浅谈数学发展史中的三次危机
历史上的三次数学危机

历史上的三次数学危机王方汉(武汉市第二十三中学430050)在数学发展的过程中,人的认识是不断深化的.在各个历史阶段,人的认识又有一定的局限性和相对性.当一种/反常0现象用当时的数学理论解释不了,并且因此影响到数学的基础时,我们就说数学发生了危机.许多人并不赞成使用危机这个词,因为它们并没有阻碍数学的发展.在历史上,数学曾发生过三次危机.这三次危机,从产生到消除,经历的时间各不相同,都极大地推动了数学的发展,成为数学史上的佳话.第一次数学危机产生于公元前五世纪.那时,古希腊的毕达哥拉斯学派发现:正方形边与对角线是不可通约的,现在称之为/比达哥拉斯悖论0./悖论0这一术语,许多中小学生恐怕是第一次见到.所谓悖论,就是指自相矛盾荒谬结论.今天看来,两条线段不可通约,是数学中常见的合理的现象,它不过表明两条线段之比是一个无理数而已,可是,当时的古希腊人怎么会认识到这一点?!在他们眼中,各种事物的许多物理的、化学的、生物的性质都可能改变,惟其数量性质是不会变的!他们认为:万物都包含着数:数只有两种,这就是自然数和可通约的数.所以,不可通约的数是不可思议的!第一次数学危机持续了两千多年.十九世纪,数学家哈密顿(Hamilton)、梅雷(Melay)、代德金(Dedekind)、海涅(Heine)、波雷尔(Borel)、康托尔(Cantor)和维尔斯特拉斯(Weietstrass)等正式研究了无理数,给出了无理数的严格定义,提出了一个含有有理数和无理数的新的数类)))实数,并建立了完整的实数理论.这样,就完全消除了第一次数学危机.第二次数学危机是因为发现微积分方法而产生的.十七世纪,牛顿和德国数学家莱布尼兹(Leibniz,1646-1716)首创了微积分.这时的微积分只有方法,没有严密的理论作为基础,许多地方存在着漏洞,还不能自圆其说.例如,牛顿当时是这样求函数y=x n的导数的:(x+v x)n=x n+n#x n-1#v x+n(n-1)2#x n-2#(v x)2+,+(v x)n,然后把函数的增量v y除以自变量的增量v x,得v yv x=(x+v x)n-x nv x=n#x n-1+n(n-1)2#x n-2#v x+,+nx#(v x)n-2+(v x)n-1,最后,扔掉其中所有含v x的项,就得到函数y= x n的导数为nx n-1.哲学家以眼光税利、思维敏捷而著称.贝克莱(Berkelg)就是这样的哲学家.他一针见血地指出:先以v x为除数,说明v x不等于零,后来又扔掉所有含v x的项,可见v x等于零,这岂不自相矛盾吗?这就是著名的/贝克莱悖论0.现在我们知道,自变量x的增量v x是一个无穷小量.但在当时,贝克莱悖论的出现,咄咄逼人,逼得数学家们不得不认真地对待/无穷小量0,设法克服由此引起的思维上的混乱.十九世纪,许多数学家投入到了这一工作之中,柯西(Cauchy,1789-1857)和维尔斯特拉斯的贡献最为突出.1821年,柯西建立了极限的理论,提出了/无穷小量是以零为极限但永远不为零的变量0,维尔斯特拉斯又作了进一步的改进,终于消除了贝克莱悖论,把微积分建立在坚实的极限理论之上,从而结束了第二次数学危机.第二次数学危机的解除,与第一次数学危机的解除,两者实际上是密不分的.为解决微积分问题,必须建立严密的无理数定义以及完整的实数理论.有了实数理论,加上柯西和维尔斯特拉斯的极限理论,这样,第一、二次数学危机就相继消除了.一波未平,又起一波.前两次数学危机解决后不到三十年,又卷起了第三次数学危机的轩然大波.十九世纪末和二十世纪初,德国数学家康托尔(Cantor,1845-1918)创立了集合论,初衷是为整个数学大厦奠定牢实的基础.