求函数值域的几种方法
函数值域的十种求法

函数值域的十种求法
1、通过定义域的极限来求函数值域:由于函数表示法中的变量x的取值范围是定义域,而函数值f(x)的取值范围则可以通过定义域极限的方法来求得。
2、通过函数定义关系来求函数值域:由于函数在定义域内有一定的定义关系,所以可以根据函数定义关系来求函数值域。
3、由于函数在定义域内有一定的性质,所以可以根据函数性质来求函数值域。
4、由于函数在定义域内有一定的对称性,所以可以根据函数的对称性来求函数值域。
5、由于函数在定义域内有一定的单调性,所以可以根据函数的单调性来求函数值域。
6、根据函数的奇偶性来求函数值域:如果函数在定义域内具有奇偶性,则可以根据函数的奇偶性来求函数值域。
7、由于函数在定义域内有一定的常数性,所以可以根据函数的常数性来求函数值域。
8、根据函数增减性来求函数值域:如果函数在定义域内具有增减性,则可以根据函数的增减性来求函数值域。
9、由于函数在定义域内有一定的循环性,所以可以根据函数的循环性来求函数值域。
10、根据函数的图像形状来求函数值域:如果函数在定义域内具有特定的图像形状,则可以根据函数的图像形状来求函数值域。
函数值域的13种求法

函数值域十三种求法1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。
例1. 求函数x 1y =的值域解:∵0x ≠∴0x 1≠显然函数的值域是:),0()0,(+∞-∞例2. 求函数x 3y -=的值域解:∵0x ≥3x 3,0x ≤-≤-∴故函数的值域是:]3,[-∞2. 配方法配方法是求二次函数值域最基本的方法之一。
例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域 解:将函数配方得:4)1x (y 2+-= ∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8]3. 判别式法(只有定义域为整个实数集R 时才可直接用)例4. 求函数22x 1x x 1y +++=的值域 解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+-(1)当1y ≠时,R x ∈0)1y )(1y (4)1(2≥----=∆解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211 故函数的值域为⎥⎦⎤⎢⎣⎡23,21例5. 求函数)x 2(x x y -+=的值域解:两边平方整理得:0y x )1y (2x 222=++-(1) ∵R x ∈∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤-但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。
可以采取如下方法进一步确定原函数的值域。
∵2x 0≤≤0)x 2(x x y ≥-+=∴21y ,0y min +==∴代入方程(1)解得:]2,0[22222x 41∈-+=即当22222x 41-+=时,原函数的值域为:]21,0[+注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
函数值域的十种求法

函数值域的十种求法函数值域是一种数学概念,它描述了一个函数的结果范围,是数学研究的基础。
求函数值域的方法有多种,每种方法都有不同的优劣。
本文介绍了求函数值域的十种方法,及其优势和劣势,以供参考。
一、定义法定义法是求取函数值域最为简单的方法,只要将函数的定义式扩大至所有可能被求出的范围即可。
定义法最大的优势在于可以精确求出函数值域,大大减少误差,使得函数值域的求解更有可靠性。
但是,定义法也有其缺点,即求解过程会很繁琐,在有多个参数的函数中,会消耗大量的计算时间。
二、图像法图像法是一种简单易行的求函数值域的方法,它只需要将函数的图像表示出来,然后从图像中观察出函数值域的范围即可。
图像法的优势在于求解速度快,只需要对函数的图像做一次有限次的绘制,就可以直观了解函数的值域,而无需进行耗时的计算。
但是,图像法本身并不能精确求出函数值域,无法判断一些细微的函数特征,从而可能导致求得的函数值域不够准确。
三、五行式五行式是一种常见的求函数值域的方法,它将参数组合为五个不同的行,分别代表不同的极限情况,然后从五行式中求取函数值域。
五行式的最大优势就在于可以根据函数本身的特征,从而排除掉一些不必要的计算,减少运算量,大大提高求解的效率。
但是,五行式也存在一定的局限性,它无法正确处理复杂的函数,也不能处理参数过多的函数。
