数学史几何学的变革上解析
几何发展史简要概括

几何发展史简要概括几何学的发展史是一个漫长而丰富多彩的过程,它伴随着人类文明的发展,不断推动着人类对自然界和宇宙的认识。
以下是几何学发展史的简要概括:1. 早期几何学:早在公元前7世纪,古希腊的数学家们就开始研究几何学。
其中,欧几里德被认为是几何学的奠基人,他的《几何原本》一书成为了数学史上的经典之作。
在这个时期,几何学主要关注平面上图形的性质和度量,如长度、角度、面积等。
2. 解析几何学:到了17世纪,笛卡尔引入了坐标系的概念,将几何图形与代数方程结合起来,从而开创了解析几何学的新纪元。
解析几何学的出现,使得几何学的研究范围从平面扩展到了空间,同时也使得代数和几何在理论上得到了统一。
3. 微分几何学:在19世纪,高斯提出了微分几何学,将几何学的研究重点放在了曲面上。
微分几何学的研究对象包括曲线、曲面以及它们之间的变化和性质。
在这个时期,几何学的研究方法也得到了极大的发展,如微积分、线性代数等数学工具的引入,使得几何学的研究更加深入和广泛。
4. 拓扑学:拓扑学是几何学的一个重要分支,它研究的是图形在连续变形下保持不变的性质。
拓扑学的研究范围非常广泛,包括图形的连通性、紧致性、同胚性等方面。
在20世纪初,随着数学的发展和各学科之间的交叉融合,拓扑学逐渐成为了一个独立的数学分支。
5. 现代几何学:进入20世纪以后,几何学的发展更加多元化和深入。
在这个时期,出现了许多新的几何学分支,如纤维丛几何、黎曼几何、辛几何等。
这些分支的出现,使得几何学的研究范围更加广泛,同时也推动了数学和其他学科的发展。
总的来说,几何学的发展史是一个不断开拓、不断创新的过程。
在这个过程中,许多杰出的数学家们为几何学的发展做出了卓越的贡献。
他们的思想和成果不仅推动了数学的发展,也对其他学科产生了深远的影响。
今天,几何学已经成为一个庞大而复杂的学科体系,它将继续引领着人类对自然界和宇宙的认识和理解。
《数学史》几何学的变革(下)解析

几何学的变革
几何,就是研究空间结 构及性质的一门学科。它是 数学中最基本的研究内容之 一,与分析、代数等等具有 同样重要的地位,并且关系 极为密切。
几何学发展
• 几何学发展历史悠长,内容丰富。它和代数、分析、 数论等等关系极其密切。
• 几何思想是数学中最重要的一类思想。目前的数学各 分支发展都有几何化趋向,即用几何观点及思想方法 去探讨各数学理论。
x1 x2 x ,y x3 x3
齐次坐标成为代数地推导包括对偶原理在内许多 射影几何基本结果的有效工具.但这种代数的方法遭 到了以庞斯列为首的综合派学者的反对,19世纪的射 影几何就是在综合的与代数的这两大派之间的激烈争 论中前进的. 支持庞斯列的数学家还有斯坦纳 (J.Steiner) 、沙 勒 (M.Chasles) 和施陶特 (K.G.C.von Staudt) 等,其中 施陶特的工作对于确立射影几何的特殊地位有决定性 的意义.
其次,非欧几何的出现打破了长期以来只有一 种几何学即欧几里得几何学的局面.
19世纪中叶以后,通过否定欧氏几何中这样或那样的公 设、公理,产生了各种新而又新的几何学,除了上述几种非 欧几何、黎曼几何外,还有如非阿基米德几何、非德沙格几 何、非黎曼几何、有限几何等等,加上与非欧几何并行发展 的高维几何、射影几何,微分几何以及较晚出现的拓扑学等, 19世纪的几何学展现了无限广阔的发展前景.