正当人们为集合论的诞生而欣然自慰时,一串串数学悖论却冒了出来,又搅得数学家心里忐忑不安.其中,英国数学家罗素(Russell,1872-1970)于1902年提出的实际问题教学不能忽视可行性王满成(湖南城步教研室422500)文[1]通过课本习题演变,进而与生产实际密切相联,这是很可贵的,这正是当前中学数学教学所积极倡导的.但是,一个生产实际问题的解答方案应考虑其可行性.[1]中说:/开挖点E应离D 点33413米,就能使A、C、E三点在同一直线上0这几乎是不可能的事!因为过D作一满足N BDE =50b,DE=33413米的线段有无穷多条,当且仅当B、C、E、D四点共面时,方案才成立:但怎样保证共面,方案也未提及!笔者曾在邵阳市大圳灌区工程指挥部当过施工员(技术员),有过打遂洞两边同时施工的实践经验,现给出一个方案,供老师参考.旨在教师在这方面的教学中更贴近生产实际.第一步:过A、C两点拉线至B1(打一桩),再过C、B1拉线至B2(打一桩,因地形变化,在B1处需一人垂铅,使CB2上一点的射影落在B1上).如此下去,直至得到点G、F.第二步:采用[1]中的方案(或[1]中其它学生的设计方案).第三步:调整.当DE=33413米,且E点恰好落在GF上,问题解决;若E点落在GF的上侧或下侧,则需进行调整.显然,这种方案虽然在理论上讲得过去,但由于地形地貌的复杂性,在实际操作中可能会遇到困难,还需根据具体情况,再设法解决.参考文献1杨海燕.一堂开放型应用题教学实录.数学通报.2001年第7期/罗素悖论0影响最大.罗素构造了一个集合:B={X|X|X},也就是说:把一切不以自身为元素的集合X作为元素,这样的集合记为B.罗素问道:B是否属于B?回答试试看!若B I B,即B是B的元素,则B应满足集合B中的元素的条件,于是有B|B;若B|B,则已符合集合B的元素的条件,于是又有B I B.真奇怪:无论哪种情况,都使我们陷于自相矛盾、进退两难的尴尬境地!罗素悖论的出现,震撼了整个数学界.本应作为全部数学之基础的集合论,居然出现了内耗!怎么办?数学家们立即投入到消除悖论的工作中.庆幸的是:产生罗素悖论的根源很快被找到了!原来是,康托尔提出集合论时对/集合0的概念没有作必要的限制,以致于可以构成/一切集合的集体0这种过大的集合,让罗素这样的/好事者0/钻了空子0.怎么样从根本上消除集合论中出现的各种悖论(包括罗素悖论)呢?德国数学家策梅罗(Zermelo,1871-1953)认为:适当的公理体系可以限制集合的概念,从逻辑上保证集合的纯粹性.经策梅罗、费兰克尔(Frenkel)冯.诺伊曼等人的努力,形成了一个完整的集合论公理体系,称为ZFC系统.在ZFC系统中,/集合0和/属于0是两个不加定义的原始概念,另外还有十条公理.ZFC系统的建立,不仅消除了罗素悖论,而且消除了集合论中的其它悖论.第三次数学危机也随之销声匿迹了.纵观三次数学危机,每次都有一两个典型的悖论作为代表.克服了这些悖论,也就推动了数学的长足发展.经历过历史上三次数学危机的数学界,是否从此就与数学危机/绝缘0了呢?不!对此,我国当代著名数学家徐利治教授说了一段很有见地的话,他说:/由于人的认识在各个历史阶段中的局限性和相对性,在人类认识的各个历史阶段所形成的各个理论系统中,本来就具有产生悖论的可能性,但在人类认识世界的深化过程中同样具备排除悖论的可能性和现实性,人类认识世界的深化没有终结,悖论的产生和排除也没有终结.0参考文献1徐南昌.漫谈数学悖论的方法意义.中学数学,1991,82张祖贵.浅谈三次数学危机.湖南数学通讯,1984,6。
(整理)数学史上的三次危机.

