排 列 组 合 公 式 及 排 列 组 合 算 法

合集下载

排列组合公式排列组合计算公式

排列组合公式排列组合计算公式
例3 判断下列问题是排列问题还是组合问题?并计算出结果.
(1)高三年级学生会有 11 人:①每两人互通一封信,共通了多少封信?②每两人互握了 一次手,共握了多少次手?
(2)高二年级数学课外小组共 10 人:①从中选一名正组长和一名副组长,共有多少种不 同的选法?②从中选 2 名参加省数学竞赛,有多少种不同的选法?
(3)有 2,3,5,7,11,13,17,19 八个质数:①从中任取两个数求它们的商可以有多 少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?
(4)有 8 盆花:①从中选出 2 盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中 选出 2 盆放在教室有多少种不同的选法?
分析 (1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺 序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无 关,所以是组合问题.其他类似分析.
解(1)由于每名学生都可以参加 4 个课外小组中的任何一个,而不限制每个课外小组的 人数,因此共有 种不同方法.
(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此 共有 种不同方法.
点评 由于要让 3 名学生逐个选择课外小组,故两问都用乘法原理进行计算.
例 2 排成一行,其中 不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?
A.60 个
B.48 个
C.36 个
D.24 个
解 因为要求是偶数,个位数只能是 2 或 4 的排法有 P12;小于 50 000 的五位 数,万位只能是 1、3 或 2、4 中剩下的一个的排法有 P13;在首末两位数排定后, 中间 3 个位数的排法有 P33,得 P13P33P12=36(个)

排列组合公式(全)

排列组合公式(全)

排列组合公式【1】2022年3月23日;第1页共2页排列定义从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。

排列的全体组成的集合用 P(n,r)表示。

排列的个数用P(n,r)表示。

当r=n时称为全排列。

一般不说可重即无重。

可重排列的相应记号为 P(n,r),P(n,r)。

组合定义从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合。

组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合有记号C(n,r),C(n,r)。

一、排列组合部分是中学数学中的难点之一,原因在于(1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;(2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;(3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;(4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。

二、两个基本计数原理及应用(1)加法原理和分类计数法1.加法原理2.加法原理的集合形式3.分类的要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)(2)乘法原理和分步计数法1.乘法原理2.合理分步的要求任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同2022年3月23日;第2页共2页例1:用1、2、3、4、5、6、7、8、9组成数字不重复的六位数集合A为数字不重复的九位数的集合,S(A)=9!集合B为数字不重复的六位数的集合。

把集合A分为子集的集合,规则为前6位数相同的元素构成一个子集。

显然各子集没有共2022年3月23日;第3页共2页。

排列组合公式排列组合计算公式

排列组合公式排列组合计算公式

排列组合是组合学最基本的概念。

所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。

组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。

排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。

排列组合公式/排列组合计算公式2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。

公式C是指组合,从N个元素取R个,不进行排列。

N-元素的总个数R参与选择的元素个数!-阶乘 ,如 9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1: 有从1到9共计9个号码球,请问,可以组成多少个三位数?A1: 123和213是两个不同的排列数。

即对排列顺序有要求的,既属于“排列P”计算范畴。

上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合, 我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。