其中 aij 的行列式必须不为零.射影变换下的不变量有线性、 共线性、交比、调和点组以及保持圆锥曲线不变等.显然, 如果 ,射影变换就成了仿射变换. a31 a32 并且 0 a33 1
下表反映了以射影几何为基础的克莱因几 何学分类中一些主要几何间的关系:
在克莱因的分类中,还包括了当时的代数几何 和拓扑学.克莱因对拓扑学的定义是“研究由无限 小变形组成的变换的不变性”.这里“无限小变形” 就是一一对应的双方连续变换。
几何学发展史简介

“几何”一词,拉丁文是geometric,其源于希腊文ycouerpua(土地测量术)。
我国明末科学家徐光启(1562-1637)与意大利传教士利玛窦(R.Matteo,1553- 1610)1607年合译《几何原本》时首次采用。
几何学是一门古老而崭新的数学分支,其产生可追溯到距今8000年前的新石器时代。
最早始于人类生存及生产的需要,在长期生活、生产实践中,人们逐渐对图形有了一定的认识,形成了一些粗略的几何概念,归纳出一些有关图形的知识和经验,产生了初步的几何。
再经历代数学家的提炼和加工,逐渐形成了一门研究现实世界空间形式,即物体形状、大小和位置关系的数学分支,进而发展成为研究一般空间结构的数学分支。
几何学的发展大致经历了4个基本阶段。
1.实验几何的形成与发展几何学最早的产生可以用“积累几何事实,并企图建立起各个事实间的某种联系”来概括和描述。
源于人们观察天体位置、丈量土地、测量容积、制造生产工具等实践活动。
据考古资料记载,出土的十万年前的一些器皿上已出现的简略几何图案。
相传公元前2000年前大禹治水时,就已经能够使用规和矩等绘图工具进行测量和设计工作。
另外,从现存的古埃及、古巴比伦等国的史料可看出,在天文、测量中也大量地反映了几何图形与计算的知识。
然而,这一历史时期,尽管人们在观察实验的基础上积累了丰富的几何经验。
但在现存的史料中,未见这一时期总结出几何知识真实性的推理证明;某些计算公式仅是粗略和近似的;直至公元前7世纪以前,可以说是单纯地由经验积累,通过归纳而产生几何知识的阶段,被称为实验(归纳)几何阶段。
2.理论几何的形成与发展到了公元前7世纪,随着古埃及、古希腊之间贸易与文化的交流,埃及的几何知识逐渐传入希腊并得到巨大的发展。
这一时期,人们对几何知识开始了逻辑推理与论证,古希腊的泰勒斯(Thales,约公元前625一前547)首先证明了“对顶角相等”、“等腰三角形两底角相等”、“半圆上的圆周角是直角”等,因而被人们称为第一位几何学家;毕达哥拉斯(Pythagoras,公元前580一前501)学派首先证明了“三角形内角和等于二直角”、“勾股定理”、“只有五种正多面体”等。
数学:数学史知识学习(三)

数学:数学史知识学习(三)1、名词解释数学能力正确答案:是顺利完成数学活动所具备的,而且直接影响其活动效率的一种个性心理特征,它是在数学活动过程中形成和发展起来的,并且在这类活动中表现出来的比较稳定的心理特征。
是系(江南博哥)统化了的,概括化了的哪些个体经验,是一种网络化的经验结构。
2、填空题对韦达所使用的代数符号进行改进的工作是由笛卡尔完成的,他用拉丁字母的前几个表示(),后几个表示()。
正确答案:已知量;未知量3、填空题数学史分期的依据主要有两大类,其一是根据()来分期,其一是根据()来分期;正确答案:数学学科自身的研究对象、内容结构、知识领域的演进;数学学科所处的社会、政治、经济、文化环境的变迁4、问答题简述微积分学产生的背景。
正确答案:1638年伽利略《关于两门新科学的对话》出版,为动力学奠定了基础,促使人们对动力学概念与定理作精确的数学描述。
