高等数学教案
2024年高等数学教案

高等数学教案一、教学目标1.知识与技能:(1)理解极限、导数、积分等基本概念,掌握它们的计算方法。
(2)熟练运用导数和积分解决实际问题,如最值问题、曲线拟合等。
(3)了解多元函数的极限、连续性、可导性,掌握偏导数、全微分、方向导数等概念。
(4)掌握多元函数的极值问题,了解条件极值和拉格朗日乘数法。
2.过程与方法:(1)通过实际问题,培养学生运用数学知识解决实际问题的能力。
(2)通过探究式学习,培养学生的创新精神和合作意识。
(3)通过数学软件的应用,提高学生的数学建模和计算能力。
3.情感、态度与价值观:(1)培养学生对数学的兴趣和热情,增强学生的自信心。
(2)培养学生严谨、求实的科学态度,提高学生的逻辑思维能力。
(3)培养学生团结协作的精神,增强学生的集体荣誉感。
二、教学内容1.极限与连续(1)数列极限的定义及性质(2)函数极限的定义及性质(3)无穷小量与无穷大量(4)极限的运算法则(5)夹逼定理与单调有界定理(6)连续函数的定义及性质2.导数与微分(1)导数的定义及几何意义(2)导数的运算法则(3)高阶导数(4)隐函数及参数方程求导(5)微分中值定理(6)泰勒公式3.不定积分与定积分(1)不定积分的概念及性质(2)基本积分公式(3)换元积分法与分部积分法(4)定积分的概念及性质(5)定积分的计算(6)定积分的应用4.多元函数微分学(1)多元函数的极限与连续(2)偏导数与全微分(3)复合函数求导法则(4)隐函数求导法则(5)方向导数与梯度(6)多元函数的极值问题5.多元函数积分学(1)二重积分的概念及性质(2)二重积分的计算(3)三重积分的概念及性质(4)三重积分的计算(5)线积分与面积分三、教学安排1.总学时:64学时2.教学进度安排:(1)极限与连续:12学时(2)导数与微分:18学时(3)不定积分与定积分:18学时(4)多元函数微分学:8学时(5)多元函数积分学:8学时四、教学方法1.讲授法:讲解基本概念、性质、定理等。
高等数学教案word版

高等数学教案word版篇一:高等数学上册教案篇二:《高等数学》教案《高等数学》授课教案第一讲高等数学学习介绍、函数了解新数学认识观,掌握基本初等函数的图像及性质;熟练复合函数的分解。
函数概念、性质(分段函数)—基本初等函数—初等函数—例子(定义域、函数的分解与复合、分段函数的图像)授课提要:前言:本讲首先是《高等数学》的学习介绍,其次是对中学学过的函数进行复习总结(函数本质上是指变量间相依关系的数学模型,是事物普遍联系的定量反映。
高等数学主要以函数作为研究对象,因此必须对函数的概念、图像及性质有深刻的理解)。
一、新教程序言1、为什么要重视数学学习(1)文化基础——数学是一种文化,它的准确性、严格性、应用广泛性,是现代社会文明的重要思维特征,是促进社会物质文明和精神文明的重要力量;(2)开发大脑——数学是思维训练的体操,对于训练和开发我们的大脑(左脑)有全面的作用;(3)知识技术——数学知识是学习自然科学和社会科学的基础,是我们生活和工作的一种能力和技术;(4)智慧开发——数学学习的目的是培养人的思维能力,这种能力为人的一生提供持续发展的动力。
2、对数学的新认识(1)新数学观——数学是一门特殊的科学,它为自然科学和社会科学提供思想和方法,是推动人类进步的重要力量;(2)新数学教育观——数学教育(学习)的目的:数学精神和数学思想方法,培养人的科学文化素质,包括发展人的思维能力和创新能力。
(3)新数学素质教育观——数学教育(学习)的意义:通过“数学素质”而培养人的“一般素质”。
[见教材“序言”]二、函数概念1、函数定义:变量间的一种对应关系(单值对应)。
(用变化的观点定义函数),记:y?f(x)(说明表达式的含义)(1)定义域:自变量的取值集合(D)。
(2)值域:函数值的集合,即{yy?f(x),x?D}。
例1、求函数y?ln(1?x2)的定义域?2、函数的图像:设函数y?f(x)的定义域为D,则点集{(x,y)y?f(x),x?D} 就构成函数的图像。
高等数学教案完整版

包括局部保号性、介值定理、零 点定理等。这些性质为分析和研 究连续函数的性质和行为提供了 重要的依据。