数学史上的三次危机张清利第一次数学危机在古代的数学家看来与有理数对应的点充满了数轴,现在尚未深入了解数轴性质的人也会这样认为。
因此,当发现在数轴上存在不与任何有理数对应的一些点时,在人们的心理上引起了极大震惊,这个发现是早期希腊人的重大成就之一。
它是在公元前5世纪或6世纪的某一时期由毕达哥拉斯学派的成员首先获得的。
这是数学史上的一个里程碑。
毕达哥拉斯学派发现单位正方形的边与对角线不可公度,即对角线的长不能表为q p /的形式,也就是说不存在作为公共度量单位的线段。
后来,又发现数轴上还存在许多点也不对应于任何有理数。
因此,必须发明一些新的数,使之与这样的点对应,因为这些数不能是有理数,所以把它们称为无理数。
例如, ,22,8,6,2等都是无理数。
无理数的发现推翻了早期希腊人坚持的另一信念:给定任何两个线段,必定能找到第三线段,也许很短,使得给定的线段都是这个线段的整数倍。
事实上,即使现代人也会这样认为,如果他还不知道情况并非如此的话。
第一次数学危机表明,当时希腊的数学已经发展到这样的阶段:1. 数学已由经验科学变为演绎科学;2. 把证明引入了数学;3. 演绎的思考首先出现在几何中,而不是在代数中,使几何具有更加重要的地位。
这种状态一直保持到笛卡儿解析几何的诞生。
中国、埃及、巴比伦、印度等国的数学没有经历这样的危机,因而一直停留在实验科学。
即算术阶段。
希腊则走上了完全不同的道路,形成了欧几里得的《几何原本》与亚里士多得的逻辑体系, 而成为现代科学的始祖。
在当时的所有民族中为什么只有希腊人认为几何事实必须通过合乎逻辑的论证而不能通过实验来建立?这个原因被称为希腊的奥秘。
总之,第一次数学危机是人类文明史上的重大事件。
无理数与不可公度量的发现在毕达哥拉斯学派内部引起了极大的震动。
首先,这是对毕达哥拉斯哲学思想的核心,即“万物皆依赖于整数”的致命一击;既然像2这样的无理数不能写成两个整数之比,那么,它究竟怎样依赖于整数呢?其次,这与通常的直觉相矛盾,因为人们在直觉上总认为任何两个线段都是可以公度的。
三次数学危机3篇

三次数学危机第一次数学危机在数学的发展历程中,曾有一次重大的危机,即第一次数学危机。
这次危机发生在20世纪初期,当时的数学家们正在努力寻找一种新的数学方法,以便更好地描述和理解现实世界中的复杂问题。
然而,这条道路并不平坦。
新的数学方法需要更加先进的数学理论支持,但当时的数学还无法满足这一需求。
同时,现实世界中的问题也变得越来越复杂,使得数学家们遇到了难以逾越的困难。
在这种情况下,数学家们开始怀疑数学的基础是否可靠。
他们发现,在数学的基础中存在着一些悖论和不完备性,这让他们陷入了困惑和迷茫。
为了解决这个问题,一些数学家开始重新审视数学的公理和证明,试图找到一种更加严格和完备的数学基础。
他们成立了一些小组,进行了长期而艰苦的研究和讨论。
这些研究最终导致了数理逻辑和公理化方法的发展,这些方法为将来的数学研究奠定了坚实的基础。
第一次数学危机虽然让数学家们苦苦思索和探讨,但也给了他们寻求新的数学方法的动力和启示。
第二次数学危机20世纪初期,数学家们在前往更为复杂的数学领域的过程中遭遇了另一次危机,即第二次数学危机。
这次危机源自对几何学和拓扑学的深入研究,数学家们发现其中存在许多令人困惑和无法解决的问题。
在几何学中,数学家们发现了一些反直觉的结果,这些结果对数学的基础产生了挑战。
例如,他们发现两个形状看似相同的物体却可能有不同的特征,这种现象被称为拓扑上的不可区分性。
在证明这些结果时,数学家不得不使用一些超出传统几何学范围的新工具,如集合论、拓扑学和代数学。
这些新工具的使用使得数学变得更加抽象和复杂,进一步挑战着数学基础的可靠性。
数学家们为了解决这些问题,开始研究数学的逻辑结构,并且发展出了公理集合论来奠定数学基础的更加牢固。
这种方法成为当代数学的基础之一,为数学家们寻找解决方案提供了关键性的工具。
第三次数学危机第三次数学危机发生在上世纪50年代和60年代,当时人们开始在计算机上使用数学模型来解决实际问题。