望远镜的光程设计需要确定透镜曲面上任一点的法线和求曲线的切线,而炮弹的最大射程和求行星的轨道的近日点、近远点等涉及到求小数的最大值、最小值问题。
而求曲线所围成的面积、曲线长、重心和引力计算也将人们的兴趣激发起来。
在17世纪上半叶,几乎所有的科学大师都致力于为解决这些难题而寻求一种新的数学工具。
正是为解决这些疑难问题,一门新的学科——微积分便应运而生了。
5、填空题九章算术》的内容分九章,全书共()问,魏晋时期的数学家()曾为它作注;正确答案:246;刘徽6、填空题拉格朗日在《解析函数论》一书中,主张用()来定义导数,以此作为整个微分、积分演算的出发点而将微积分归结为“代数运算”。
正确答案:拉格朗日定理7、填空题关于古埃及数学的知识,主要来源于()。
正确答案:莱茵德纸草书和莫斯科纸草书8、名词解释巴比伦楔形文字泥板正确答案:现在我们研究巴比伦数学知识的积累最可靠的资料,它是用截面呈三角形的利器作笔,在将干而未干的胶泥板上斜刻写而成的,由于字体为楔形笔画,故称之为楔形文字泥板书。
第五节 几何学的发展

5 若一直线落在两直线上所构成的同旁内角和小于两直 角,那么把两直线无限延长.它们将在同旁内角和小于 两直角的一侧相交. 欧几里得《原本》可以说是数学史上的第一座理论十 碑.它最大的功绩,是在于数学中演绎范式的确立,这 种范式要求一门学科中的每个 命题必须是在它之前已建立的一些命题的逻辑结论,而 所有这样的推理链的共同出发点,是一些基本定义和被 认为是不证白明的基本原理——公设或公理.这就是后 来所谓的公理化思想。 特点:概念清晰;定义明确;公理直观可靠而且普遍成 立;公设清楚可信且易于想象;公理数目少;引出量的 方式易于接受;证明顺序自然;
4.2 发展 德沙格(G.Desargues,1591—1661,法国) 1639年《试论圆锥与平面相交结果》 70多个射影几何术语, 无穷远点,无穷远线。 德沙格定理:“如果两个三角形对 应顶点连线共点,那么对应边的交 点共线,反之也成立” 交比不变性定理;对合;调和点组 线可以看作具有无限长半径的圆的 一部分;焦点相合的椭圆退化为圆; 焦点之一在无穷远的椭圆是一抛物 线等等。
5 非欧几何学(罗氏几何) 5.1 背景 欧几里得第五公设(平行公设):若一直线落在两直线 上所构成的同旁内角和小于两直角,那么把两直线无限 延长.它们将在同旁内角和小于两直角的一侧相交。 给定一条直线,通过此直线外的任何一点,有且只有一 条直线与之平行 证明或失败,或循环论证 萨特里(意大利)、吕格尔(德国)、兰伯特(瑞士)
第五节
几何学的发展
1 几何学简介 2 欧几里得几何学 3 解析几何 4 射影几何学 5非欧几何学 6 黎曼非欧几何 7 拓扑学 8 几何学的统一
1 几何学简介
几何学是研究空间关系的数学分支,有时简称为几何。 中文“几何”一词,为明代徐光启所创,希腊语原意为 “测地术”。 几何学的发展: 欧几里得几何学(约公元前300年); 解析几何学(17世纪); 射影几何学(18世纪); 非欧几何学(19世纪); 微分几何学(19世纪); 黎曼几何学(19世纪); 拓扑学(19世纪); 代数几何学(20世纪); 分形几何(20世纪)
数学史:几何图形的发展历程

数学史:几何图形的发展历程
几何学是数学的一个分支,研究空间和图形的形状、大小、相
对位置和性质。
在数学史上,几何学起源于古代文明,并发展成为
一门独立的学科。
古代埃及是几何学的诞生地之一。
在埃及,人们利用几何学来
测量土地的面积和建筑物的尺寸。
埃及人还发现了一些几何原理,
例如平行线的性质和三角形的性质。
这些原理为几何学的发展奠定
了基础。
另一个几何学的发源地是古希腊。
希腊的几何学家毕达哥拉斯
