2个月完成任务,求原计划平均每月的绿化面积.24、已知0,0≠=++abc c b a ,求)11()11()11(ba c c abc b a +++++的值.25、某服装厂购进一批甲、乙两种款型时尚T 恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T 恤衫各购进多少件? (2)商店将进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T 恤衫商店共获利多少元?分式参考答案一、BDCCB CBDBD 二、11、yx 292- 12、b a b a 246+ 13、1-x 14、3 15、1或1- 16、37014871487=+-x x 三、17、解:442)2)(2()2(22222-+=+-+=-x x x x x x x x x ;.463)2)(2()2(32322--=-+-=+x x x x x x x x x 18、解:原式2223542b a cd c ab -⨯==.521042223acbdc b a cd ab -=- 19、解:原式xy x y x y x 1013332===--- 四、20、解:原式22)2(2)2(22+-=-⋅--=-÷-=x x xx x x x x x , 当22-=x 时,原式.2222=++-=21、解:原方程可化为21)2)(2(8-=+-+x xx x ,去分母,得)2()2)(2(8+=-++x x x x , 解得2=x .检验:当2=x 时,0)2)(2(=-+x x ,所以2=x 是原方程的增根,即原方程无解.22、解:方程两边都乘)3)(2(+-x x ,整理得35-=k x ,解得53-=k x , 因为0<x ,所以053<-k ,解得3<k ,又因为2≠x 且3-≠x ,即253≠-k 且 353-≠-k ,所以13≠k 且.12-≠k综上可知,当3<k 且12-≠k 时,原分式方程的解为负数. 五、23、解:设原计划平均每月的绿化面积为2xkm ,实际平均每月的绿化面积是1.52km ,由题意得25.16060=-xx , 解得:10=x ,经检验10=x 是原方程的解. 答:原计划平均每月的绿化面积为10.2km24、解:.,,,0a c b b c a c b a c b a -=+-=+-=+∴=++∴原式)()()(cb c a b c b a a c a b b c a c c b a b c a b a +++++=+++++==.3-=-+-+-=+++++ccb b a ac b a b c a a c b 25、解:(1)设乙种款型的T 恤衫购进x 件,则甲种款型的T 恤衫购进x 5.1件,依题意,得xx 6400305.17800=+, 解得40=x ,经检验,40=x 是原分式方程的解,且符合题意,605.1=x , 答:甲种款型的T 恤衫购进60件,乙种款型的T 恤衫购进40件. (2)乙种进价1604064006400==x (元),甲种进价13030160=-(元), 64019204680)240(]5.0%)601(1[160)240(%6016060%60130-+=÷⨯⨯+-⨯-÷⨯⨯+⨯⨯=5960(元)答:售完这批T 恤衫,商店共获利5960元.。