计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。

即不要求顺序的,属于“组合C”计算范畴。

上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念和公式典型例题分析 例1 设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法. (2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法. 点评 由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种? 解 依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出: ∴ 符合题意的不同排法共有9种. 点评 按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型. 例3 判断下列问题是排列问题还是组合问题?并计算出结果. (1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手? (2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法? (3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积? (4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法? 分析 (1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析. (1)①是排列问题,共用了封信;②是组合问题,共需握手(次). (2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法. (3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积. (4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法. 例4 证明. 证明 左式 右式. ∴ 等式成立. 点评 这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化. 例5 化简. 解法一 原式 解法二 原式 点评 解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化. 例6 解方程:(1);(2). 解 (1)原方程 解得. (2)原方程可变为 ∵ ,, ∴ 原方程可化为. 即 ,解得第六章 排列组合、二项式定理一、考纲要求1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明 加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排 列、组合中有关问题提供了理论根据.例1 5位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种?解: 5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的 报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明 排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研 究的对象以及研 究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.例2 由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的 偶数共有( )A.60个B.48个C.36个D.24个解 因为要求是偶数,个位数只能是2或4的排法有P12;小于50 000的五位数,万位只能是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P12=36(个)由此可知此题应选C.例3 将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种?解: 将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3P13=9(种).例四 例五可能有问题,等思考三)组合、组合数公式、组合数的两个性质说明 历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.例4 从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有( )A.140种B.84种C.70种D.35种解: 抽出的3台电视机中甲型1台乙型2台的取法有C14·C25种;甲型2台乙型1台的取法有C24·C15种根据加法原理可得总的取法有C24·C25+C24·C15=40+30=70(种 )可知此题应选C.例5 甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式?解: 甲公司从8项工程中选出3项工程的方式 C38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C15种;丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C24种;丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C22种.根据乘法原理可得承包方式的种数有C3 8×C15×C24×C22=×1=1680(种).(四)二项式定理、二项展开式的性质说明 二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它是常用的基础知识 ,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题.例6 在(x-)10的展开式中,x6的系数是( )A.-27C610B.27C410C.-9C610D.9C410解 设(x-)10的展开式中第γ+1项含x6,因Tγ+1=Cγ10x10-γ(-)γ,10-γ=6,γ=4于是展开式中第5项含x 6,第5项系数是C410(-)4=9C410故此题应选D.例7 (x-1)-(x-1)2+(x-1)3-(x-1)+(x-1)5的展开式中的x2的系数等于解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的和,则其和为在(x-1)6中含x3的项是C36x3(-1)3=-20x3,因此展开式中x2的系数是-2 0.(五)综合例题赏析例8 若(2x+)4=a0+a1x+a2x 2+a3x3+a4x4,则(a0+a2+a4)2-(a1+a3)2的值为( )A.1B.-1C.0D.2解:A.例9 2名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2 名护士,不同的分配方法共有( )A.6种B.12种C.18种D.24种解 分医生的方法有P22=2种,分护士方法有C24=6种,所以共有6×2=12种不同的分配方法。

(新)高中数学排列组合公式排列组合计算公式(供参考)

(新)高中数学排列组合公式排列组合计算公式(供参考)

排列组合公式/排列组合计算公式排列P------和顺序有关组合C -------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法. "排列"把5本书分给3个人,有几种分法"组合"1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn (两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。

排 列 组 合 公 式 及 排 列 组 合 算 法

排 列 组 合 公 式 及 排 列 组 合 算 法

排列组合算法总结(基于C++实现)全排列n!1.1 递归法设一组数p = {r1, r2, r3, … ,rn}, 全排列为perm(p),pn = p –{rn}。

则perm(p) = r1perm(p1), r2perm(p2), r3perm(p3), … , rnperm(pn)。

当n = 1时perm(p} = r1。

如:求{1, 2, 3, 4, 5}的全排列1、首先看最后两个数4, 5。

它们的全排列为4 5和5 4, 即以4开头的5的全排列和以5开头的4的全排列。

由于一个数的全排列就是其本身,从而得到以上结果。

2、再看后三个数3, 4, 5。

它们的全排列为3 4 5、3 5 4、 4 3 5、4 53、 5 34、 5 4 3 六组数。

即以3开头的和4,5的全排列的组合、以4开头的和3,5的全排列的组合和以5开头的和3,4的全排列的组合.#include iostreamusing namespace std;void Perm(int start, int end, int a[]) {--得到全排列的一种情况,输出结果if (start == end) {for (int i = 0; i end; i++)cout a[i] ' ';cout endl;for (int i = start; i end; i++) {swap(a[start], a[i]); --交换Perm(start + 1, end, a); --分解为子问题a[start+1.,end-1]的全排列swap(a[i], a[start]); --回溯int main() {int i, n, a[10];while (cin n, n) {for (i = 0; i n; i++)a[i] = i + 1;Perm(0, n, a);return 0;C(n,k),n个数中任取k个数2.1 递归法实际上就是在n个数中,标记k个数,然后输出这k个数的过程。