提出了著名的毕达哥拉斯定理,它描述了直角三角形边长之间的关系。
欧几里得则创立了《几何原本》,系统总结了希腊几何学的发
展成果,成为后世研究几何学的基本教材。
在几何学的发展中,还涌现出一些重要的数学家。
亚历山大的
阿基米德研究了圆锥曲线,给出了计算圆锥曲线面积的方法。
法国
数学家笛卡尔则将代数学与几何学结合起来,提出了笛卡尔坐标系。
随着科学技术的进步,几何学也得到了广泛的应用。
现代几何
学的发展成果广泛应用于物理学、工程学和计算机图形学等领域。
在计算机图形学中,几何学被用于构建三维模型、进行图像处理和
计算机辅助设计等方面。
总结起来,几何学的发展历程丰富而多样。
从古埃及到古希腊,再到现代科技时代,几何学一直在不断发展和应用。
它不仅帮助人
们认识和描述空间和图形的性质,还在科学技术的进步中发挥着重
要的作用。
解析几何的发展史

总的来说,解析几何运用坐标法可以解决两类基本问题:一类是满足给定条件点的轨迹,通过坐标系建立它的方程;另一类是通过方程的讨论,研究方程所表示的曲线性质。
运用坐标法解决问题的步骤是:首先在平面上建立坐标系,把已知点的轨迹的几何条件“翻译”成代数方程;然后运用代数工具对方程进行研究;最后把代数方程的性质用几何语言叙述,从而得到原先几何问题的答案。
坐标系将几何对象和数、几何关系和函数之间建立了密切的联系,这样就可以对空间形式的研究归结成比较成熟也容易驾驭的数量关系的研究了。用这种方法研究几何学,通常就叫做解析法。这种解析法不但对于解析几何是重要的,就是对于几何学的各个分支的研究也是十分重要的。
解析几何的创立,引入了一系列新的数学概念,特别是将变量引入数学,使数学进入了一个新的发展时期,这就是变量数学的时期。解析几何在数学发展中起了推动作用。恩格斯对此曾经作过评价“数学中的转折点是笛卡尔的变数,有了变书,运动进入了数学;有了变数,辩证法进入了数学;有了变数,微分和积分也就立刻成为必要的了,……”
坐标法的思想促使人们运用各种代数的方法解决几何问题。先前被看作几何学中的难题,一旦运用代数方法后就变得平淡无奇了。坐标法对近代数学的机械化证明也提供了有力的工具。
回答者:nanzong-举人四级 2-22 16:23
解析几何是数学中最基本的学科之一,也是科学技术中最基本的数学工具之一。
论解析几何的作用与意义

论解析几何的作用与意义众所周知,近代数学的第一个里程碑是解析几何的诞生。
这也是因应了时代发展的需要。
文艺复兴使得科技文明获得新生,近代科学技术的发展使运动变化的研究成为自然科学的中心问题,由此而迫切需要一种新的数学工具。
这样,数学就再一次“扮演了先行者、奠基者的角色”,“而其中影响无比深远者首推坐标解析几何和微积分,它们奠定了对于各种各样自然现象作深刻的数理分析的基本工具。
”1.作为“方法论”的坐标法思想解析几何的创建是为了科学发展的需要,同时,从数学内部来看,也是出于对数学方法的追求。
认识清楚这一点,对于我们理解解析几何的基本思想特别重要。
这可以从追溯Descartes和Fermat在创立解析几何时的心路历程看出这种追求。
(1)Descartes的坐标法思想Descartes1596年3月31日出生于法国拉埃耶一个古老的贵族家庭。
他从小体弱多病,但非常好学,勤于思考,他不仅在数学上做出了重要的开创性贡献,而且在哲学、生物学、物理学等众多领域都做出了杰出贡献。
他是机械自然观的第一个系统表述者,被誉为近代哲学的开创者。
正如克莱因指出的,“Descartes 是第一个杰出的近代哲学家,是近代生物学的奠基人,是第一流的物理学家,但只偶然地是个数学家。
”他以大哲学家的眼光审视数学,认为数学立足于公理上的证明是无懈可击的,而且是任何权威所不能左右的。
