(完整版)简述数学史上的三大危机
数学史上三大危机和三大猜想

数学史上三大危机和三大猜想数学史上的三大危机分别为无理数理论,微积分理论,罗素悖论,数学史上的三大猜想分别为费马大定理,四色定理,哥德巴赫猜想,这三大危机和三大猜想都间接地推动了整个数学理论的进步,许许多多的数学家也因此付出了巨大的贡献,才有了今天数学的伟大辉煌。
一、无理数理论众所周知,世界上所有的实数都可以分为有理数和无理数。
然而,在最初的时候并没有发现无理数的存在,所以很多数学家认为所有数都是有限小数,而希帕苏斯首先提出了二的算术平方根概念,发现了世界上有一类数,他们是无限不循环小数,然而遭受了当时科学界的否定。
二、微积分理论微积分是世界数学史上璀璨的辉煌,微积分使用微元的概念,解决了很多不能够解决的问题。
特别对于复杂的图形,有很厉害的求解作用,但是由于微积分刚提出来的时候,理论非常复杂,没有在当时的数学界广为接受。
三、罗素悖论罗素悖论是对于集合理论的悖论,世界上所有的物体都能够通过集合来表达,但是罗素指出,如果一个集合中所有的元素都不是他本来的元素,那么这样的一个集合是否还能表现为原有的集合,这理论被称为罗素悖论,后来根据数学家修改集合的.定义规则,才避免了这样的悖论。
四、费马大定理费马大定理有这样一个猜想当整数n>2时,关于x,y,z的不定方程x^n+y^n=z^n无正整数解。
这样的一个看似简单的地理,后来经过后世许多人的证明,终于确定费马大定理成立,是数学史上的一个伟大猜想。
五、四色定理四色定理表明,如果许多国家围绕着一个点拥有很多的边界,那么只要用四种颜色就能够将所有的国家全部区分开来,四色定理是对二维空间的终极解释,也表明了两个直线,只要相交一定有四个区的出现。
六、哥德巴赫猜想哥德巴赫猜想,如果把1算做一个质数,那么世界上任何大于二的数都可以由三个质数通过相加的方式得成,后来科学家们经过艰难的计算,终于算出了哥德巴赫猜想。
(整理)数学史上的三次危机.

数学史上的三次危机张清利第一次数学危机在古代的数学家看来与有理数对应的点充满了数轴,现在尚未深入了解数轴性质的人也会这样认为。
因此,当发现在数轴上存在不与任何有理数对应的一些点时,在人们的心理上引起了极大震惊,这个发现是早期希腊人的重大成就之一。
它是在公元前5世纪或6世纪的某一时期由毕达哥拉斯学派的成员首先获得的。
这是数学史上的一个里程碑。
毕达哥拉斯学派发现单位正方形的边与对角线不可公度,即对角线的长不能表为q p /的形式,也就是说不存在作为公共度量单位的线段。
后来,又发现数轴上还存在许多点也不对应于任何有理数。
因此,必须发明一些新的数,使之与这样的点对应,因为这些数不能是有理数,所以把它们称为无理数。
例如, ,22,8,6,2等都是无理数。
无理数的发现推翻了早期希腊人坚持的另一信念:给定任何两个线段,必定能找到第三线段,也许很短,使得给定的线段都是这个线段的整数倍。
事实上,即使现代人也会这样认为,如果他还不知道情况并非如此的话。
第一次数学危机表明,当时希腊的数学已经发展到这样的阶段:1. 数学已由经验科学变为演绎科学;2. 把证明引入了数学;3. 演绎的思考首先出现在几何中,而不是在代数中,使几何具有更加重要的地位。
这种状态一直保持到笛卡儿解析几何的诞生。
中国、埃及、巴比伦、印度等国的数学没有经历这样的危机,因而一直停留在实验科学。
即算术阶段。
希腊则走上了完全不同的道路,形成了欧几里得的《几何原本》与亚里士多得的逻辑体系, 而成为现代科学的始祖。
在当时的所有民族中为什么只有希腊人认为几何事实必须通过合乎逻辑的论证而不能通过实验来建立?这个原因被称为希腊的奥秘。
总之,第一次数学危机是人类文明史上的重大事件。
无理数与不可公度量的发现在毕达哥拉斯学派内部引起了极大的震动。
首先,这是对毕达哥拉斯哲学思想的核心,即“万物皆依赖于整数”的致命一击;既然像2这样的无理数不能写成两个整数之比,那么,它究竟怎样依赖于整数呢?其次,这与通常的直觉相矛盾,因为人们在直觉上总认为任何两个线段都是可以公度的。
数学史上三次危机

数学史上三次危机对于数学仅限于学校里学的那点东西,薄如蝉翼,谈不上什么深刻理解,但也听说过数学史上有三次危机。
限于老郭水平不高,能力有限无法深入,蜻蜓点水的说一下。
