最新中考第一轮复习29全等三角形
(完整word版)中考专题复习全等三角形(含答案)

中考专题复习全等三角形知识点总结一、全等图形、全等三角形:1。
全等图形:能够完全的两个图形就是全等图形。
2.全等图形的性质:全等多边形的、分别相等。
3。
全等三角形:三角形是特殊的多边形,因此,全等三角形的对应边、对应角分别相等。
同样,如果两个三角形的边、角分别对应相等,那么这两个三角形全等。
说明:全等三角形对应边上的高,中线相等,对应角的平分线相等;全等三角形的周长,面积也都相等.这里要注意:(1)周长相等的两个三角形,不一定全等;(2)面积相等的两个三角形,也不一定全等。
二、全等三角形的判定:1。
一般三角形全等的判定(1)三边对应相等的两个三角形全等(“边边边”或“”)。
(2)两边和它们的夹角对应相等的两个三角形全等(“边角边”或“ ")。
(3)两个角和它们的夹边分别对应相等的两个三角形全等(“角边角"或“”)。
(4)有两角和其中一角的对边对应相等的两个三角形全等(“角角边”或“”)。
2.直角三角形全等的判定利用一般三角形全等的判定都能证明直角三角形全等.斜边和一条直角边对应相等的两个直角三角形全等(“斜边、直角边"或“”).注意:两边一对角(SSA)和三角(AAA)对应相等的两个三角形不一定全等。
3.性质1、全等三角形的对应角相等、对应边相等。
2、全等三角形的对应边上的高对应相等。
3、全等三角形的对应角平分线相等.4、全等三角形的对应中线相等。
5、全等三角形面积相等。
6、全等三角形周长相等。
(以上可以简称:全等三角形的对应元素相等) 三、角平分线的性质及判定:性质定理:角平分线上的点到该角两边的距离相等. 判定定理:到角的两边距离相等的点在该角的角平分线上. 四、证明两三角形全等或利用它证明线段或角相等的基本方法步骤:1。
确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、 高、等腰三角形、等所隐含的边角关系);2。
回顾三角形判定公理,搞清还需要什么;3.正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).全等三角形综合复习切记:“有三个角对应相等"和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。
全等三角形知识点归纳

全等三角形知识点归纳全等三角形是初中数学中的重要内容,它对于解决几何问题有着关键作用。
下面就来对全等三角形的相关知识点进行一个全面的归纳。
一、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。
全等用符号“≌”表示,读作“全等于”。
二、全等三角形的性质1、全等三角形的对应边相等。
也就是说,如果两个三角形全等,那么它们相对应的边的长度是一样的。
2、全等三角形的对应角相等。
对应角的度数完全相同。
3、全等三角形的周长相等。
因为对应边相等,所以三条边相加的总和也相等。
4、全等三角形的面积相等。
由于形状和大小完全相同,所占的空间大小也就一样。
三、全等三角形的判定方法1、“边边边”(SSS):三边对应相等的两个三角形全等。
比如有三角形 ABC 和三角形 DEF,如果 AB = DE,BC = EF,AC = DF,那么三角形 ABC ≌三角形 DEF。
2、“边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。
例如在三角形 ABC 和三角形 DEF 中,AB = DE,∠A =∠D,AC = DF,那么这两个三角形全等。
3、“角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。
假设三角形 ABC 和三角形 DEF 中,∠A =∠D,AB = DE,∠B =∠E,那么三角形 ABC ≌三角形 DEF。
4、“角角边”(AAS):两角和其中一角的对边对应相等的两个三角形全等。
比如三角形 ABC 和三角形 DEF 中,∠A =∠D,∠B =∠E,BC = EF,这两个三角形就是全等的。
5、“斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。