数学史上三次危机

数学史上三次危机对于数学仅限于学校里学的那点东西,薄如蝉翼,谈不上什么深刻理解,但也听说过数学史上有三次危机。
限于老郭水平不高,能力有限无法深入,蜻蜓点水的说一下。
第一次数学危机-无理数的发现勾股定理是咱们小伙伴们都熟悉的,a^2+b^2=c^2。
这个公式出来之后就用到了已知两条边长求解直角三角形第三条边的边长问题上。
很明显,开平方之后会出现根号2、根号3这种情况,这种不能完全开平方的数是无限不循环的小数,我们现在叫做无理数。
我们现在理解这些数当然是没问题的,不过在当时,这种数的出现,打破了毕达哥拉斯学派认为的世界的和谐性质。
他们认为宇宙万物都可以归结为整数或者是整数之比。
这就导致了一种认识上的“危机”,这个危机被称为第一次数学危机。
其实,这次“危机”(我并不认为这是什么危机)给几何的发展带来了一次推动。
因为,出现了无理数意味着,人类依靠直觉和经验建立的科学不一定是可靠的,而严格的推理证明才是靠得住的。
从那以后,希腊人开始重视演绎推理,并且建立了几何公理体系。
这就是危难之中的机遇,古希腊人抓住了这个机遇,创造了平面几何的第一次辉煌。
第二次数学危机-阿基里斯追不上乌龟“阿基里斯追不上乌龟”:阿基里斯总是首先必须到达乌龟的出发点,因而乌龟必定总是跑在前头。
这个数学悖论故事是很有名的,其实我们现在的小伙伴都能知道,这是不可能发生的事,只要求一个极限,这个事就搞定了,跟本不存在追不上乌龟的事情。
然而在17世纪,微积分刚刚诞生那个时代,这个事还真是个大事。
当时包括牛顿、莱布尼茨等等大佬都没有找到解决这个问题的办法。
当时微积分刚刚初创,逻辑基础非常的不牢固。
很多基础问题,无穷小概念,从而导数、微分、积分等概念不清楚;无穷大概念不清楚;发散级数求和的任意性等等;符号的不严格使用;不考虑连续性就进行微分,不考虑导数及积分的存在性以及函数可否展成幂级数等等。
那时候,这个问题争论的焦点就在于无穷小量究竞是不是零?无穷小及其分析是否合理?由此而引起了数学界甚至哲学界长达一个半世纪的争论,造成了第二次数学危机。
三次数学危机

数学史上的三次数学危机分别是什么?答案一:毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。
他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。
由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。
而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。
然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。
毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。
希帕索斯的发现导致了数学史上第一个无理数√2 的诞生。
小小√2的出现,却在当时的数学界掀起了一场巨大风暴。
它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。
实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击。
对于当时所有古希腊人的观念这都是一个极大的冲击。
这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。
这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被小小的√2的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。
更糟糕的是,面对这一荒谬人们竟然毫无办法。