排列组合公式(全)

排列组合公式(全)

排列组合公式(一)排列定义从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。

排列的全体组成的集合用 P(n,r)表示。

排列的个数用P(n,r)表示。

当r=n时称为全排列。

一般不说可重即无重。

可重排列的相应记号为 P(n,r),P(n,r)。

组合定义从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合。

组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合有记号C(n,r),C(n,r)。

一、排列组合部分是中学数学中的难点之一,原因在于(1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;(2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;(3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;(4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。

二、两个基本计数原理及应用(1)加法原理和分类计数法1.加法原理2.加法原理的集合形式3.分类的要求每一类中的每一种方法都可以地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)(2)乘法原理和分步计数法1.乘法原理2.合理分步的要求任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同例1:用1、2、3、4、5、6、7、8、9组成数字不重复的六位数集合A为数字不重复的九位数的集合,S(A)=9!集合B为数字不重复的六位数的集合。

把集合A分为子集的集合,规则为前6位数相同的元素构成一个子集。

显然各子集没有共同元素。

每个子集元素的个数,等于剩余的3个数的全排列,即3!这时集合B的元素与A的子集存在一一对应关系,则S(A)=S(B)*3!S(B)=9!/3!这就是我们用以前的方法求出的P(9,6)例2:从编号为1-9的队员中选6人组成一个队,问有多少种选法?设不同选法构成的集合为C,集合B为数字不重复的六位数的集合。

公务员考试--行测-排列组合问题及计算公式

排列组合公式/排列组合计算公式排列A------和顺序有关(P和A是一个意思)组合 C -------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法. "排列"把5本书分给3个人,有几种分法"组合"1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A(n,m)表示.A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=A(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标))Anm=n×(n-1)....(n-m+1);Anm=n!/(n-m)!(注:!是阶乘符号);Ann(两个n分别为上标和下标)=n!;0!=1;An1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Anm/Amm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。

排列组合和排列组合计算公式

排列组合公式/排列组合计算公式排列 P------和顺序有关组合 C -------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法. "排列"把5本书分给3个人,有几种分法"组合" 1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。

排列组合和排列组合计算公式

排列P------和顺序有关组合C——不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法."排列"把5本书分给3个人,有几种分法"组合"1排列及计算公式从n个不同元素中,任取m(mc n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(mc n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2) ..... (n-m+1)= n!/(n-m)!( 规定0!=1).2. 组合及计算公式从n个不同元素中,任取m(mc n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(贰n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n ,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!) ; c(n,m)=c(n,n-m);3. 其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r二n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,…nk 这n个元素的全排列数为n!/(n 1!* n2!*..* nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=r X( n-1 ) .... (n-m+1); Pnm=n / (n-m) !(注:!是阶乘符号);Pnn (两个n分别为上标和下标)=n !; 0! =1; Pn1 ( n 为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm二Pnm/Pmm Cnm二n /m!(n-m)!; Cnn (两个n 分别为上标和下标)=1 ; Cn1 (n为下标1为上标)二n; Cnm二Cnn-m 2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。

排列组合公式(全)

欢迎阅读排列组合公式排列定义??? 从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。

排列的全体组成的集合用 P(n,r)表示。

排列的个数用P(n,r)表示。

当r=n时称为全排列。

一般不说可重即无重。

可重排列的相应记号为 P(n,r),P(n,r)。

组合定义从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合。

组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合有记号(1)(2)准确理解;(3)(4)(1)12.加法原理的集合形式3.分类的要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)(2)乘法原理和分步计数法1.乘法原理2各步计例1:用集合A集合B把集合AS(A)S(B)例2:从编号为1-9的队员中选6人组成一个队,问有多少种选法?设不同选法构成的集合为C,集合B为数字不重复的六位数的集合。