在直角三角形 ABC 和直角三角形 DEF 中,如果斜边 AC =斜边DF,直角边 BC =直角边 EF,那么这两个直角三角形全等。
四、寻找全等三角形的对应边和对应角的方法1、有公共边的,公共边是对应边。
例如三角形 ABC 和三角形 ABD,AB 就是两个三角形的公共边,是对应边。
中考专题复习全等三角形(含答案)

中考专题复习全等三角形(含答案)中考专题复:全等三角形知识点总结:一、全等图形和全等三角形1.全等图形:两个图形完全相同即为全等图形。
2.全等图形的性质:全等多边形的对应边和对应角分别相等。
3.全等三角形:对应边和对应角分别相等的三角形为全等三角形。
全等三角形对应边上的高、中线相等,对应角的平分线也相等。
全等三角形的周长和面积也相等。
注意:周长相等的三角形不一定全等,面积相等的三角形也不一定全等。
二、全等三角形的判定1.一般三角形全等的判定:三边对应相等的两个三角形全等(“边边边”或“BBB”)。
两边和它们的夹角对应相等的两个三角形全等(“边角边”或“BAB”)。
两个角和它们的夹边分别对应相等的两个三角形全等(“角边角”或“AAS”)。
有两角和其中一角的对边对应相等的两个三角形全等(“角角边”或“ASA”)。
2.直角三角形全等的判定:利用一般三角形全等的判定可以证明直角三角形全等。
斜边和一条直角边对应相等的两个直角三角形全等(“斜边、直角边”或“HL”)。
注意:两边一对角(SSA)和三角(AAA)对应相等的两个三角形不一定全等。
三、全等三角形的性质1.对应角相等,对应边相等。
2.对应边上的高相等。
3.对应角的平分线相等。
4.对应中线相等。
5.面积相等。
6.周长相等。
四、角平分线的性质及判定性质定理:角平分线上的点到该角两边的距离相等。
判定定理:到角的两边距离相等的点在该角的角平分线上。
五、证明两三角形全等或利用它证明线段或角相等的基本方法步骤1.确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系);2.回顾三角形判定公理,搞清还需要什么;3.正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。
综合复:例 1.如图,A、F、E、B四点共线,AC⊥CE,BD⊥DF,AE=BF,AC=BD。
求证:△ACF≅△BDE。
删除明显有问题的段落)题目中给出了AE=BF,AC=BD,以及两个直角三角形△ACF和△BDE。
2024年中考数学复习+全等三角形课件

3.(2020·衡阳8分)如图,在△ABC中,∠B=∠C,过BC的中点D作 DE⊥AB,DF⊥AC,垂足分别为点E,F. (1)求证:DE=DF;
证明:∵DE⊥AB,DF⊥AC,
∴∠BED=∠CFD=90° ∵D是BC的中点,∴BD=CD. 在△BED和△CFD中,
∠BED=∠CFD ∠B=∠C
BD=CD
强调:两角一边一定能判定三角形全等
方法指 ----全等常见的判定思路: 引
已知一角一边: 找角的邻边 找边的邻角 找边的对角
已知两边:
找第三边 找夹角 找直角
已知两角: 找夹边
找对边 找第三边
方法指 引
E
全等与图形的变换:
D
F
G 轴对称
直观发现全等
平移
旋转
通过图形的变换, 直观发现全等;发现相等的边、相等的角.
1.(2022·衡阳6分)如图,在△ABC中,AB=AC,D,E是BC边上的 点,且BD=CE.求证:AD=AE.
证明:∵AB=AC, ∴∠B=∠C.
在△ABD和△ACE中,
AB=AC
∠B=∠C
全等五行
∴△BADB=DC≌E △ACE(SAS).
∴AD=AE.
2.(2021·衡阳6分)如图,点A,B,D,E在同一条直线上,AB=DE, AC∥DF,BC∥EF.求证:△ABC≌△DEF.
4.(2018·衡阳6分)如图,线段AC,BD相交于点E,AE=DE,BE=CE. (1)求证:△ABE≌△DCE;(2)当AB=5时,求CD的长.
(1)证明:在△ABE和△DCE中,
AE=DE
∠AEB=∠DEC
BE=CE
∴△ABE≌△DCE(SAS).
(2)解:∵△ABE≌△DCE,∴AB=CD. ∵AB=5,∴CD=5.