这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。
第二次数学危机导源于微积分工具的使用。
伴随着人们科学理论与实践认识的提高,十七世纪几乎在同一时期,微积分这一锐利无比的数学工具为牛顿、莱布尼兹各自独立发现。
这一工具一问世,就显示出它的非凡威力。
许许多多疑难问题运用这一工具后变得易如翻掌。
但是不管是牛顿,还是莱布尼兹所创立的微积分理论都是不严格的。
两人的理论都建立在无穷小分析之上,但他们对作为基本概念的无穷小量的理解与运用却是混乱的。
数学史三次危机简介

数学史三次危机简介
数学史上的三次危机,简要概括如下:
1. 第一次数学危机:公元前5世纪,毕达哥拉斯学派发现无理数,挑战了当时“万物皆数”(指整数或整数之比)的信念。
这次危机通过实数理论的建立得到解决。
2. 第二次数学危机:17至18世纪,围绕无穷小量的问题,主要与微积分的发展有关。
微积分学在理论不完善的情况下被广泛应用,但其基础—无穷小的概念受到质疑。
最终,通过实数理论和极限理论的建立,这次危机得到了缓解。
3. 第三次数学危机:19世纪末,集合论悖论的出现,如著名的罗素悖论,暴露了自洽性问题。
这些悖论挑战了集合论作为数学基础的地位。
至今,尽管哥德尔的不完备定理对形式系统的局限性做了阐述,但第三次数学危机并没有完全解决。
数学史上一共发生过三次危机,都是怎么回事

数学史上一共发生过三次危机,都是怎么回事?在数学历史上,有三次大的危机深刻影响着数学的发展,三次数学危机分别是:无理数的发现、微积分的完备性、罗素悖论。
第一次数学危机第一次数学危机发生在公元400年前,在古希腊时期,毕达哥拉斯学派对“数”进行了定义,认为任何数字都可以写成两个整数之商,也就是认为所有数字都是有理数。
但是该学派的一个门徒希帕索斯发现,边长为“1”的正方形,其对角线“√2”无法写成两个整数的商,由此发现了第一个无理数。
毕达哥拉斯的其他门徒知道后,为了维护门派的正统性,把希帕索斯杀害了,并抛入大海之中,看来古人也是解决不了问题时,先解决提出问题的人。
即便如此,无理数的发现很快引起了一场数学革命,史称第一次数学危机,这危机影响数学史近两千年的时间。
第二次数学危机微积分是一项伟大的发明,牛顿和莱布尼茨都是微积分的发明者,两人的发现思路截然不同;但是两人对微积分基本概念的定义,都存在模糊的地方,这遭到了一些人的强烈反对和攻击,其中攻击最强烈的是英国大主教贝克莱,他提出了一个悖论:从微积分的推导中我们可以看到,△x在作为分母时不为零,但是在最后的公式中又等于零,这种矛盾的结果是灾难性的,很长一段时间内数学家都找不到解决办法。
直到微积分发明100多年后,法国数学家柯西用极限定义了无穷小量,才彻底解决了这个问题。
第三次数学危机数学家总有一个梦想,试图建立一些基本的公理,然后利用严格的数理逻辑,推导和证明数学的所有定理;康托尔发明集合论后,让数学家们看到了曙光,法国科学家庞加莱认为:我们可以借助结合论,建造起整座数学大厦。
正在数学家高兴之时,英国哲学家、逻辑学家罗素,提出了一个惊人的悖论——罗素悖论:罗素悖论通俗描述为:在某个城市中,有一位名誉满城的理发师说:“我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。
”那么请问理发师自己的脸该由谁来刮?罗素悖论的提出,引发了数学上的又一次危机,数学家辛辛苦苦建立的数学大厦,最后发现基础居然存在缺陷,数学家们纷纷提出自己的解决方案;直到1908年,第一个公理化集合论体系的建立,才弥补了集合论的缺陷。
数学史上的三次危机

数学史上的三次危机从哲学上来看,矛盾是无处不存在的,即便以确定无疑著称的数学也不例外。
数学中有大大小小的许多矛盾,例如正与负、加与减、微分与积分、有理数与无理数、实数与虚数等等。
在整个数学发展过程中,还有许多深刻的矛盾,例如有穷与无穷、连续与离散、存在与构造、逻辑与直观、具体对象与抽象对象、概念与计算等等。
在数学史上,贯穿着矛盾的斗争与解决。