数学提供了获得必然结果以及有效地证明其结果的方法。
数学方法“是一个知识工具,比任何其他由于人的作用而得来的知识工具更为有力,因而它是所有其他知识工具的源泉……所有那些目的在于研究顺序和度量的科学,都和数学有关。
”他研究数学,目的是想寻找一种能在一切领域里建立真理的方法。
他认为,逻辑本身对任何创造性的人类目标都贫乏而毫无用处;哲学、伦理学、道德学中的证明,与数学相比,花哨而虚假。
那么应当如何发现呢?这就是:通过“控制下的实验”并对实验结果应用严格的数学推理。
Descartes认为,以往的几何、代数研究都存在很大缺陷:欧氏几何中没有那种普遍适用的证明方法,几乎每一个证明都需要某种新的、技巧性很强的想法;代数的方法具有一般性,其推理程序也是机械化的,但它完全受法则和公式的控制,以至于“成为一种充满混杂与晦暗、故意用来阻碍思想的艺术,而不像用来改进思想的科学”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1766年,兰伯特写出了《平行线理论》一书, 在这本书中,他也像萨凯里那样考虑了一个四边形, 不过他是从一个三直角四边形出发,按照第四个角是 直角、钝角还是锐角作出了三个假设.由于钝角假设 导致矛盾,所以他很快就放弃了它.
与萨凯里不同的是,兰伯特并不认为锐角假设导 出的结论是矛盾,而且他认识到一组假设如果不引起 矛盾的话,就提供了一种可能的几何.因此,兰伯特 最先指出了通过替换平行公设而展开新的无矛盾的几 何学的道路.
数学史几何学的变革上解析
几何,就是研究空间结
构及性质的一门学科。它是 数学中最基本的研究内容之 一,与分析、代数等等具有 同样重要的地位,并且关系 极为密切。
几何学发展
• 几何学发展历史悠长,内容丰富。它和代数、分析、 数论等等关系极其密切。
• 几何思想是数学中最重要的一类思想。目前的数学各 分支发展都有几何化趋向,即用几何观点及思想方法 去探讨各数学理论。
用,并且在对天文学、大地测量学和磁学的研究中也
偏重于用数学方法进行研究。
非欧几何的诞生
• “非欧几何”的名称来源于 高 斯 。 他 从 1799 年 开 始 意 识到平行公设不能由其他 公 理 推 出 , 并 从 1813 年 起 发展了这种平行公设在其 中不成立的新几何。
非欧几何的诞生
• 为了验证“非欧几何”应 用的可能性,他实际测量 了由三座山峰构成的三角 形,此三角形的三边分别 为 : 69 , 85 与 109 公 里 。 他 发 现 其 内 角 和 比 1800 大 了近15〞。
9.1 欧几里得平行公设
直到18世纪末,几何领域仍然是欧几里得一统 天下.解析几何改变了几何研究的方法,但没有从 实质上改变欧氏几何本身的内容.
解析方法的运用虽然在相当长的时间内冲淡了 人们对综合几何的兴趣,但欧几里得几何作为数学 严格性的典范始终保持着神圣的地位.
然而,这个近乎科学“圣经”的欧几里得 几何并非无懈可击.事实上,公元前3世纪到18 世纪末,数学家们虽然一直坚信欧氏几何的完 美与正确,但有一件事却始终让他们耿耿于怀, 这就是欧几里得第五公设,也称平行公设.
从高斯的遗稿中可以了解到,他从1799年开始意 识到平行公设不能从其他的欧几里得公理推出来,并 从1813年起发展了这种平行公设在其中不成立的新几 何.
他起先称之为“反欧几里得几何”,最后改称为
“非欧几里得几何”,所以“非欧几何”这个名称正 是来自高斯.
但他除了在给朋友的一些信件中对其非欧几何的 思想有所透露外,高斯生前并没有发表过任何关于 非欧几何的论著.这主要是因为他感到自己的发现 与当时流行的康德空间哲学相抵触,担心世俗的攻 击.