初三复习专题--全等三角形

•
OA=OC,EA=EC,
•
请阐明∠ A=∠C。
AO C
DB
E
• 分析:欲证明∠A= ∠C,有三条思路,一 是证明△AOD与△COB全等,而由已知条件 不可直接得到,二是连结OE,阐明△AOE与 △COE全等,这条路显而易得, ∠A=∠C, 三是证明 △ABE与△CDE全等,这也是不能 直接证明到的,因此应采用第二条思路。
全等三角形
• 一:考纲规定与命题趋势
• 1. 理解并掌握五种识别三角形全等的办法, 会灵活的对的选择适宜的识别办法判断两 个三角形与否全等。
• 2. 对的运用全等三角形的性质计算三角形 中未知的边或角,逐步培养逻辑推理能力 和形象思维能力。
• 3. 全等三角形的应用是学习几何证明题的 基础,因此它自然是中考必考知识点,同 窗们务必学好它。
• 阐明:在解决几何问题的过程中,有时根 据条件不能较顺利的得到结论,这时添加 必要的辅助线是十分重要的捷径。
• 例3.P是线段AB上一点,△APC与△BPD都是
等边三角形,请你判断:AD与BC相等吗?
试阐明理由。
D
C
AP
B
• 分析:观察图形发现它们所在的三角形全
等,故考虑通过全等来阐明。
• 解:由△APC和△BPD都是等边三角形可知 AP=PC,BP=DP,∠APC=∠BPD=60°,
变化,结论往往仍然成立,解决大同小异,
要善于抓住规律。
A
A
B
l
3
E
12
D
C
E
①
D
1
l
2
B
C
②
• 例9.如图,等边△ABC的边长为a,在BC的 延长线上取点D,使CD=b,在BA的延长线 上取点E,使AE=a+b,证明EC=ED。
2020年中考数学一轮复习讲义(上海专版) 专题29 全等三角形(解析版)

专题29 全等三角形1、全等三角形的概念能够完全重合的两个图形叫做全等形。
能够完全重合的两个三角形叫做全等三角形。
两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
夹边就是三角形中相邻两角的公共边,夹角就是三角形中有公共端点的两边所成的角。
2、全等三角形的表示和性质全等用符号“≌”表示,读作“全等于”。
如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。
注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。
3、三角形全等的判定三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。
直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)【例1】(2019•上海)在△ABC 和△A 1B 1C 1中,已知∠C =∠C 1=90°,AC =A 1C 1=3,BC =4,B 1C 1=2,点D 、D 1分别在边AB 、A 1B 1上,且△ACD ≌△C 1A 1D 1,那么AD 的长是 .【分析】根据勾股定理求得AB =5,设AD =x ,则BD =5﹣x ,根据全等三角形的性质得出C 1D 1=AD =x ,∠A 1C 1D 1=∠A ,∠A 1D 1C 1=∠CDA ,即可求得∠C 1D 1B 1=∠BDC ,根据等角的余角相等求得∠B 1C 1D 1=∠B ,即可证得△C 1B 1D ∽△BCD ,根据其性质得出5−x x =2,解得求出AD 的长.【解答】解:如图,∵在△ABC 和△A 1B 1C 1中,∠C =∠C 1=90°,AC =A 1C 1=3,BC =4,B 1C 1=2, ∴AB =√32+42=5,设AD =x ,则BD =5﹣x ,∵△ACD ≌△C 1A 1D 1,∴C 1D 1=AD =x ,∠A 1C 1D 1=∠A ,∠A 1D 1C 1=∠CDA ,∴∠C 1D 1B 1=∠BDC ,∵∠B =90°﹣∠A ,∠B 1C 1D 1=90°﹣∠A 1C 1D 1,∴∠B 1C 1D 1=∠B ,∴△C 1B 1D 1∽△BCD ,∴BDC 1D 1=BC C 1B 1,即5−x x =2, 解得x =53,∴AD 的长为53, 故答案为53.