当矛盾激化到涉及整个数学的基础时,就会产生数学危机。
而危机的解决,往往能给数学带来新的内容、新的发展,甚至引起革命性的变革。
数学的发展就经历过三次关于基础理论的危机。
一、第一次数学危机从某种意义上来讲,现代意义下的数学,也就是作为演绎系统的纯粹数学,来源予古希腊毕达哥拉斯学派。
它是一个唯心主义学派,兴旺的时期为公元前500年左右。
他们认为,“万物皆数”(指整数),数学的知识是可靠的、准确的,而且可以应用于现实的世界,数学的知识由于纯粹的思维而获得,不需要观察、直觉和日常经验。
整数是在对于对象的有限整合进行计算的过程中产生的抽象概念。
日常生活中,不仅要计算单个的对象,还要度量各种量,例如长度、重量和时间。
为了满足这些简单的度量需要,就要用到分数。
于是,如果定义有理数为两个整数的商,那么由于有理数系包括所有的整数和分数,所以对于进行实际量度是足够的。
有理数有一种简单的几何解释。
在一条水平直线上,标出一段线段作为单位长,如果令它的定端点和右端点分别表示数0和1,则可用这条直线上的间隔为单位长的点的集合来表示整数,正整数在0的右边,负整数在0的左边。
以q为分母的分数,可以用每一单位间隔分为q等分的点表示。
于是,每一个有理数都对应着直线上的一个点。
古代数学家认为,这样能把直线上所有的点用完。
但是,毕氏学派大约在公元前400年发现:直线上存在不对应任何有理数的点。
特别是,他们证明了:这条直线上存在点p不对应于有理数,这里距离op等于边长为单位长的正方形的对角线。
于是就必须发明新的数对应这样的点,并且因为这些数不可能是有理数,只好称它们为无理数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈数学发展史中的三次危机摘要:在数学发展的历史长河中,危机与发展是并存的。
在数学发展史中出现了三次危机,人们通过对危机的探索,最终消除了它,并促进了数学的不断发展和进步。
第一次数学危机是人们对万物皆数的误解,随着无理数的发现进而度过了把第一次数学危机。
第二次数学危机是人们对无穷小的误解,而微积分的出现产生了一种新的方法——分析法,分析法是算和证的结合,是通过无穷趋近而确定某一结果。
罗素悖论的发现,导致了数学史上的第三次危机。
为了探求其根源和解决难题的途径,数学界、逻辑界进行了不懈的探讨,提出了一系列解决方案,并在不知不觉中大大推动了数学和逻辑学的发展。
归根结底,导致三次危机的原因,是由于人的认识。
关键词:危机;万物皆数;无穷小;分析方法;集合一、前言历史上,数学的发展又顺利也有曲折。
打的挫折也可以叫做危机。
危机也意味着挑战,危机的解决就意味着进步。
所以,危机往往是数学发展的先导。
数学发展史上有三次数学危机。
每一次危机,都是数学的基本部分受到质疑。
实际上,也恰恰是这三次危机,引发了数学上的三次思想解放,大大推动了数学科学的发展。
二、无理数的发现---第一次数学危机大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。
当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为"四艺",在其中追求宇宙的和谐规律性。
他们认为:宇宙间一切事物都可归结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。
这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的"危机",从而产生了第一次数学危机。
到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。
他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中。
欧多克斯和狄德金于1872年给出的无理数的解释与现代解释基本一致。