连续函数在数学分析、物理学、 工程学等领域有着广泛的应用。 例如,利用连续函数的性质可以 研究函数的单调性、极值等问题; 利用介值定理可以判断方程根的 存在性等。
PART 03
导数与微分
REPORTING
行列式的计算 利用性质将行列式化为上(下)三角形行列式,然后计算主对角线元素的乘积。
矩阵概念及运算规则
1 2
矩阵的定义 由m×n个数排成m行n列的数表称为m行n列的 矩阵,简称m×n矩阵。
矩阵的运算规则 矩阵的加法、数乘、乘法、转置等运算规则。
3
矩阵的性质
矩阵的加法满足交换律和结合律;数乘满足分配 律;矩阵乘法满足结合律和分配律,但不满足交 换律。
PART 07
线性代数初步
REPORTING
行列式概念及性质
行列式的定义
由n^2个数按一定规则排成的n行n列的数表称为n阶行列式。
行列式的性质
行列式与它的转置行列式相等;互换行列式的两行(列),行列式变号;行列式的某一行(列)的公因子可以提到行列式 外面;若行列式中某一行(列)的元素都是两数之和,则此行列式等于两个行列式的和。
若∑|u_n|收敛,则称原级数绝对 收敛;若原级数收敛但∑|u_n|发 散,则称原级数条件收敛。
比较判别法
通过比较级数与已知收敛或发散 的级数来判断其收敛性。
级数定义
比值判别法与根值判别法
无穷序列的和,表示为∑u_n,其 中u_n为级数的通项。
通过求通项的比值或根值的极限 来判断级数的收敛性。
微分方程与级数应用举例
利用微分方程描述人口
《高等数学》教案

《高等数学》授课教案第一讲高等数学学习介绍、函数了解新数学认识观,掌握基本初等函数的图像及性质;熟练复合函数的分解。
>函数概念、性质(分段函数)—>基本初等函数—> >初等函数—>例子(定义域、函数的分解与复合、分段函数的图像)授课提要:前言:本讲首先是《高等数学》的学习介绍,其次是对中学学过的函数进行复习总结(函数本质上是指变量间相依关系的数学模型,是事物普遍联系的定量反映。
高等数学主要以函数作为研究对象,因此必须对函数的概念、图像及性质有深刻的理解)。
一、新教程序言1、为什么要重视数学学习(1)文化基础——数学是一种文化,它的准确性、严格性、应用广泛性,是现代社会文明的重要思维特征,是促进社会物质文明和精神文明的重要力量;(2)开发大脑——数学是思维训练的体操,对于训练和开发我们的大脑(左脑)有全面的作用;(3)知识技术——数学知识是学习自然科学和社会科学的基础,是我们生活和工作的一种能力和技术;(4)智慧开发——数学学习的目的是培养人的思维能力,这种能力为人的一生提供持续发展的动力。
2、对数学的新认识(1)新数学观——数学是一门特殊的科学,它为自然科学和社会科学提供思想和方法,是推动人类进步的重要力量;(2)新数学教育观——数学教育(学习)的目的:数学精神和数学思想方法,培养人的科学文化素质,包括发展人的思维能力和创新能力。
(3)新数学素质教育观——数学教育(学习)的意义:通过“数学素质”而培养人的“一般素质”。
[见教材“序言”]二、函数概念1、函数定义:变量间的一种对应关系(单值对应)。
(用变化的观点定义函数),记:)(x f y =(说明表达式的含义) (1)定义域:自变量的取值集合(D )。
(2)值 域:函数值的集合,即}),({D x x f y y ∈=。
例1、求函数)1ln(2x y -=的定义域?2、函数的图像:设函数)(x f y =的定义域为D ,则点集}),(),{(D x x f y y x ∈= 就构成函数的图像。
《高等数学2》教案

《高等数学2》教案一、课程基本信息课程名称:高等数学 2课程类型:公共基础课授课对象:_____专业大一学生学分:_____学时:_____二、课程目标1、使学生掌握多元函数微积分学的基本概念、基本理论和基本方法。
2、培养学生的逻辑思维能力、空间想象能力和数学运算能力。
3、为学生学习后续课程以及解决实际问题提供必要的数学基础。
三、课程内容(一)多元函数的极限与连续1、多元函数的概念(1)通过实例引入多元函数的概念,如空间中温度的分布、物体的质量分布等。
(2)讲解二元函数的定义、定义域的确定方法。
2、多元函数的极限(1)介绍多元函数极限的定义,通过图形和实例帮助学生理解。
(2)分析多元函数极限的计算方法,与一元函数极限进行对比。