把集合B分为子集的集合,规则为全部由相同数字组成的数组成一个子集,则每个子集都是某6个数的全排列,即每个子集有6!个元素。

这时集合C的元素与B的子集存在一一对应关系,则S(B)=S(C)*6!S(C)=9!/3!/6!这就是我们用以前的方法求出的C(9,6)以上都是简单的例子,似乎不用弄得这么复杂。

但是集合的观念才是排列组合公式的来源,也是对公式更深刻的认识。

大家可能没有意识到,在我们平时数物品的数量时,说1,2,3,4,5,一共有5个,这时我们就是在把物品的集合与集合(1,2,3,4,5)建立一一对应的关系,正是因为物品数量与集合(1, 2,3,4,5)的元素个数相等,所以我们才说物品共有5个。

我写这篇文章的目的是把这些潜在的思路变得清晰,从而能用它解决更复杂的问题。

例3:999所以集合D例4:用集合A中1排在2在集合B C 中相同数字。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合算法基本概念从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排列起来,叫做从n个不同元素中取出m个元素的一个排列。

当m=n时所有的排列情况叫全排列。

P(n,m)=n(n-1).(n-m+1)=n!-(n-m)! 特别的,定义0!=1组合数公式是指从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。

用符号c(n,m) 表示。

c(n,m)=p(n,m)-m!=n!-((n-m)!*m!)3、计算公式排列算法递归算法#include stdio.hvoid swap(int *a, int *b)void perm(int list[], int k, int m)for(i = 0; i = m; i++)printf("%d ", list[i]);printf("");for(i = k; i = m; i++)swap(list[k], list[i]);perm(list, k + 1, m);swap(list[k], list[i]);int main()int list[] = {1, 2, 3, 4, 5};perm(list, 0, 4);printf("total:%d", n);return 0;template typename Tinline void swap(T* array, unsigned int i, unsigned int j) T t = array[i];array[i] = array[j];array[j] = t;* 递归输出序列的全排列void FullArray(char* array, size_t array_size, unsigned int index)if(index = array_size)for(unsigned int i = 0; i array_size; ++i)cout array[i] ' ';for(unsigned int i = index; i array_size; ++i)swap(array, i, index);FullArray1(array, array_size, index + 1);swap(array, i, index);#include "iostream"using namespace std;void permutation(char* a,int k,int m)if(k == m)span style="white-space:pre"-spanfor(i=0;i=m;i++) span style="white-space:pre"-spancouta[i]; coutendl;for(j=k;j=m;j++)swap(a[j],a[k]);permutation(a,k+1,m);swap(a[j],a[k]);int main(void)char a[] = "abc";couta"所有全排列的结果为:"endl;permutation(a,0,2);system("pause");return 0;}#include "iostream"#include "algorithm"using namespace std;void permutation(char* str,int length)sort(str,str+length);for(int i=0;ilength;i++)coutstr[i];coutendl;}while(next_permutation(str,str+length));int main(void)char str[] = "acb";coutstr"所有全排列的结果为:"endl;permutation(str,3);system("pause");return 0;}--- 求从数组a[1.n]中任选m个元素的所有组合。