今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微妙之处。
第一次数学危机对古希腊的数学观点有极大冲击。
这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之却可以由几何量来表示出来,整数的权威地位开始动摇,而几何学的身份升高了。
危机也表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演译推理,并由此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命!三、无穷小是零吗?---第二次数学危机18世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大部分数学家对这一理论的可靠性是毫不怀疑的。
1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,矛头指向微积分的基础--无穷小的问题,提出了所谓贝克莱悖论。
他指出:"牛顿在求xn的导数时,采取了先给x以增量0,应用二项式(x+0)n,从中减去xn以求得增量,并除以0以求出xn的增量与x的增量之比,然后又让0消逝,这样得出增量的最终比。
这里牛顿做了违反矛盾律的手续---先设x 有增量,又令增量为零,也即假设x没有增量。
"他认为无穷小dx既等于零又不等于零,召之即来,挥之即去,这是荒谬,"dx为逝去量的灵魂"。
无穷小量究竟是不是零?无穷小及其分析是否合理?由此而引起了数学界甚至哲学界长达一个半世纪的争论。
导致了数学史上的第二次数学危机。
18世纪的数学思想的确是不严密的,直观的强调形式的计算而不管基础的可靠。
其中特别是:没有清楚的无穷小概念,从而导数、微分、积分等概念也不清楚,无穷大概念不清楚,以及发散级数求和的任意性,符号的不严格使用,不考虑连续就进行微分,不考虑导数及积分的存在性以及函数可否展成幂级数等等。
直到19世纪20年代,一些数学家才比较关注于微积分的严格基础。
从波尔查诺、阿贝尔、柯西、狄里赫利等人的工作开始,到威尔斯特拉斯、戴德金和康托的工作结束,中间经历了半个多世纪,基本上解决了矛盾,为数学分析奠定了严格的基础。
四、悖论的产生---第三次数学危机数学史上的第三次危机,是由1897年的突然冲击而出现的,到现在,从整体来看,还没有解决到令人满意的程度。
这次危机是由于在康托的一般集合理论的边缘发现悖论造成的。
由于集合概念已经渗透到众多的数学分支,并且实际上集合论成了数学的基础,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑。
1897年,福尔蒂揭示了集合论中的第一个悖论。
两年后,康托发现了很相似的悖论。
1902年,罗素又发现了一个悖论,它除了涉及集合概念本身外不涉及别的概念。
罗素悖论曾被以多种形式通俗化。
其中最著名的是罗素于1919年给出的,它涉及到某村理发师的困境。
理发师宣布了这样一条原则:他给所有不给自己刮脸的人刮脸,并且,只给村里这样的人刮脸。
当人们试图回答下列疑问时,就认识到了这种情况的悖论性质:"理发师是否自己给自己刮脸?"如果他不给自己刮脸,那么他按原则就该为自己刮脸;如果他给自己刮脸,那么他就不符合他的原则。
罗素悖论使整个数学大厦动摇了。
无怪乎弗雷格在收到罗素的信之后,在他刚要出版的《算术的基本法则》第2卷末尾写道:"一位科学家不会碰到比这更难堪的事情了,即在工作完成之时,它的基础垮掉了,当本书等待印出的时候,罗素先生的一封信把我置于这种境地"。
于是终结了近12年的刻苦钻研。
承认无穷集合,承认无穷基数,就好像一切灾难都出来了,这就是第三次数学危机的实质。
尽管悖论可以消除,矛盾可以解决,然而数学的确定性却在一步一步地丧失。
现代公理集合论的大堆公理,简直难说孰真孰假,可是又不能把它们都消除掉,它们跟整个数学是血肉相连的。