3、多元函数的连续性(1)讲解多元函数连续性的定义和判定方法。
(2)探讨连续函数的性质,如局部有界性、局部保号性等。
(二)偏导数与全微分1、偏导数的概念(1)通过实际问题引出偏导数的概念,如研究温度随地理位置的变化。
(2)讲解偏导数的定义和计算方法。
2、全微分(1)介绍全微分的概念和定义。
(2)讲解全微分存在的条件和计算方法。
(三)多元复合函数与隐函数求导法则1、多元复合函数求导法则(1)通过具体例子讲解多元复合函数的求导方法,如链式法则。
(2)强调求导过程中的注意事项。
2、隐函数求导法则(1)介绍隐函数的概念和存在定理。
(2)讲解隐函数求导的方法,通过实例进行巩固。
(四)多元函数的极值与最值1、多元函数的极值(1)讲解多元函数极值的定义和必要条件。
(2)介绍极值的充分条件,通过例题进行分析。
2、多元函数的最值(1)探讨在有界闭区域上求多元函数最值的方法。
(2)通过实际问题,如生产优化问题,进行应用。
(五)重积分1、二重积分的概念与性质(1)通过实例引入二重积分的概念,如求平面图形的面积。
(2)讲解二重积分的性质,如线性性、可加性等。
2、二重积分的计算(1)介绍直角坐标系下二重积分的计算方法。
《高等数学》教案

《高等数学》教案课 题:§1.1函数及其性质教学目的:1.理解函数、分段函数的概念,会求函数的定义域、表达式及函数值2.了解函数的有界性、单调性、奇偶性、周期性及反函数的定义教学重点:初等函数的概念、图形及性质 教学难点:分段函数的概念 课 型: 讲授课 课 时:2课时 教学过程一、导入新课在自然界中,某一现象中的各种变量之间,通常并不都是独立变化的,它们之间存在着依赖关系,我们观察下面几个例子:例如:某种商品的销售单价为p 元,则其销售额L 与销售量x 之间存在这样的依赖关系:L =px又例如:圆的面积S 和半径r 之间存在这样的依赖关系:2r S π=不考虑上面两个例子中量的实际意义,它们都给出了两个变量之间的相互依赖关系,这种关系是一种对应法则,根据这一法则,当其中一个变量在其变化范围内任意取定一个数值时,另一个变量就有确定的值与之对应。
两个变量间的这种对应关系就是函数概念的实质。
二、讲授新课(一)函数的定义定义 设有两个变量x ,y 。
对任意的x ∈D ,存在一定规律f ,使得y 有唯一确定的值与之对应,则y 叫x 的函数。
记作y=f(x),x ∈D 。
其中x 叫自变量,y 叫因变量。
定义10(集合的观点)A ,B 为两个数集,对任意的x ∈D ,存在f ,在B 中有唯一确定的值与之对应。
记作:f :A →B函数两要素:对应法则、定义域(有的可直接看出,有的需计算),而函数的值域一般称为派生要素。
例1 f(x)=2x 2+3x-1就是一个特定的函数,f 确定的对应法则为:f( )=2( )2+3( )-1 例10:设f(x+1)=2x 2+3x-1,求f(x). 解:设x+1=t 得x=t-1,则f(t)=2(t-1)2+3(t-1)-1=2t 2-t-2 ∴f(x)=2x 2 – x – 2其对应法则:f( )=2( )2 - ( ) -2定义域:使函数有意义的自变量的集合。
高等数学(下)教案曲面及其方程

高等数学(下)教案曲面及其方程一、教学目标1. 理解曲面的概念,掌握曲面的表示方法。
2. 学习曲面的方程,了解曲面的性质和分类。
3. 能够运用曲面的知识解决实际问题。
二、教学内容1. 曲面的概念及表示方法曲面的定义曲面的表示方法:参数方程、普通方程、参数曲线2. 曲面的方程曲面的方程的定义曲面的方程的求法曲面的方程的性质3. 曲面的性质和分类曲面的基本性质:连续性、differentiability、smoothness 曲面的分类:凸面、凹面、平面、空间曲线4. 曲面的切线和法线曲面的切线的定义和性质曲面的法线的定义和性质5. 曲面的实例分析球面平面圆柱面圆锥面三、教学方法1. 讲授法:讲解曲面的概念、性质和分类,讲解曲面的方程的求法。
2. 案例分析法:分析具体的曲面实例,引导学生理解曲面的性质和方程。
3. 互动教学法:引导学生参与课堂讨论,提问和解答问题。
四、教学准备1. 教案和教学PPT2. 相关数学软件和模型五、教学评价1. 课堂参与度:学生参与课堂讨论、提问和解答问题的积极性。