第一次数学危机-无理数的发现勾股定理是咱们小伙伴们都熟悉的,a^2+b^2=c^2。
这个公式出来之后就用到了已知两条边长求解直角三角形第三条边的边长问题上。
很明显,开平方之后会出现根号2、根号3这种情况,这种不能完全开平方的数是无限不循环的小数,我们现在叫做无理数。
我们现在理解这些数当然是没问题的,不过在当时,这种数的出现,打破了毕达哥拉斯学派认为的世界的和谐性质。
他们认为宇宙万物都可以归结为整数或者是整数之比。
这就导致了一种认识上的“危机”,这个危机被称为第一次数学危机。
其实,这次“危机”(我并不认为这是什么危机)给几何的发展带来了一次推动。
因为,出现了无理数意味着,人类依靠直觉和经验建立的科学不一定是可靠的,而严格的推理证明才是靠得住的。
从那以后,希腊人开始重视演绎推理,并且建立了几何公理体系。
这就是危难之中的机遇,古希腊人抓住了这个机遇,创造了平面几何的第一次辉煌。
第二次数学危机-阿基里斯追不上乌龟“阿基里斯追不上乌龟”:阿基里斯总是首先必须到达乌龟的出发点,因而乌龟必定总是跑在前头。
这个数学悖论故事是很有名的,其实我们现在的小伙伴都能知道,这是不可能发生的事,只要求一个极限,这个事就搞定了,跟本不存在追不上乌龟的事情。
然而在17世纪,微积分刚刚诞生那个时代,这个事还真是个大事。
当时包括牛顿、莱布尼茨等等大佬都没有找到解决这个问题的办法。
当时微积分刚刚初创,逻辑基础非常的不牢固。
很多基础问题,无穷小概念,从而导数、微分、积分等概念不清楚;无穷大概念不清楚;发散级数求和的任意性等等;符号的不严格使用;不考虑连续性就进行微分,不考虑导数及积分的存在性以及函数可否展成幂级数等等。
那时候,这个问题争论的焦点就在于无穷小量究竞是不是零?无穷小及其分析是否合理?由此而引起了数学界甚至哲学界长达一个半世纪的争论,造成了第二次数学危机。
数学史三次危机简介

数学史三次危机简介
数学史上的三次危机,简要概括如下:
1. 第一次数学危机:公元前5世纪,毕达哥拉斯学派发现无理数,挑战了当时“万物皆数”(指整数或整数之比)的信念。
这次危机通过实数理论的建立得到解决。
2. 第二次数学危机:17至18世纪,围绕无穷小量的问题,主要与微积分的发展有关。
微积分学在理论不完善的情况下被广泛应用,但其基础—无穷小的概念受到质疑。
最终,通过实数理论和极限理论的建立,这次危机得到了缓解。
3. 第三次数学危机:19世纪末,集合论悖论的出现,如著名的罗素悖论,暴露了自洽性问题。
这些悖论挑战了集合论作为数学基础的地位。
至今,尽管哥德尔的不完备定理对形式系统的局限性做了阐述,但第三次数学危机并没有完全解决。
数学史上一共发生过三次危机,都是怎么回事

数学史上一共发生过三次危机,都是怎么回事?在数学历史上,有三次大的危机深刻影响着数学的发展,三次数学危机分别是:无理数的发现、微积分的完备性、罗素悖论。
第一次数学危机第一次数学危机发生在公元400年前,在古希腊时期,毕达哥拉斯学派对“数”进行了定义,认为任何数字都可以写成两个整数之商,也就是认为所有数字都是有理数。
但是该学派的一个门徒希帕索斯发现,边长为“1”的正方形,其对角线“√2”无法写成两个整数的商,由此发现了第一个无理数。
毕达哥拉斯的其他门徒知道后,为了维护门派的正统性,把希帕索斯杀害了,并抛入大海之中,看来古人也是解决不了问题时,先解决提出问题的人。
即便如此,无理数的发现很快引起了一场数学革命,史称第一次数学危机,这危机影响数学史近两千年的时间。
第二次数学危机微积分是一项伟大的发明,牛顿和莱布尼茨都是微积分的发明者,两人的发现思路截然不同;但是两人对微积分基本概念的定义,都存在模糊的地方,这遭到了一些人的强烈反对和攻击,其中攻击最强烈的是英国大主教贝克莱,他提出了一个悖论:从微积分的推导中我们可以看到,△x在作为分母时不为零,但是在最后的公式中又等于零,这种矛盾的结果是灾难性的,很长一段时间内数学家都找不到解决办法。
直到微积分发明100多年后,法国数学家柯西用极限定义了无穷小量,才彻底解决了这个问题。
第三次数学危机数学家总有一个梦想,试图建立一些基本的公理,然后利用严格的数理逻辑,推导和证明数学的所有定理;康托尔发明集合论后,让数学家们看到了曙光,法国科学家庞加莱认为:我们可以借助结合论,建造起整座数学大厦。