四、三角形法三角形法是一种求函数值域的经典方法,它将参数抽象出来,将参数空间细分为多个三角形,并将每个三角形中的值域分别求取出来。
三角形法的最大优势在于可以将参数空间剖分为有结构的模块,并在不同模块之间建立联系,从而大大减少计算量。
但是,三角形法也有其不足,即它只能处理二元函数的值域求解,而且在一些复杂函数的情况下,其求解精度也无法保证。
五、基于函数本质的求法基于函数本质的求法是一种综合的求值域的方法,它的原理是从函数的定义本质出发,抽象出函数的特征,并对参数和函数值域之间的联系进行分析,最后求解出函数值域。
高考数学复习函数值域的13种求法

函数值域十三种求法1. 直接观察法利用已有的基本函数的值域观察直接得出所求函数的值域,对于一些比较简单的函数,如正比例,反比例,一次函数,指数函数,对数函数,等等,其值域可通过观察直接得到。
例1. 求函数x 1y =的值域解:∵0x ≠ ∴0x 1≠ 显然函数的值域是:),0()0,(+∞-∞例2. 求函数x 3y -=的值域 解:∵0x ≥3x 3,0x ≤-≤-∴故函数的值域是:]3,[-∞2. 配方法二次函数或可转化为形如c x bf x f a x F ++=)()]([)(2类的函数的值域问题,均可用配方法,而后一情况要注意)(x f 的范围;配方法是求二次函数值域最基本的方法之一。
例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域 解:将函数配方得:4)1x (y 2+-=∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max =故函数的值域是:[4,8]评注:配方法往往需结合函数图象求值域.3. 判别式法(只有定义域为整个实数集R 时才可直接用) 对于形如21112222a xb xc y a x b x c ++=++(1a ,2a 不同时为0)的函数常采用此法,就是把函数转化成关于x 的一元二次方程(二次项系数不为0时),通过方程有实数根,从而根的判别式大于等于零,求得原函数的值域.对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简如:.112..22222222b a y 型:直接用不等式性质k+xbx b. y 型,先化简,再用均值不等式x mx nx 1 例:y 1+x x+xx m x n c y 型 通常用判别式x mx nx mx n d. y 型 x n法一:用判别式 法二:用换元法,把分母替换掉x x 1(x+1)(x+1)+1 1 例:y (x+1)1211x 1x 1x 1==++==≤''++=++++=+++-===+-≥-=+++例4. 求函数22x 1x x 1y +++=的值域 解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+-(1)当1y ≠时,R x ∈0)1y )(1y (4)1(2≥----=∆ 解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211 故函数的值域为⎥⎦⎤⎢⎣⎡23,21例5. 求函数)x 2(x x y -+=的值域解:两边平方整理得:0y x )1y (2x 222=++-(1) ∵R x ∈∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤-但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。
求函数值域的方法大全

求函数值域的方法大全
1、极限法:极限法是求函数值域的一种重要技术,可以用来求函数
的极值。
原理是找到函数的变量的极限,在此极限处求函数的极值。
求极
限的方法有四种:求不等式的极限,求一元函数的极限,求二元函数的极限,求多元函数的极限。
2、求导法:求导法是求函数的最值的经典方法。
原理是求函数的导数,当导数当0的时候,其点处就会是极值点,可以分别求函数的一次导
数和二次导数,分析二次导数的符号可以判断函数的极值点属性,从而有
效解决函数求极值问题。
3、几何法:几何法是求函数最值问题的一种有效方法。
原理是利用
函数的图象特征,以图形分析的方法在实值空间中求解函数的极值、拐点,从而求函数的最值。
因为函数图象的研究具有直观性,使用几何法能够比
较快速地解决函数最值问题。
4、范数法:范数法是求函数值域的一种重要方法,可以用来求函数
的最大值和最小值。
这种方法利用范数的基本性质,即大于等于零、对称
性以及三角不等式,一般使用二范数求解,其核心思想是将函数转化为范
数的格式,得出最值的解。
5、参数法:参数法是求函数值域的一种重要方法,可以用来求函数
的最大值和最小值。
求函数值域的十种常用方法