2. 作业完成情况:学生完成作业的情况和答案的正确性。
3. 期末考试:期末考试中关于曲面及其方程的题目得分情况。
六、教学重点与难点1. 教学重点:曲面的概念及表示方法曲面的方程的求法和性质曲面的性质和分类曲面的切线和法线的性质2. 教学难点:曲面的方程的求法曲面的切线和法线的求法1. 课时安排:本章共安排8课时。
2. 课时分配:曲面的概念及表示方法(2课时)曲面的方程(2课时)曲面的性质和分类(2课时)曲面的切线和法线(1课时)曲面的实例分析(1课时)八、教学步骤1. 引入曲面的概念,引导学生思考曲面在现实生活中的应用。
2. 讲解曲面的表示方法,包括参数方程、普通方程和参数曲线。
3. 引导学生学习曲面的方程的求法,通过实例讲解。
4. 讲解曲面的性质和分类,引导学生理解曲面的不同特征。
5. 讲解曲面的切线和法线的性质,引导学生掌握切线和法线的求法。
高等数学全套教案

02
可分离变量的微分方 程
形如 $dy/dx = f(x)g(y)$ 的一阶微分 方程,可以通过分离变量的方法求解 。
03
恰当微分方程
形如 $M(x,y)dx + N(x,y)dy = 0$ 的 一阶微分方程,如果满足一定条件, 则可以通过积分求解。
01
收敛半径与收敛域
幂级数在收敛半径内的点处绝对收敛, 而在收敛半径外的点处发散。收敛半径 与收敛域是幂级数的重要性质。
02
03
幂级数的运算
包括加法、减法、乘法、除法以及微 分和积分等运算,这些运算在求解幂 级数问题时非常有用。
傅里叶级数的概念与性质
傅里叶级数的定义
以正弦函数和余弦函数为基函数的无 穷级数称为傅里叶级数,用于表示周
导数的运算法则
01
导数的四则运算法 则
介绍了和、差、积、商的求导法 则,是计算复杂函数导数的基础 。
02
复合函数的导数
通过链式法则,可以求出复合函 数的导数。
03
隐函数与参数方程 的导数
对于不能直接求出显式表达式的 函数,可以通过隐函数求导法则 或参数方程求导法则来求解。
微分的概念与性质
微分的定义
04
多元函数的极值与最值
极值概念
多元函数在某一邻域内的最大值或最小值 。
求最值的方法
通过求极值并结合函数定义域边界点进行 比较得出。
极值存在的必要条件
一阶偏导数等于零或不存在。
最值概念
多元函数在其定义负定。
二重积分与三重积分
二重积分概念 二重积分的计算
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-----高等数学教案 第一章 函数与极限 第1页 共94页----- 第一章 函数与极限 §1.1 映射与函数 1.直积或笛卡儿乘积: 设A,B是任意两个集合, }) , ({ByAxyxBA且. 2.两个闭区间的直积表示
xOy平面上的矩形区域. 例如 , ] , [) , ({] , [] , [ybaxyxdcba. 3.点a是数轴上一点,0,点a的邻域: ) , (aa -----高等数学教案 第一章 函数与极限 第2页 共94页-----
或 }{axax 或 }{axx 记为) , (aU. 4.点a的去心邻域: ) , (aa) , (aa 或
}{axaaxax或 或 }0{axx
记为) , (aU. 5.点a的左邻域: ) , (aa. -----高等数学教案 第一章 函数与极限 第3页 共94页-----
6.点a的右邻域: ) , (aa. 7.函数是实数集到实数集的映射f.单值函数是指对于定义域fD内的任何实数x,在值域
fR中有唯一的实数y与之对应,记作 )(xfy, fDx,
其中x称为自变量,y称为因变量. 8.函数的自然定义域: 通常 -----高等数学教案 第一章 函数与极限 第4页 共94页-----
指使得函数算式有意义的一切实数组成的集合. 9.绝对值函数:
. 0 , , 0 , xxxx
x
10.符号函数:
.0 , 1,0 , 0 ,0 , 1 )sgn(xxxx
11.取整函数: 1 , nxnnx
) , 2 , 1 , 0(n. -----高等数学教案 第一章 函数与极限 第5页 共94页-----
其中 x表示不超过x的最大整数. 例如32.3,42.3,33,05.0
.