正在数学家高兴之时,英国哲学家、逻辑学家罗素,提出了一个惊人的悖论——罗素悖论:罗素悖论通俗描述为:在某个城市中,有一位名誉满城的理发师说:“我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。
”那么请问理发师自己的脸该由谁来刮?罗素悖论的提出,引发了数学上的又一次危机,数学家辛辛苦苦建立的数学大厦,最后发现基础居然存在缺陷,数学家们纷纷提出自己的解决方案;直到1908年,第一个公理化集合论体系的建立,才弥补了集合论的缺陷。
数学三次危机的内容

数学三次危机的内容全文共四篇示例,供读者参考第一篇示例:数学科学中的三次危机是指在20世纪上半叶发生的一系列重大数学问题,这些问题深刻地影响了数学家们的研究方向和方法论。
这三次危机分别是庞加莱猜想、康托尔难题和哈尔定理。
在这篇文章中,我们将对这三个数学难题进行详细介绍,并探讨它们对数学领域的影响。
让我们来了解一下庞加莱猜想。
庞加莱猜想是法国数学家亨利·庞加莱于1904年提出的一个关于拓扑学的问题。
该猜想的内容是“三维球面是唯一的紧致单连通的拓扑空间”。
庞加莱猜想对数学家们提出了一个挑战,因为在当时,拓扑学还处于发展的初级阶段,很多概念和理论尚未完善。
庞加莱猜想的证明一直是数学界的一个巨大难题,直到2003年,俄罗斯数学家格里戈里·佩雷尔曼通过使用里卡蒂流和流形拓扑学,证明了该猜想。
这一证明不仅解决了庞加莱猜想,也为流形拓扑学的发展提供了新的思路。
让我们来看看康托尔难题。
康托尔难题是德国数学家乔治·康托尔在19世纪末提出的一个极具挑战性的数学难题。
该难题的核心内容是研究无限集合的基数大小。
康托尔提出了连续统假设,即不存在介于自然数和实数之间的集合。
康托尔难题的解决涉及到了极限集合论、集合论和拓扑学等多个领域,成为20世纪数学发展的一个重大挑战。
直到1960年代,由保罗·科恩证明了连续统假设和选择公理的独立性,康托尔难题才得以部分解决。
康托尔难题的解决为数学领域的发展开辟了新的方向,促进了集合论和拓扑学的深入研究。
让我们来谈谈哈尔定理。
哈尔定理是由挪威数学家埃米尔·哈尔于1900年提出的一个著名数学难题。
该定理的内容是“任意一个连续函数序列在闭区间上一致收敛于一个连续函数”,这个定理在分析学中起到了至关重要的作用。
哈尔定理的证明引入了严格的收敛性概念和一致收敛性概念,为数学家们提供了新的研究方法。
哈尔定理的证明通过构造逼近序列和使用极限过程,为数学分析领域的研究提供了新的思路和工具。
数学三大危机

数学三大危机数学三大危机简述:第一,希帕索斯(Hippasus,米太旁登地方人,公元前5世纪)发现了一个腰为1的等腰直角三角形的斜边(即根号2)永远无法用最简整数比(不可公度比)来表示,从而发现了第一个无理数,推翻了毕达哥拉斯的著名理论。
相传当时毕达哥拉斯派的人正在海上,但就因为这一发现而把希帕索斯抛入大海;第二,微积分的合理性遭到严重质疑,险些要把整个微积分理论推翻;第三,罗素悖论:S由一切不是自身元素的集合所组成,那S包含S吗?罗素悖论的可怕在于,它不像最大序数悖论或最大基数悖论那样涉及集合高深知识,它很简单,却可以轻松摧毁集合理论!第一次数学危机毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。
他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。
由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。
毕达哥拉斯学派所说的数仅指整数。
而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。
然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。
毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。
希帕索斯的发现导致了数学史上第一个无理数的诞生。
小小的出现,却在当时的数学界掀起了一场巨大风暴。
它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。