求函数值域的十种常用方法函数的值域是指函数在定义域上取到的所有可能的函数值的集合。
确定函数的值域是函数分析中的一个重要内容,对于了解函数的性质和作用有着重要的意义。
下面是常用的十种方法来确定一个函数的值域:1.通过求导数:对于一个实变函数,可以通过求导数找到函数的极值点和临界点,并确定函数在这些点的函数值,然后从中选择最大值和最小值作为函数的值域的边界值。
2.分析极限:通过求函数的极限可以确定函数的趋势和发散的情况,从而可以确定函数的值域。
3.分段函数的值域:对于一个分段函数,可以分析每个分段的值域,然后将这些值域合并在一起得到整个函数的值域。
4.利用平移、伸缩和翻转:通过对函数进行平移、伸缩和翻转等运算,可以改变函数的图像和函数值的取值范围,并进一步确定函数的值域。
5.利用对称性:如果函数具有对称性,如轴对称、中心对称等,可以利用对称性来确定函数的值域。
6.利用图像分析:通过绘制函数的图像,可以直观地观察函数的取值范围。
7.利用函数的性质:对于特定的函数,可以利用函数的性质,如增减性、单调性、周期性等来确定函数的值域。
8.利用函数的定义域:函数的值域一般不能超出其定义域,因此可以通过函数的定义域来确定其值域的范围。
9.利用复合函数的值域:如果函数可以表示为其他函数的复合,可以利用复合函数的值域和定义域来确定原函数的值域。
10.利用数学工具:如利用不等式、方程以及数列等数学工具来分析函数的取值范围和值域。
当然,以上只是常用的一些方法,对于一些特殊的函数,可能需要运用其他方法和技巧来确定其值域。
准确确定函数的值域需要结合具体的函数形式和问题的要求进行分析和计算。
函数值域求法大全

函数值域求法大全函数的值域是由定义域和对应法则共同确定。
确定函数的值域是研究函数不可缺少的重要一环。
本文介绍了十一种函数值域求法。
首先是直接观察法,对于一些简单的函数,可以通过观察得到其值域。
例如,对于函数y=1/x,由于x不等于0,因此函数的值域为(-∞,0)U(0,+∞)。
再比如,对于函数y=3-x,由于x的取值范围为(-∞,+∞),因此函数的值域为(-∞,3]。
其次是配方法,这是求二次函数值域最基本的方法之一。
例如,对于函数y=x^2-2x+5,将其配方得到y=(x-1)^2+4,由此可得出函数的值域为[4.+∞)。
还有判别式法,例如对于函数y=(1+x+x^2)/(1+x^2),可以将其化为关于x的一元二次方程,然后根据判别式的值来确定函数的值域。
除此之外,还有其他的函数值域求法,如利用导数、利用反函数、利用奇偶性等方法。
这些方法各有特点,应根据具体情况选择合适的方法来求解。
总之,确定函数的值域是研究函数的重要一环,掌握好函数值域的求法可以帮助我们简化运算过程,事半功倍。
换元法是一种数学方法,可以通过简单的换元将一个函数变为简单函数。
其中,函数解析式含有根式或三角函数公式模型是其题型特征之一。
换元法不仅在求函数的值域中发挥作用,也是数学方法中几种最主要方法之一。
例如,对于函数 $y=x+x^{-1}$,我们可以令 $x-1=t$,则$x=t+1$。
代入原函数,得到$y=t^2+t+1=(t+1)^2+\frac{1}{4}$。
由于 $t\geq 0$,根据二次函数的性质,当 $t=0$ 时,$y$ 取得最小值 $1$,当 $t$ 趋近于正无穷时,$y$ 也趋近于正无穷。
因此,函数的值域为 $[1,+\infty)$。
又如,对于函数 $y=x^2+2x+1-(x+1)^2$,我们可以将 $1-(x+1)^2$ 化简为 $\frac{1}{2}-\left(x+\frac{1}{2}\right)^2$,然后令 $x+1=\cos\beta$,则 $y=\sin\beta+\cos\beta+1$。
求值域的10种方法

求值域的10种方法值域是一个函数在定义域内所有可能的输出值的集合。
找到函数的值域通常是为了确定函数可能的取值范围,并且在数学和计算中都是非常重要的。
以下是求值域的10种方法:1.列举法列举法是最简单直接的方法。
通过观察函数的定义,给出一组有序的输出值,并将这些值组成一个集合。
这些值将构成函数的值域。
例如,对于函数f(x)=x^2,我们可以通过进行一系列的替换运算,然后给出输出值的集合{0,1,4,9,16,...}。
2.图像法在图像法中,我们首先绘制函数的图像,然后找到图像上所有纵坐标的值。
这些纵坐标的集合构成了函数的值域。
例如,对于函数f(x)=x^2,我们可以绘制一个抛物线形状的图像,然后观察所有纵坐标的值。
3.解析法解析法是通过使用代数表达式或方程来确定函数的值域。
例如,对于函数f(x)=x^2,我们可以使用代数方法将方程f(x)=y转化为x^2=y。
然后通过解这个方程,我们可以得到y可能的取值范围,即函数的值域。