【例2】(2019春•徐汇区校级期中)如图,BF =EC ,∠A =∠D ,那么要得到△ABC ≌△DEF ,可以添加一个条件(只需填上一个正确的条件 .【分析】根据全等三角形的判定方法即可解决问题.【解答】解:∵BF =CE ,∴BC =EF ,∵∠A =∠D ,∴当∠B =∠E 或∠ACB =∠DFE 时,△ABC ≌△DEF ,故答案为∠B =∠E 或∠ACB =∠DFE【例3】(2019秋•浦东新区期末)已知:如图,△ABC 中,∠ABC =45°,AD ⊥BC ,BE ⊥AC 于D ,垂足分别为点D 、E ,AD 与BE 相交于点F .求证:DF =DC .【分析】证出△ABD 是等腰直角三角形,得出BD =AD ,证明△BDF ≌△ADC (ASA ),即可得出结论.【解答】证明:∵∠ABC =45°,AD ⊥BC ,∴△ABD 是等腰直角三角形,∴BD =AD ,∵BE ⊥AC ,∴∠C +DBF =∠C +DAC =90°,∴∠DBF =∠DAC ,在△BDF 和△ADC 中,{∠BDF =∠ADC =90°BD =AD ∠DBF =∠DAC,∴△BDF ≌△ADC (ASA ),∴DF =DC .1.(2019春•普陀区期末)下列判定两个等腰三角形全等的方法中,正确的是()A.一角对应相等B.两腰对应相等C.底边对应相等D.一腰和底边对应相等【分析】依据全等三角形的判定定理回答即可.【解答】解:A.有一角对应相等,没有边的参与不能证明它们全等,故本选项不符合题意;B.两腰对应相等,第三边不一定对应相等,不符合全等的条件,故不能判定两三角形全等,故本选项不符合题意;C.只有底边相等,别的边,角均不确定,不符合全等的条件,故不能判定两三角形全等,故本选项不符合题意;D.一腰和底边对应相等,相当于两腰和底边对应相等,利用SSS可以证得两个等腰三角形全等,故本选项符合题意.故选:D.2.(2019春•普陀区期末)如图,已知△ABC≌△AEF,其中AB=AE,∠B=∠E.在下列结论①AC=AF,②∠BAF=∠B,③EF=BC,④∠BAE=∠CAF中,正确的个数有()A.1个B.2个C.3个D.4个【分析】根据全等三角形对应边相等,全等三角形对应角相等结合图象解答即可.【解答】解:∵△ABC≌△AEF,∴AC=AF,EF=BC,故①③正确;∠EAF=∠BAC,∴∠EAB=∠F AC,故④正确;∵AF≠BF,∴∠BAF≠∠B,故②错误;综上所述,结论正确的是①③④共3个.故选:C.3.(2018秋•普陀区期中)不能使△ABC≌△DEF必定成立是()A.AB=DE,∠A=∠D,∠C=∠F B.AB=DE,BC=EF,∠B=∠EC.AC=DF,BC=EF,∠A=∠D D.AB=DE,BC=EF,CA=FD【分析】根据全等三角形的判定方法即可判断;【解答】解:A、根据AAS即可判断;本选项不符合题意;B、根据SAS即可判断;本选项不符合题意;C、错误,SSA无法判断三角形全等;本选项符合题意;D、根据SSS即可判断,本选项不符合题意;故选:C.4.(2018春•金山区期末)如图,△ABC≌△AED,点D在BC边上,BC∥AE,∠CAB=80°,则∠BAE的度数是()A.35°B.30°C.25°D.20°【分析】根据全等三角形的性质得到∠CAB=∠DAE,由平行可知可得∠CDA=800°,利用等腰三角形性质可知∠C=∠CDA=80°,推出∠CAD=20°即可解决问题;【解答】解:∵△ABC≌△AED,∴∠CAB=∠DAE=80°,∵BC∥AE,∴∠CDA=∠DAE=80°∵AC=AD,∴∠C=∠ADC=80°,∴∠CAD=20°,∵∠CAB=∠DAE,∴∠CAD=∠BAE=20°故选:D.5.(2019秋•静安区月考)如图,已知正方形ABCD中,E是AD的中点,BF=CD+DF,若∠ABE为α,用含α的代数式表示∠CBF的度数是.