萨凯里(意大利)最先使用归谬法来证明平 行公设.他在一本名叫《欧几里得无懈可击》 (1733)的书中,从著名的“萨凯里四边形”出发 来证明平行公设.
萨凯里四边形是一个等腰双直角四边形,其中 ACBD, ∠ A=∠ B,且为直角 。萨凯里需要证明∠C=∠D且为直角。
萨凯里指出:不用平行公设容易证明∠C=∠D,并且顶角 具有三种可能性并分别将它们命名为
欧氏几何公设:
(1)假定从任意一点到任意一点可作一直线; (2)一条有限直线可不断延长; (3)以任意中心和半径可以画圆; (4)凡直角部彼此相等; (5)若一直线落在两直线上所构成的同旁内角
和小于两直角,那么把两直线无限延长,它 们将在同旁内角和小于两直角的一侧相交。
第五公设
第五公设:若一直线落在两直线上,所构成的同旁
他 曾 在 给 贝 塞 尔 (P.W.Bessel) 的 一 封 信 中 说 : 如果他公布自己的这些发现,“黄蜂就会围着耳朵 飞”,并会“引起波哀提亚人(特指有世俗偏见的愚 人)的叫嚣”.
匈牙利数学家----波约
当声誉甚隆的高斯决定将自己的发现秘而不宣时,一位尚 名不见经传的匈牙利青年波约却急切地希望通过高斯的评价而 将自己关于非欧几何的研究公诸于世,波约的父亲F.波约是高 斯的朋友,也是一位数学家.
他先是于1826年在喀山大学发表了 《简要论述平行线定理的一个严格证明》 的演讲,报告了自己关于非欧几何的发现, 而后又在1829年发表了题为《论几何原理》 的论文,这是历史上第一篇公开发表的非 欧几何文献 。
罗巴切夫斯基
罗巴切夫斯基1792年生于俄国下诺伏哥罗德 (今高尔基城),1807年进入喀山大学,1811年毕 业并获硕士学位。
J.波约对高斯的答复深感失望,认为高斯想剽窃自己的成 果.
1840年俄国数学家罗巴切夫斯基关于非欧几何的德文著作 出版后,更使J.波约灰心丧气,从此便不再发表数学论文,而 他的父亲倒很开通,安慰他说:
“春天的紫罗兰在各处盛开.”
罗巴切夫斯基
罗巴切夫斯基
在非欧几何的三位发明人中,只有罗
巴切夫斯基最早、最系统地发表了自己的 研究成果,并且也是最坚定地宣传和捍卫 自己的新思想的一位。
文艺复兴时期对希腊学术兴趣的恢复使欧洲数学 家重新关注起第五公设.在17世纪研究过第五公设的 数学家有沃利斯等.但每一种“证明”要么隐含了另 一个与第五公设等价的假定,要么存在着其他形式的 推理错误.而且,这类工作中的大多数对数学思想的 进展没有多大现实意义.
因此,在18世纪中叶,达朗贝尔曾把平行公设的 证明问题称为“几何原理中的家丑”.但就在这一时 期前后,对第五公设的研究开始出现有意义的进 展.在这方面的代表人物是意大利数学家萨凯里、德 国数学家克吕格尔和瑞士数学家兰伯特.
萨凯里、克吕格尔和兰伯特等,都可以看成 是非欧几何的先行者.
然而,当他们走到了非欧几何的门槛前,却 由于各自不同的原因或则却步后退(如萨凯里在 证明了一系列非欧几何的定理后却宣布“欧几里 得无懈可击”),或则徘徊不前(兰伯特(瑞士) 在生前对是否发表自己的结论一直踌躇不定, 《平行线理论》一书是他死后由朋友发表的).
下见:希尔伯特的评价。
希尔伯特说:“19世纪最富有 启发性和最值得注意的成就是 非欧几里得几何的发现。”
9.2 非欧几何的诞生
前面讲过,在非欧几何正式建立之前,它的 技术性内容已经被大量地推导出来.但最先认识 到非欧几何是一种逻辑上相容并且可以描述物质 空间、像欧氏几何一样正确的新几何学的是高 斯.