4.图像逼近法在图像逼近法中,我们通过绘制函数的图像,并观察图像在最高和最低点之间所有可能的纵坐标值。
这些纵坐标的集合构成函数的值域。
5.猜测法猜测法是一种直觉方法,凭借对函数的直觉和理解猜测出其可能的取值范围。
这种方法通常需要一定的数学背景和经验,并且在实践中被广泛应用。
6.极值法在极值法中,我们通过找到函数的极大值和极小值来确定函数的值域。
极大值是函数图像的局部最高点,极小值是函数图像的局部最低点。
函数的值域就是极值点之间的所有可能的函数值。
7.夹逼法夹逼法是通过使用两个已知函数(夹逼函数)来夹住待求函数,然后确定待求函数的值域。
待求函数的值域将位于夹逼函数的值域之间。
8.对数法对数法是通过取函数的对数来确定函数的值域。
求函数的对数在一些问题中很有用,因为它可以将具有无穷大或无穷小解的问题转化为具有有限解的问题。
9.差集法差集法是通过找到函数定义域的补集,然后从全体实数集中去除差集的元素,得到函数的值域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学中求函数值域的几种方法
汝南双语学校赵保刚
函数的值域及其求法是近几年高考考查的重点内容之一.本节主要帮助考生灵活掌握求值域的各种方法,并会用函数的值域解决实际应用问题.
定义域、对应法则、值域是函数构造的三个基本“元件”。
平时数学中,实行“定义域优先”的原则,无可置疑。
然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄彼,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。
如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。
才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难。
实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函数的理解,从而深化对函数本质的认识。
若有非空数集A到B的映射f:A→B,则函数:y=f(x)(x∈A,y∈B)的值域是自变量x在f作用
下的函数值y的集合C,很明显,C B,求函数值域的方法要随函数式的变化而灵活掌握,同时应注重数形结合,等价转换,分类讨论等重要数学思想的理解与运用。
下面通过八个方面的例题来加以说明。
题型一定义法
要深刻领会映射与函数值域的定义。
例1.已知函数f:A→B(A,B为非空数集),定义域为M,值域为N,则A,B,M,N的关系:()。
A.M=A,N=B B.M N,N=B
C.M=A,N B D.M A,N B
说明:函数的定义域是映射f:A→B中的原象集合A,而值域即函数值的集合是集合B的子集。
故:应有M=A,N B,选C。
例2.已知函数f(x)=2log2x的值域是[-1,1],求函数y=f-1(x)的值域。
分析:要求反函数的值域,只需求原函数的定义域。
解:由已知可得
f(x)∈[-1,1],,解之得,
即函数y=f-1(x)的值域是。
题型二利用均值定理求函数的值域
例3.若函数的定义域是(0,+∞),求值域。
解:∵,
∴,则
当且仅当时取“=”。
因此,函数的值域是。
例4.已知x+2y=1,x,y∈R+,求的最小值。
解:由已知x+2y=1,x,y∈R+,则有
当且仅当,即时取等号,故的最小值是。
说明:利用重要不等式均值定理求函数值域,要注意三条原则:一正数,二定值,三取等。
题型三配方法
形如y=ax2+bx+c(a≠0)的函数常用配方法求函数的值域,要注意x的取值范围。
例5.设(a∈R),如果x∈(-∞,1)时,f(x)有意义,求a的取值范围。
解:由题知,当x∈(-∞,1)时,要使函数f(x)有意义,需满足不等式:,即1+2x+a×4x>0恒成立,分离常数得
由于,因而。
故a的取值范围是。
题型四换元法
通过代数换元法或者三角函数换元法,把无理函数、指数函数、对数函数等超越函数转化为代数函数来求函数值域的方法。
例6.已知函数f(x)的值域是。
求的值域。
解:∵,
∴。
故,
令,则,
有,,
由于y=g(t)在时单调递增,
∴当时,;
当时,。
∴的值域是。
题型五判别式法
形如的函数值域,可变形为
(dy-a)x2+(ey-b)x+(fy-c)=0 (1)
当dy-a≠0时,(1)式为关于x的一元二次方程,由于函数的定义域为非空数集,故方程(1)有实根,因而Δ=(ey-b)2-4(dy-a)(by-c)≥0.....(2),再通过不等式(2)求y的最大值和最小值。
此法称为判别式法
例7.求函数的值域。
解:由已知得,
(y-1)x2+(1-y)x+y=0.