【分析】延长BC至G,使得CG=DF,连接FG交CD于H,判定△FDH≌△GCH(AAS),即可得出FH =GH,DH=CH,再判定△ABF≌△CBH(SAS),即可得到∠ABF=∠CBH=α°,进而得出∠FBC=2∠CBH=2α°.【解答】解:如图,延长BC至G,使得CG=DF,连接FG交CD于H,∵BF=CD+DF,CD=BC,∴BF=BG,∵∠D=∠HCG=90°,∠DHF=∠CHG,DF=CG,∴△FDH≌△GCH(AAS),∴FH=GH,DH=CH,∴等腰三角形BFG中,∠FBG=2∠HBC,∵点E是AD中点,DH=CH,∴AE=CH,又∵∠A=∠BCH,AB=CB,∴△ABF≌△CBH(SAS),∴∠ABF=∠CBH=α°,∴∠FBC=2∠CBH=2α°.故答案为:2α.6.(2019秋•浦东新区期中)如图,已知AB=AC,AD=AE,∠BAC=∠DAE,∠BAD=22°,∠ACE=30°,则∠ADE=.【分析】利用全等三角形的性质得出∠ABD=∠2=30°,再利用三角形的外角得出得出即可.【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△ABD和△ACE中,{AB=AC∠1=∠CAE AD=AE,∴△ABD≌△ACE(SAS);∴∠ABD=∠2=30°,∵∠1=22°,∴∠3=∠1+∠ABD=22°+30°=52°,故答案为:52°7.(2019春•普陀区期末)如图,△ACE≌△DBF,如果∠E=∠F,DA=10,CB=2,那么线段AB的长是.【分析】直接利用全等三角形的性质得出AB=CD,进而求出答案.【解答】解:∵△ACE≌△DBF,DA=10,CB=2,∴AB=CD=AD−BC2=10−224.故答案为:4.8.(2019秋•浦东新区期中)如图,点P是△ABC三个内角的角平分线的交点,连接AP、BP、CP,∠ACB=60°,且CA+AP=BC,则∠CAB的度数为.【分析】由角平分线的性质可得∠ABP+∠BAP=60°,由“SAS”可证△ACP≌△BCP,可得AP=PE,∠CAP=∠CEP,可得PE=BE,由等腰三角形的性质和外角性质可得∠P AB=2∠PBA,即可求解.【解答】解:如图,在BC上截取CE=AC,连接PE,∵∠ACB=60°,∴∠CAB+∠ABC=120°∵点P是△ABC三个内角的角平分线的交点,∴∠CAP=∠BAP=12∠CAB,∠ABP=∠CBP=12∠ABC,∠ACP=∠BCP,∴∠ABP+∠BAP=60°∵CA=CE,∠ACP=∠BCP,CP=CP∴△ACP≌△ECP(SAS)∴AP=PE,∠CAP=∠CEP∵CA+AP=BC,且CB=CE+BE,∴AP=BE,∴BE=PE,∴∠EPB=∠EBP,∴∠PEC=∠EBP+∠EPB=2∠PBE=∠CAP∴∠P AB=2∠PBA,且∠ABP+∠BAP=60°,∴∠P AB=40°,∴∠CAB=80°故答案为:80°9.(2019春•浦东新区期末)如图,△ABC≌△DCB,A、B的对应顶点分别为点D、C,如果AB=6cm,BC=12cm,AC=10cm,DO=3cm,那么OC的长是cm.【分析】根据全等三角形的性质得到DB=AC=10cm,∠ABC=∠DCB,∠DBC=∠ACB,求出OB,根据等腰三角形的性质解答.【解答】解:∵△ABC≌△DCB,∴DB=AC=10cm,∠ABC=∠DCB,∠DBC=∠ACB,∴OB=DB﹣DO=7cm,∠OBC=∠OCB,∴OC=OB=7cm,故答案为:7.10.(2018秋•嘉定区期末)在△ABC中,AB=5,AC=7,AD是BC边上的中线,则AD的取值范围是.【分析】作出图形,延长中线AD到E,使DE=AD,利用“边角边”证明△ACD和△EBD全等,根据全等三角形对应边相等可得AC=BE,然后根据三角形任意两边之和大于第三边,两边之差小于第三边求出AE的范围,再除以2即可得解.