人教版数学八年级上册《分式》单元测试题带答案

人教版数学八年级上册《分式》单元测试题带答案
由题意得:20( )+ (x+2)=1,
解得:x=28.
经检验,x=28是原方程的解.
【解析】
【分析】根据分式值为0 条件,分子为0分母不为0列式进行计算即可得.
【详解】∵分式 的值为零,
∴ ,
解得:x=1,
故选B.
【点睛】本题考查了分式值为0的条件,熟知分式值为0的条件是分子为0分母不为0是解题的关键.
3.如果分式 的值为0,则x的值是
A. 1B. 0C.-1D. ±1
【答案】A
【解析】
请你解决如下问题:求分式 的取值范围.
【答案】
【解析】
试题分析:利用配方法可得x2-4x+5≥1,则可得0< ≤1,把所求范围的分式适当变形即可求出它的范围.
试题解析:x2-4x+5=x2-4x+4+1=(x-2)2+1,(x-2)2≥0,
∴x2-4x+5≥1,
∴0< ≤1,
∴1<1+ ≤2,
∵ = =1+ ,
【答案】
【解析】
原式= .
18.若关于若关于x的分式方程 的解为正数,那么字母a的取值范围是___.
【答案】a>1且a≠2
【解析】
【详解】分式方程去分母得:2x﹣a=x﹣1,解得:x=a﹣1,
根据题意得:a﹣1>0,解得:a>1.
又当x=1时,分式方程无意义,∴把x=1代入x=a﹣1得a=2.
∴要使分式方程有意义,a≠2.
13.已知x为正整数,当时x=________时,分式 的值为负整数.
14.我国医学界最新发现的一种病毒其直径仅为0.000512mm,这个数字用科学记数法可表示为________mm.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴ ,即: ,
∴方案二所用的时间少.
【点睛】
本题主要考查分式方程的实际应用以源自分式的减法法则,找出等量关系,列分式方程,掌握分式的通分,是解题的关键.
2.小明和小强两名运动爱好者周末相约到滨江大道进行跑步锻炼.
(1)周六早上6点,小明和小强同时从家出发,分别骑自行车和步行到离家距离分别为4500米和1200米的滨江大道入口汇合,结果同时到达.若小明每分钟比小强多行220米,求小明和小强的速度分别是多少米/分?
4.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.甲工程队施工一天,需付工程款1万元;乙工程队施工一天,需付工程款0.6万元.根据甲、乙工程队的投标书测算,可有三种施工方案:
(A)甲队单独完成这项工程,刚好如期完成;
(B)乙队单独完成这项工程要比规定工期多用4天;
(C)若甲、乙两队合做3天后,剩下的工程由乙队单独做,也正好如期完工.
【解析】
【分析】
(1)设小强的速度为x米/分,则小明的速度为(x+220)米/分,根据路程除以速度等于时间得到方程,解方程即可得到答案;
(2)①设小明的速度为y米/分,由m=3,n=6,根据小明的时间-小强的时间=6列方程解答;
②根据路程一定,时间与速度成反比,可求小强的时间进而求出小明的时间,再根据速度=路程除以时间得到答案.
∴小强跑的时间为: (分)
②小强跑的时间: 分钟,小明跑的时间: 分钟,
小明的跑步速度为: 分.
故答案为: .
【点睛】
此题考查分式方程的应用,正确理解题意根据路程、时间、速度三者的关系列方程解答是解题的关键.
3.某市2018年平均每天的垃圾处理量为40万吨/天,2019年平均每天的垃圾排放量比2018年平均每天的垃圾排放量多100万吨;2019年平均每天的垃圾处理量是2018年平均每天的垃圾处理量的2. 5倍.若2019年平均每天的垃圾处理率是2018年平均每天的垃圾处理率的1. 25倍.
(2)若甲工程队每天可以改造 米道路,乙工程队每天可以改造 米道路,(其中 ).现在有两种施工改造方案:
方案一:前 米的道路由甲工程队改造,后 米的道路由乙工程队改造;
方案二:完成整个道路改造前一半时间由甲工程队改造,后一半时间由乙工程队改造.
根据上述描述,请你判断哪种改造方案所用时间少?并说明理由.
试题解析:解:设完成工程规定工期为x天,依题意得:
解得:x=12.
经检验,x=12符合原方程和题意,∴x+4=16.
∴甲工程队单独完成需12天,乙工程队单独完成需16天.
一、八年级数学分式解答题压轴题(难)
1.某市为了做好“全国文明城市”验收工作,计划对市区 米长的道路进行改造,现安排甲、乙两个工程队进行施工.
(1)已知甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同.若甲工程队每天比乙工程队多改造30米,求甲、乙两工程队每天改造道路的长度各是多少米.
【详解】
(1)设小强的速度为x米/分,则小明的速度为(x+220)米/分,
根据题意得: = .
解得:x=80.
经检验,x=80是原方程的根,且符合题意.
∴x+220=300.
答:小强的速度为80米/分,小明的速度为300米/分.
(2)①设小明的速度为y米/分,∵m=3,n=6,
∴ ,解之得 .
经检验, 是原方程的解,且符合题意,
【详解】
(1)设乙工程队每天道路的长度为 米,则甲工程队每天道路的长度为 米,
根据题意,得: ,
解得: ,
检验,当 时, ,
∴原分式方程的解为: ,

答:甲工程队每天道路的长度为180米,乙工程队每天道路的长度为150米;
(2)设方案一所用时间为: ,
方案二所用时间为 ,则 , ,
∴ ,
∵ , ,
∴ ,
【答案】(1)100;(2)98.
【解析】
【分析】
(1)设2018年平均每天的垃圾排放量为x万吨,根据题意列方程求出x的值即可;
(2)设设2020年垃圾的排放量还需要増加m万吨,根据题意列出不等式,解得m的取值范围即可得到答案.
【详解】
(1)设2018年平均每天的垃圾排放量为x万吨,

解得:x=100,
(注: )
(1)求该市2018年平均每天的垃圾排放量;
(2)预计该市2020年平均每天的垃圾排放量比2019年平均每天的垃圾排放量增加 .如果按照创卫要求“城市平均每天的垃圾处理率不低于 ”,那么该市2020年平均每天的垃圾处理量在2019年平均每天的垃圾处理量的基础上,至少还需要増加多少万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求?
【答案】(1)甲工程队每天道路的长度为180米,乙工程队每天道路的长度为150米;(2)方案二所用的时间少
【解析】
【分析】
(1)设乙工程队每天道路的长度为 米,根据“甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同”,列出分式方程,即可求解;
(2)根据题意,分别表示出两种方案所用的时间,再作差比较大小,即可得到结论.
为了节省工程款,同时又能如期完工,你认为应选择哪一种方案?并说明理由.
【答案】为了节省工程款,同时又能如期完工,应选C方案.
【解析】
试题分析:设完成工程规定工期为x天,根据等量关系:甲、乙两队合做3天后,剩下的工程由乙队单独做,也正好如期完工,列方程,求解即可得到甲、乙工程队单独完成所需的天数,然后求出每种方案所需的工程款,比较即可得出结论.
经检验,x=100是原分式方程的解,
答:2018年平均每天的垃圾排放量为100万吨.
(2)由(1)得2019年垃圾的排放量为200万吨,
设2020年垃圾的排放量还需要増加m万吨,
90%,
m 98,
∴至少还需要増加98万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求.
【点睛】
此题考查分式方程的实际应用,一元一次不等式的实际应用,正确理解题意,找到各量之间的关系是解题的关键.
(2)两人到达滨江大道后约定先跑1000米再休息.小强的跑步速度是小明跑步速度的 倍,两人在同起点,同时出发,结果小强先到目的地 分钟.
①当 , 时,求小强跑了多少分钟?
②小明的跑步速度为_______米/分(直接用含 的式子表示).
【答案】(1)小强的速度为80米/分,小明的速度为300米/分;(2)①小强跑的时间为3分;② .
相关文档
最新文档