--- a[1.n]表示候选集,n为候选集大小,n=m0。

--- b[1.M]用来存储当前组合中的元素(这里存储的是元素下标),--- 常量M表示满足条件的一个组合中元素的个数,M=m,这两个参数仅用来输出结果。

void combine( int a[], int n, int m, int b[], const int M ) for(int i=n; i=m; i--) -- 注意这里的循环范围b[m-1] = i - 1;combine(a,i-1,m-1,b,M);else -- m == 1, 输出一个组合for(int j=M-1; j=0; j--)cout a[b[j]] " ";cout endl;#include iostreamusing namespace std;-*********************************************************** *************-num : 需要排列的数组count : 数组总数numC:已经排列的数组iUse:已经排列的个数iNull:置0的个数sum: 总排列数-*********************************************************** *************-template class Tvoid ComBineNum(T *num, const int count, T *numC, int iUse, int* sum)int iNull = 0;T *newNum = new T[count];for (int i = 0; i count; ++i){memcpy(newNum, num, count);if (newNum[i] == 0){++iNull;if (iNull == count){for (int i = 0; i count; ++i){cout numC[i];cout endl;++(*sum);continue;numC[count - iUse] = newNum[i];newNum[i] = 0;ComBineNum(newNum, count, numC, iUse - 1, sum); delete[] newNum;int main()int sum = 0;const int count = 4;char num[count], pNum[count];for (int i = 0; i count; ++i){num[i] = i + '1';ComBineNumchar(num, count, pNum, count, sum); cout "sum :" sum endl;for (int i = 1; i = count; ++i){cout "sum :" sum endl;return 0;template class Tvoid Swap(T a, T b)template class Tvoid Perm(T list[], int k, int m, int* count) if (k == m){for (int i = 0; i m; ++ i){cout list[i];cout endl;++(*count);for (int i = k; i m; ++i){Swap(list[k], list[i]);Perm(list, k + 1, m, count);Swap(list[i], list[k]);int main()const int m = 4;int count = 0;int list[m];for (int i = 0; i m; ++i){list[i] = i + 1;Perm(list, 0, m, count);cout count;return 0;组合算法#includeiostream#includevector#includecstringusing namespace std;#includeassert.hvoid Combination(char *string ,int number,vectorchar result); void Combination(char *string)assert(string != NULL);vectorchar result;int i , length = strlen(string);for(i = 1 ; i = length ; ++i)Combination(string , i ,result);void Combination(char *string ,int number , vectorchar result) assert(string != NULL);if(number == 0)static int num = 1;printf("第%d个组合t",num++);vectorchar::iterator iter = result.begin();for( ; iter != result.end() ; ++iter)printf("%c",*iter);printf("");if(*string == '0')result.push_back(*string);Combination(string + 1 , number - 1 , result); result.pop_back();Combination(string + 1 , number , result);int main(void)char str[] = "abc";Combination(str);return 0;#includestdlib.h#includeString.h#includeiostream.hinline void Swap(int*lhs,int*rhs)int tmp= *lhs; *lhs=*rhs; *rhs=tmp;void Reverse(int*beg,int*end)while(begend)Swap(beg++,--end);void Print(int*beg,int*end)while(beg!=end)cout*beg++' ';coutendl;inline int Cmp(const void*lhs,const void*rhs) return *(const int*)rhs - *(const int*)lhs; void Permutation(int* beg, int* mid, int* end) int k(0),*p,*q;int i(2);if(end-mid 1)qsort(mid,end - mid,sizeof(int),Cmp);Print(beg,mid); int* nav = end - 1;while(i)int* tmp = nav;if(*--nav *tmp)int* rmbt = end;while(*--rmbt = *nav)if(rmbt==mid)Swap(nav,tmp);rmbt = end;Reverse(nav, rmbt+1);qsort(mid, end - mid, sizeof(int), Cmp);Print(beg, mid);nav = end - 1;for(q=p=beg;*p=*++q;p=q)if(q==mid-1)i--;for(q=p=end-1;*p=*--q;p=q)if(q==mid*q=*beg)i--;int main()int a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9};Permutation(a,a+3,a+7);return 0;上面的例子实际上展示了动态规划里面所谓的滑动数组(Sliding array),从而大大地降低了空间复杂度,(当然还会有更好的策略)。

相关文档
最新文档