【解答】解:如图,延长中线AD到E,使DE=AD,∵AD是三角形的中线,∴BD=CD,在△ACD和△EBD中,∵{BD=CD∠BDE=∠ADC DE=AD,∴△ACD≌△EBD(SAS),∴AC=BE,∵AB=5,BE=AC=7,∴7﹣5<2AD<7+5,即2<2x<12,∴1<AD<6.故答案为:1<AD<6.11.(2019秋•虹口区校级月考)如图,CD 是经过∠BCA 顶点C 的一条直线,且直线CD 经过∠BCA 的内部,点E ,F 在射线CD 上,已知CA =CB 且∠BEC =∠CF A =∠α.(1)如图1,若∠BCA =80°,∠α=100°,问EF =BE ﹣AF ,成立吗?说明理由.(2)将(1)中的已知条件改成∠BCA =∠β,∠α+∠β=180°(如图2),问EF =BE ﹣AF 仍成立吗?说明理由.【分析】(1)根据“AAS ”可以证明△BCE ≌△CAF ,则BE =CF ;(2)同理证明△BCE ≌△CAF ,则CE =AF ,BE =CF ,可得EF =CE ﹣CF =BE ﹣AF .【解答】解:(1)EF =BE ﹣AF 成立,理由如下:∵∠BCA =80°(已知),∴∠BCE +∠ACE =80°∵∠BEC =∠α=100°(已知),∴∠BEF =180°﹣100°=80°(平角定义).∴∠B +∠BCE =80°(三角形外角和定理)∴∠B =∠ACE (等量代换).在△BCE 和△CAF 中,{∠B =∠ACF ∠BEC =∠CFA CB =AC,∴△BCE ≌△CAF (AAS ),∴BE =CF ,AF =EC (全等三角形对应边相等).∴EF =CF ﹣CE =BE ﹣AF (等量代换).(2)EF =BE ﹣AF 成立,理由如下:∵∠BCA =∠β,∴∠BCE +∠ACE =∠β∵∠BEC =∠α=180°﹣∠β,∴∠BEF =180°﹣∠α=∠β.∴∠B +∠BCE =∠β.∴∠B =∠ACE在△BCE 和△CAF 中,{∠B =∠ACF ∠BEC =∠CFA CB =AC,∴△BCE ≌△CAF (AAS ).∴BE =CF ,AF =EC ,∴EF =CF ﹣CE =BE ﹣AF .12.(2019秋•浦东新区期中)已知:如图所示,AB =BC ,AD 为△ABC 中BC 边的中线,延长BC 至E 点,使CE =BC ,连接AE .求证:∠DAC =∠CAE .【分析】延长AD 到F ,使得DF =AD ,连接CF .证明△ACF ≌△ACE 即可解决问题.【解答】解:延长AD 到F ,使得DF =AD ,连接CF .∵AD =DF ,∠ADB =∠FDC ,D =DC ,∴△ADB ≌△FDC (SAS ),∴AB =CF ,∠B =∠DCF ,∵BA =BC ,CE =CB∴∠BAC =∠BCA ,CE =CF ,∵∠ACE =∠B +∠BAC ,∠ACF =∠DCF +∠ACB ,∴∠ACF =∠ACE ,∵AC =AC ,∴△ACF ≌△ACE (SAS ),∴∠CAD =∠CAE .13.(2019春•长宁区期末)如图,已知AD 是△ABC 的一条中线,延长AD 至E ,使得DE =AD ,连接BE .如果AB =5,AC =7,试求AD 的取值范围.【分析】根据SAS 即可证明△BED ≌△CAD .在△ABE 利用三边关系定理即可解决.【解答】解:∵AD 是△ABC 的一条中线,∴BD =CD ,在△BED 和△CAD 中,{BD =CD∠BDE =∠ADC ED =AD,∴△BED ≌△CAD (SAS ),∴BE =AC =5,∵AB =7,∴2<AE <12,∴2<2AD <12,∴1<AD <6.14.(2019春•长宁区期末)如图,在△ABC 中,AD ⊥BC ,垂足为D ,BE ⊥AC ,垂足为E ,AD 与BE 相交于F ,(1)∠DAC 与∠EBC 相等吗?为什么?(2)如果∠BAC =45°,请说明△AEF ≌△BEC 的理由;(3)如果∠BAC =45°,AF =2BD ,试说明AD 平分∠BAC 的理由.