实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击。
对于当时所有古希腊人的观念这都是一个极大的冲击。
这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。
这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被小小的√2的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。
史上数学三大危机简介

---------------------------------------------------------------最新资料推荐------------------------------------------------------史上数学三大危机简介数学三大危机数学三大危机简述:第一,希帕索斯(Hippasu,米太旁登地方人,公元前 5 世纪)发现了一个腰为 1 的等腰直角三角形的斜边(即根号 2)永远无法用最简整数比(不可公度比)来表示,从而发现了第一个无理数,推翻了毕达哥拉斯的著名理论。
相传当时毕达哥拉斯派的人正在海上,但就因为这一发现而把希帕索斯抛入大海;第二,微积分的合理性遭到严重质疑,险些要把整个微积分理论推翻;第三,罗素悖论:S 由一切不是自身元素的集合所组成,那 S 包含 S 吗?用通俗一点的话来说,小明有一天说:我正在撒谎!问小明到底撒谎还是说实话。
罗素悖论的可怕在于,它不像最大序数悖论或最大基数悖论那样涉及集合高深知识,它很简单,却可以轻松摧毁集合理论!第一次数学危机毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。
他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。
由毕达哥拉斯提出的著名命题万物皆数是该学派的哲学基石。
毕达哥拉斯学派所说的数仅指整数。
而一切数均可表成整数或整数之比则是这一学派的数学信仰。
1 / 6然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的掘墓人。
毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为 1 的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。
希帕索斯的发现导致了数学史上第一个无理数的诞生。
小小的出现,却在当时的数学界掀起了一场巨大风暴。
它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。
实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击,对于当时所有古希腊人的观念这都是一个极大的冲击。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简述数学史上的三大危机
世界曾经发生过金融危机,比如美国的金融危机席卷全球,造成了史无前例的影响。
实际上,在数学界也发生过翻天覆地的变革,那就是数学史上的三次数学危机。
在古希腊,哲学家都是格外重视数学。
像无论是最早的唯物主义哲学家泰勒斯,还是最早的唯心主义哲学家毕达哥拉斯,都特别推崇数学。
在那些伟大的数学家中,在数学上成就最大的,当推毕达哥拉斯。
毕达哥拉斯建立了一个带有神秘色彩的团体,被称为毕达哥拉斯学派。
这个学派传授知识,研究数学,还很重视音乐。
“数”与“和谐”是他们的主要哲学思想。
他们认为数是万物的本源,数产生万物,数的规律统治万物,也就是“万物皆数”的观点。
“万物皆数”就是万物皆可用自然数或分数表示。
然而,这一观点在后来确被毕达哥拉斯自己给推翻了。
这还得从一个有趣的故事说起。
有一次毕达哥拉斯去朋友家做客,他发现朋友家的地板上的方形图案很有意思,凭借着他数学家头脑的直觉,得出了我们今天所学的勾股定理以及证明。
然而根据勾股定理,边长为1的正方形,其对角线的长度应当是根号2,毕达哥拉斯发现根号2既不是自然数,也不是分数。