1832 年 2 月 14 日 , F. 波 约 将 他 儿 子 的 一篇题为《绝对空间的科学》的26页文 章寄给高斯,这篇文章也作为F.波约刚 刚完成的一本数学著作的附录而发表, 其中论述的所谓“绝对几何”就是非欧 几何.F.波约请高斯对他儿子的论文发 表意见。
波约
然而高斯回信说:
“称赞他(即J.波约)就等于称赞我自己.整篇文章 的内容,您儿子所采取的思路和获得的结果,与我在 30至35年前的思考不谋而合.”
内角和小于两直角,那么把两直线无限延长,它们将 在同旁内角和小于两直角的一侧相交。
因此,从古希腊时代开始,数学家们就一直没有放 弃消除对第五公设疑问的努力.他们或者寻求以一个比较容 易接受、更加自然的等价公设来代替它,或者试图把它当作 一条定理由其他公设、公理推导出来.在众多的替代公设中, 今天最常用的是:
“过已知直线外一点能且只能作一条直线与已知 直线平行”.
—般将这个替代公设归功于苏格兰数学家、物理学家 普莱菲尔(J.Playfair,1748—1819),所以有时也叫 普莱菲尔公设.
历史上第一个尝试证明第五公设的是古希腊 天文学家托勒玫(Ptolemy,约公元150)作出的, 后来普罗克鲁斯指出托勒玫的“证明”无意中假 定了过直线外一点只能作一条直线平行于该直线, 这就是上面提到的普莱菲尔公设.
罗巴切夫斯基非欧几何的基本思想与高斯、 波约是一致的,即用与欧几里得第五公设相反 的断言:通过直线外一点,可以引不止一条而 至少是两条直线平行于已知直线,作为替代公 设,由此出发进行逻辑推导而得出一连串新几 何学的定理.
罗巴切夫斯基明确指出,这些定理并不包 含矛盾,因而它的总体就形成了一个逻辑上可 能的、无矛盾的理论,这个理论就是一种新的 几何学——非欧几里得几何学.
高斯
•
高斯(Johann Carl Friedrich Gauss)(1777
年—1855年),生于不伦瑞克,卒于哥廷根,德国著
名数学家、物理学家、天文学家、大地测量学家。
•
高斯的成就遍及数学的各个领域,在数论、非欧
几何、微分几何、超几何级数、复变函数论以及椭圆
函数论等方面均有开创性贡献。他十分注重数学的应
罗巴切夫斯基毕业后留校任职,历任教授助理 、非常任教授、常任教授、物理数学系主任,35岁 被任命为校长。1846年以后任喀山学区副督学,直 至逝世。
如果没有罗氏几何学,罗巴切夫斯基只能算 一个优秀的科学与教育管理者。
罗巴切夫斯基后来为发展、阐释这种新几何 学而付出了毕生心血.
他生前发表了许多论著,其中1835--1838年 间的系列论文《具有完备的平行线理论的新几何 学原理》较好地表述了他的思想,而1840年用德 文出版的《平行理论的几何研究》则引起高斯的 关注,这使他在1842年成为德国哥廷根科学协会 会员.
突破具有两千年根基的欧氏几何传统的束缚, 需要更高大的巨人,这样的时机在19世纪初逐渐成熟, 并且也像解析几何、微积分的创立一样,这样的人物 出现了不止一位.
对非欧几何来说,他们是高斯、波约(J.Bolyai, 1802—1860)和罗巴切夫斯基(N.I.Lobachevsky,17931856).
设给定了直线罗巴切夫斯基的基 本假设,至少存在两条直
线 b, b' ,通过点 A且不与直线 a
相交(注意图形在这里只起辅助 理解的作用,罗氏论证的并不是 我们普通平面上所作的图.
罗巴切夫斯基考虑所有过 A不与 a 相交的直 线的极限情形,指出这样的极限直线有两条 ( c与 c ' ),并证明了它们也不与 a相交.因此,c 与 c ' ,便构成了所有不与 a 相交的直线的边界, 在这两条边界直线所成夹角 内的所有直线都不与 a 相交.