当y=1时,方程(y-1)x2+(1-y)x+y=0无解,
∴y≠1,
又∵x∈R,则Δ=(1-y)2-4y(y-1)≥0
解之得。
又因为y≠1,
故函数值域为。
说明:利用判别式法求函数的值域,一是方程二次项系数为0的情形要特别讨论;二是要看函数的定义域是否满足x ∈R 。
如果x 有特定的范围限制时,往往要综合运用判别式和韦达定理等,方能求出y 的值域。
题型六 利用函数的单调性求函数的值域
例8.求函数的值域。
解:函数的定义域为,函数y=x 和函数 在 上均为单调递增函数。
故。
因此,函数
的值域是。
题型七 数形结合法 通过函数图象,把求函数值域的问题转化为求直线的斜率或距离的范围问题。
例9. 已知:实数x,y ∈R ,满足(x-2)2+y 2=3,求的最值。
解: 如图,因为,可看作是动点P(x ,y)与原点O(0,0)连线的斜率,而动点P(x ,y)在圆(x-2)2+y 2=3上,于是依数形结合法,可得 的最大值为,最小值为 。
说明:数形结合是解决求值域和最值问题的重要方法。
运用图形的直观性,通过数形结合使抽象问题直观化;复杂问题简单化;综合问题浅显化,充分训练发散思维。
题型八 实际应用
设m 是实数,记M ={m |m >1},f (x )=log 3(x 2-4mx +4m 2+m +1
1 m ). (1)证明:当m ∈M 时,f (x )对所有实数都有意义;反之,若f (x )对所有实数x 都有意义,
则m ∈M .
(2)当m ∈M 时,求函数f (x )的最小值.
(3)求证:对每个m ∈M ,函数f (x )的最小值都不小于1.
(1)证明:先将f (x )变形:f (x )=log 3[(x -2m )2+m +1
1-m ], 当m ∈M 时,m >1,∴(x -m )2+m +
1
1-m >0恒成立,故f (x )的定义域为R . 反之,若f (x )对所有实数x 都有意义,则只须x 2-4mx +4m 2+m +1
1-m >0,令Δ<0,即16m 2
-4(4m 2+m +1
1-m )<0,解得m >1,故m ∈M . (2)解析:设u =x 2-4mx +4m 2+m +1
1-m ,∵y =log 3u 是增函数,∴当u 最小时,f (x )最小. 而u =(x -2m )2+m +11-m ,显然,当x =m 时,u 取最小值为m +11-m ,此时f (2m )=log 3(m +11-m )为最小值.
(3)证明:当m ∈M 时,m +
11-m =(m -1)+ 11-m +1≥3,当且仅当m =2时等号成立. ∴log 3(m +1
1-m )≥log 33=1. 以上是对函数值域的一些常用求法,仅供大家在教学或学习中用以参考。
若要想真正得以提高,我们必须在数学复习中对求值域的常用方法和一般技能进行系统整理,深化训练。
那样才能让学生真正熟练掌握。