【分析】(1)由垂直的定义得到∠ADC=90°,求得∠DAC=90°﹣∠C,于是得到结论;(2)根据三角形的内角和得到∠ABE=180°﹣∠BEA﹣∠BAE=45°,求得BE=AE,根据全等三角形的判定定理即可得到结论;(3)根据已知条件得到BC=2BD,由D是BC的中点,得到BD=CD,于是得到结论.【解答】解:(1)相等,理由:∵AD⊥BC,∴∠ADC=90°,∴∠DAC+∠C=90°,∴∠DAC=90°﹣∠C,∴∠DAC=∠EBC;(2)∵∠BEA=90°,∠BAE=45°,∴∠ABE=180°﹣∠BEA﹣∠BAE=45°,∴∠ABE=∠BAE,∴BE=AE,在△AEF与△BEC中,{∠EAF=∠EBC ∠AEF=∠BEC AE=BE,∴△AEF≌△BEC(AAS);(3)由(2)知,AF=BC,∵AF=2BD,∴BC=2BD,∴D是BC的中点,∴BD=CD,∵AD⊥BC,∠BAD=∠CAD=12∠BAC,∴AD平分∠BAC.。
2024年中考数学一轮复习考点精讲课件—全等三角形

∴ = ,∠ = ∠,
∵∠ + ∠ = 180°,∠ + ∠ = 180°,
∴∠ = ∠,
∴ ∥ .
考点一 全等三角形及其性质
题型05 利用全等的性质证明线段之间的数量/位置关系
【对点训练1】(2023·陕西西安·校考模拟预测)如图,、相交于点,且△ ≌△ ,在上,在
1. 形状相同的两个图形不一定是全等图形,面积相同的两个图形也不一定是全等图形.
2. 通过平移、翻折、旋转后得到的图形与原图形是全等图形.
考点一 全等三角形及其性质
题型01 利用全等三角形的性质求角度
【例1】(2023·湖北襄阳·统考模拟预测)已知△ ≌△ ,若∠ = 50°, ∠ = 40°,则∠1的度数为
5.对于特殊的直角三角形:有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或
“HL”).
【小技巧】从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素
(其中至少有一个元素是边)对应相等,这样就可以利用题目中的已知边(角)准确地确定要补充的边(角),有
(
)
A.40°
Hale Waihona Puke B.25°C.15°D.无法确定
【对点训练1】(2023·浙江金华·校联考三模)如图,已知△ ≌△ ,∠ = 75°,∠ = 30°,则∠的
度数为(
A.105°
)
B.80°
C.75°
D.45°
考点一 全等三角形及其性质
题型02 利用全等三角形的性质求长度
【例2】(2023·广东·校联考模拟预测)如图,△ ≅△ ,A的对应顶点是B,C的对应顶点是D,若 =
中考复习第一轮课件28三角形(2)

B
E )
C
F
【思维拓展】
例1.(2007安徽).如图,D,E分别是△ABC的边BC 和AB上的点,△ABD与△ACD的周长相等,△CAE 与△CBE的周长相等。设BC=a,AC=b,AB=c。 ⑴求AE和BD的长; ⑵若∠BAC=90°,△ABC的面积为S, 求证:S=AE· BD 解⑴∵△ABD与△ACD的周长相等,BC=a, abc AC=b,AB=c,∴AB+BD=AC+CD= 2 。 a bc abc abc c ∴BD= ;同理AE= 2 2 2 1 ⑵∵∠BAC=90°,∴ a b c ,S= 2 bc a bc abc 由⑴知 AE· BD= 2 × 2 =
【考题精析】
例2.(2007浙江杭州)一个等腰三角形的一个外角等于 110°,则这个三角形的三个角应该为( )。 解析:首先容易确定等腰三角形一个外角为110°的 相邻的内角为70°,其次讨论这个内角为等腰三角 形的顶角和底角两种情形:当此内角为等腰三角形 顶角时,这个三角形的三个角为: 70°,55° ,55°. 当此内角为等腰三角形底角时,这个三角形的三个 角为: 70°,70° ,40°. 点评:考察三角形的边或角时,一要注意三角形形成的 条件:任意两边之和大于第三边;二要注意等腰三角形 的顶角和底角问题.当考题指向不明时,一定要采取分 类讨论的思想,把符合条件的保留下来,不符合条件的 应坚决弃之.