所以,第三次危机表面上解决了,实质上更深刻地以其它形式延续着。
五、结语历史上的三次数学危机,给人们带来了极大的麻烦。
危机的产生使人们认识到了现有理论的缺陷,科学中悖论的产生常常预示着人类的认识将进入一个新阶段,所以悖论是科学发展的产物,又是科学发展源泉之一。
第一次数学危机使人们发现无理数,建立了完整的实数理论,欧氏几何也应运而生并建立了几何公理体系;第二次数学危机的出现,直接导致了极限理论、实数理论和集合论三大理论的产生和完善,使微积分建立在稳固且完美的基础之上;第三次数学危机,使集合论成为一个完整的集合论公理体系(ZFC系统),促进了数学基础研究及数理逻辑的现代性。
数学发展的历史表明对数学基础的深入研究、悖论的出现和危机的相对解决有着十分密切的关系,每一次危机的消除都会给数学带来许多新内容、新认识,甚至是革命性的变化,使数学体系达到新的和谐,数学理论得到进一步深化和发展。
悖论的存在反映了数学概念、原理在一定历史阶段会存在很多矛盾,导致人们的怀疑,产生危机感,然而事物就是在不断产生矛盾和解决矛盾中逐渐发展完善起来的,旧的矛盾解决了,新的矛盾还会产生,而就是在其过程中,人们便不断积累了新的认识、新的知识,发展了新的理论。
数学家对悖论的研究和解决促进了数学的繁荣和发展,数学中悖论的产生和危机的出现,不单是给数学带来麻烦和失望,更重要的是给数学的发展带来新的生机和希望。
数学中悖论和危机的历史也说明了这一点:已有的悖论和危机消除了,又产生新的悖论和危机。
但是人的认识是发展的,悖论或危机迟早都能获得解决。
“产生悖论和危机,然后努力解决它们,而后又产生新的悖论和危机。
”这是一个无穷反复的过程,也就不断推动着数学的发展,这个过程也是数学思想获得重要发展的过程。
参考文献[1]师琼,王保红.悖论及其意义[J].中共山西省委党校学报,2005,28(4):76~78.[2]赵院娥,乔淑莉.悖论及其对数学发展的影响[J].延安大学学报(自然科学版),2004,2(1):21~25.[3]李春兰.试论数学史上的第一次危机及其影响[J].内蒙古师范大学学报(教育科学版),2006,19(1):88~90.[4]梁伟.试析悖论与数学史上三次危机及其方法论意义[J].科技资讯,2005,(27):187~188.[5]王方汉.历史上的三次数学危机[J].数学通报,2002,(5):42~43.[6]胡作玄.第三次数学危机[M].四川:四川人民出版社,1985,1~108.[7]黄燕玲,代贤军.悖论对数学发展的影响[J].河池师专学报,2003,23(4):62~64.[8]周勇.第2次数学危机的影响和启示[J].数学通讯,2005,(13):47.[9]王庚.数学怪论[A].数学文化与数学教育——数学文化报告集[C].北京:科学出版社,2004.13~25.[10]兰林世.三次数学危机与悖论[J].集宁师专学报,2003,25(4):47~49.[11]王风春.数学史上的三次危机[J].上海中学数学,2004,(6):42~43.[12]张怀德.数学危机与数学发展[J].甘肃高师学报,2004,9(2):60~62.[13]刘明祥.数学史上的三次危机[J].湖南教育,1996.09.45[14]陈云波.数学发展史上的三次危机[J].教育与管理,2004.12.28[15]王保红.数学三次危机的认识论意义[J].山系教育学院学报2002.04:56~57后记:科学文化的发展离不开探索,在探索的过程中人们自然会犯错误。
正是因为有了错误,并且能够寻求方法解决问题,人类才能不断的进步与发展。
之所以选择这个题目也正是基于此原因。
要想真正了解数学的发展,我们就必须正面数学发展的道路上所经历的理论缺陷,以及置身于寻求解决方法的道路中去,体验数学文化这一路发展所经历的坎坷,我们才能够更好的理解数学,理解数学文化。
在写这篇论文的同时,我也深深体会的,不仅仅是数学,对于生活中的每一件事,我们都应该正视我们所经历的酸甜苦辣,因为这将是我们人生道路上,一种宝贵的财富。