这个事实的发现,是毕达哥拉斯学派的一大成就,它标志着人类思维有了更高的抽象能力。
但这一发现引起了毕达哥拉斯学派的惶恐不安。
因为他们心目中的数只有自然数与自然数之比---分数。
如今发现边长为1的正方形的
对角线这个明明白白地摆在那里的东西竟不能用“数”表示。
这难道不是自己否定自己信仰的真理吗?于是毕达哥拉斯学派千方百计封锁消息,但是纸包不住火终于还是传开了。
当时研究数学的希腊学者们便对数的重要性有了怀疑。
哲学家们认为世界上的量都可以用数表示,任何两个分数,无论多么近,他们之间还有无穷对个分数,这么多的数居然还不能表示出线段上某些点的长度,数的万能的力量因为根号2的出现被否定了,这就是所谓的第一次数学危机。
第二次数学危机
我们生活着的这个世界,在一刻不停地变化着。
古希腊哲学家赫拉克利特说:人不能两次踏入同一条河流,因为河水在流动,当人第二次踏进同一条河流时,已经不是第一次踏进时的河水了。
赫拉克利特用这个生动的比喻说明万物皆在不断变化之中,但严格说起来他的话在概念上存在疑问。
当时他的对立者巴门尼德宣扬相反的观点,他主张存在是静止的,不变的,永恒的。
他的得意门生芝诺还提出“飞矢不动”的诡论。
然而数学是讲究概念严密的,他们的说法都在概念上存在漏洞。
像什么叫“动”与“不动”,古代哲学家对于如何从逻辑上严格把握事物的运动与变化和相对静止与稳定的统一是不清楚的,直到17世纪,数学上出现了变量与函数的概念才找到了精确描述运动与变化的工具。
对于事物的运动与变化,哲学家常有这一种说法:“运动就是矛盾”,“矛盾”是一个定义的术语,它揭示出事物的共性,但没指出运动的特殊性,而数学中用映射或函数描述运动却能勾画出运动的特殊
性,这对运动物体的瞬时状态的研究提供了基础。
运动着的物体有快有慢,描述快慢程度的数量指标叫速度,考虑速度问题离不开时间。
用物体走过的距离除以所用的时间得到的是平均速度,不是真正的速度。
而我们希望知道的真正速度,是物体某一时刻的速度,是所谓瞬时速度。
但是,在数学上却遇到了逻辑的困难。
按速度的本来意义,是一段时间去除物体在这段时间内走过的距离所得的商。
一个时刻,时间是0,物体走过的距离是0 ,时间和距离都没有了,速度有从何谈起?0除以0在数学上有什么意义?于是在物理上看来有意义的东西,在数学上却无法指出它的意义是什么。
于是17世纪的一批数学家投入了这一工作,而总其集大成者是微积分学的创始人牛顿和莱布尼茨。
牛顿的工作正是直接从瞬时速度这一概念的数学表达式入手的。
牛顿面临两个任务,一是定义出数学上的瞬时速度的概念,二是给出具体计算瞬时速度的方法。
想知道速度,让时间从t0变到t1,走过的距离记做s。
牛顿设想当他们最后都成为无穷小、就要成为0而不是0的时候,比值作为两个无穷小之比,就是所要的瞬时速度。
也同时给出了计算方法。
这一新生的有力的数学方法受到了数学家和物理学家的热烈欢迎。
大家充分地运用它,解决了大量过去无法问津的科技问题。
但由于它逻辑上的漏洞,招来了哲学上的嘲讽和攻击,代表人物是贝克莱主教。
由于牛顿没有清除那些模糊不清的陈述,又没有严格界说极限的含义,因而牛顿和其后一百年间的数学家都不能有力地回答贝克莱的攻击,这就是数学史上所谓的第二次数学危机。
第三次数学危机
生活中处处有数学,“集合”概念和集合元素“一样多”的概念在日常生活中早有基础,康托的集合论的成果在当时使数学家们欢欣鼓舞,集合论不仅使人们认识了实在的无穷,而且自然而然地被看成数学的基础。
19世纪的数学家与逻辑学家弗雷格,根据康托集合论的思想,写了一本《算术基础》,主张把算术的基础归结为逻辑。
它在各门科学中都被不加怀疑地使用。
弗雷格从逻辑中所谓概念的外延出发进行阐述,但是如果承认“概念的外延”属于逻辑范畴,弗雷格就算是把算术归结为逻辑。
但是正当弗雷格的著作即将出版之际,罗素提出了悖论。
他列举了许多通俗化悖论模型,如理发师悖论、机器人悖论等。
罗素悖论的特点是只用到“集合”、“元素”、“属于”这些最基本的概念。
罗素从如此基本的概念竟推出了矛盾,这就表明在集合论中存在着大漏洞。
罗素的悖论给当时正为了微积分的严格基础被建立而欢欣鼓舞的数学家们泼了一盆冷水。
一向认为推理严密、结论永远正确的数学,竟在自己最基础的部分推出了矛盾!而推出矛盾的推理方法如此简单明了,解就是所谓的第三次数学危机。