△ABD和△ACE, △ABE和△ACD,
B D
图1
E
C
【考题精析】
(2)证法一:如图2,分别过点D,B作CA,DE的平 行线,两线交于F点,DF与AB交于G点. F 所以, ∠ACE=∠FDB. G 在△AEC和△FBD中 B D E 又CE=BD,可证:△AEC≌△FBD 所以,AC=FC,AE=FB. 在 △AGD中,AG+ DG>AD, 在△BFG中,BG+FG>FB, 所以,AG+DG-AD>0. BG+FG-FB>0. 所以. AG+DG+BG+FG-AD-FB>0 即.AB+FD>AD+FB 所以.AB+AC>AD+AE 其它证法略.本题综合考查了三角形中的众多的知识点.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考第一轮复习29全等三角形
仅供学习与交流,如有侵权请联系网站删除 谢谢3 课时29 全等三角形
【考点链接】
1.全等三角形:____________、______________的三角形叫全等三角形.
2. 三角形全等的判定方法有:_______、______、_______、______.直角三角形全等的
判定除以上的方法还有________.
3. 全等三角形的性质:全等三角形_____ ______,____________.
4.
全等三角形的面积_______、周长_____、对应高、______、_______相等.
【典例精析】
例1 已知:在梯形ABCD 中,AB//CD ,E 是BC 的中点,直线AE 与DC 的延长线交于
点F. 求证:AB=CF.
例2 (06重庆)如图所示,A 、D 、F 、B 在同一直线上,AD=BF ,AE=BC ,
且AE ∥BC .求证:(1)△AEF ≌△BCD ;(2)EF ∥CD .
【巩固练习】
1.如图1所示,若△OAD ≌△OBC ,且∠O=65°,∠C=20°,则∠OAD=____.
(第1题) (第2题) (第3题)
2.如图2,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一
样的玻璃,那么最省事的办法是( )
A.带①去
B.带②去
C.带③去
D.带①和②去
3.如图,已知AE ∥BF, ∠E=∠F,要使△ADE ≌△BCF,可添加的条件是________.
B
A E F C D
仅供学习与交流,如有侵权请联系网站删除 谢谢3 4. 在⊿ABC 和⊿A /B /C /中,AB=A /B /,∠A=∠A /,若证⊿ABC ≌⊿A /B /C /还要从下列条
件中补选一个,错误的选法是( )
A. ∠B=∠B /
B. ∠C=∠C /
C. BC=B /C /,
D. AC=A /C /,
【中考演练】
1.(08遵义)如图,OA OB =,OC OD =,50O ∠=,35D ∠=,则AEC ∠等于
( )
A .60
B .50
C .45
D .30
2. ( 08双柏) 如图,点P 在AOB ∠的平分线上,AOP BOP △≌△,则需添加的一个
条件是 (只写一个即可,不添加辅助线):
(第1题) (第2题) (第3题)
3. ( 08郴州) 如图,D 是AB 边上的中点,将ABC ∆沿过D 的直线折叠,使点A 落在
BC 上F 处,若50B ∠=︒,则BDF ∠= __________度.
4. (08荆州)如图,矩形ABCD 中,点E 是BC 上一点,AE =AD ,DF ⊥AE 于F ,连
结DE ,求证:DF =DC .
5. 如图,AB=AD ,BC=DC ,AC 与BD 交于点E ,由这些条件你能推出哪些结论? (不再添加辅助线,不再标注其它字母,不写推理过程,只要求写出四个你认为正确的结论即可)
A
B P O
C
B A
C
A O E A B
D
C D
﹡6. (08东莞) 如图,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结
BC.求∠AEB的大小.
答案仅供参考,如有错误,敬请见谅!参考答案:
典例精析:
例1、
例2、
例3、
例4、
例5、
巩固练习:
1、
2、
3、
4、
5、
6、
7、
8、
中考演练:
1、
2、
3、
4、
5、
6、
7、
8、
9、
C B
O
D A
E
仅供学习与交流,如有侵权请联系网站删除谢谢3
10、
11、
12、
13、
14、
15、
16、
17、
18、
19、
20、
仅供学习与交流,如有侵权请联系网站删除谢谢3。