421P③.解: 令
0102xx
,得
01x或10x, 即定义域为 ]1 , 0()0 , 1[. 练习1.求函数的定义域.
3ln1)(xxf . -----高等数学教案 第一章 函数与极限 第6页 共94页-----
解: 令, 13 , 03 , 13xxx得, 4, 3 , 2xxx即定义域为 )4 , 3()3 , 2()2 , (D) , 4(. 练习2.求函数的定义域.
2cosxy
.
解: 令0cos
2x
,得
202x或
22222kxk, -----高等数学教案 第一章 函数与极限 第7页 共94页-----
即定义域为 22
xx
或2222kxk
或2222kxk
)} , 2 , 1(k. 12.函数的有界性: 设)(xf
的定义域为D,数集DX. ①.如果存在数1K,使得
1)(Kxf, 对任一Xx都成立,则称)(xf -----高等数学教案 第一章 函数与极限 第8页 共94页-----
在X上有上界,而1K为)(xf在X
上的一个上界. ②.如果存在数2K,使得
2)(Kxf, 对任一Xx都成立,则称)(xf
在X上有下界,2K为)(xf在X
上的一个下界. ③.如果存在正数M,使得 Mxf)(, 对任一Xx都成立,则称)(xf
在X上有界. -----高等数学教案 第一章 函数与极限 第9页 共94页-----
④.如果对于任何正数M,总存在Xx0,使得 Mxf)(0
,
则称)(xf在X上无界. 13.函数的单调性: 设)(xf
的定义域为D,区间DI. ①.如果对于区间I上任意两点1x及2x,当21xx时,恒有
)()(21xfxf, 则称)(xf在区间I上是单调增加的. -----高等数学教案 第一章 函数与极限 第10页 共94页-----
②.如果对于区间I上任意两点1x及2x,当21xx时,恒有
)()(21xfxf, 则称)(xf在区间I上是单调减少的. 14.函数的奇偶性: 设函数)(xf的定义域D关于原点对称, ①.如果对于任一Dx, )()(xfxf 恒成立,则称)(xf为奇函数.
②.如果对于任一Dx, -----高等数学教案 第一章 函数与极限 第11页 共94页-----
)()(xfxf 恒成立,则称)(xf为偶函数.
15.函数)(xfy的定义域为
fD,值域为fR,如果f是一一映射,则f存在逆映射1f
:
ffDR,即对于任意fRy,有唯一的fDx,使得yxf)(,
称1f
为f的反函数,记作
)(1yfx, fRy. 16.设函数)(ufy的定义域为fD,值域为fR; 函数)(xgu -----高等数学教案 第一章 函数与极限 第12页 共94页-----
的定义域为gD,值域为gR,且
fgDR,则由下式确定的函数 )]([xgfy,gDx, 称为由)(xgu与)(ufy构成的复合函数. x自变量,u中间变量,y因变量. 1422P④.解:2xey . 12021eeyx,eeeyx2
1
2
2.
17.基本初等函数: ①.幂函数xy (为实 -----高等数学教案 第一章 函数与极限 第13页 共94页-----
数). ②.指数函数)1 , 0( aaayx ,特例xey
.
③.对数函数
)1 , 0( logaaxya
,特例
xxyelnlog. ④三角函数
sinxy,xycos, xytan,xycot, xysec, cscxy. -----高等数学教案 第一章 函数与极限 第14页 共94页-----
⑤反三角函数 xyarcsin, arccosxy, xyarctan, cotarcxy. 18.初等函数: 由常数和基本初等函数经过有限次的四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数,称为初等函数. 19.双曲函数
①双曲正弦2
xxeex
sh.
②双曲余弦2
xxeex
ch. -----高等数学教案 第一章 函数与极限 第15页 共94页-----
③双曲正切xxxxeeeexxx
chsh
th.
§1.2 数列的极限 1.如果按照某一法则,对每个Nn
,对应着一个确定的数
nx,这些实数nx按照下标n从小到大排列得到的一个序列 , , , , 21nxxx
叫做数列,简记为数列nx,数
列中的每一个数叫做数列的项,第n项nx叫做数列的一般
项.