人教版数学八年级下册第十八章测试题含答案
人教版数学八年级下册:第十八章检测卷(附答案)

20.(8 分)如图,E 是▱ ABCD 的边 AD 的中点,连接 CE 并延长交 BA 的延长线于点 F.若 CD=6,求 BF 的长. 解析:∵E 是▱ ABCD 的边 AD 的中点, ∴AE=DE.(2 分) ∵四边形 ABCD 是平行四边形, ∴AB=CD=6,AB∥CD. ∴∠F=∠DCE.(4 分)
24.(10 分)如图,在▱ ABCD 中,对角线 AC,BD 交于点 O,过点 B 作 BE⊥CD 于点 E,延长 CD 到 点 F,使 DF=CE,连接 AF. (1)求证:四边形 ABEF 是矩形; (1)证明:在▱ ABCD 中, AD∥BC,且 AD=BC, ∴∠ADF=∠BCE.
在△ADF 和△BCE 中, AD=BC, ∠ADF=∠BCE, DF=CE, ∴△ADF≌△BCE(SAS).(3 分) ∴AF=BE,∠AFD=∠BEC=90°. ∴AF∥BE. ∴四边形 ABEF 是矩形.(5 分)
(2)求 DM 的长. (2)解:∵△ADB≌△ADE, ∴AE=AB=12, ∴EC=AC-AE=8. ∵M 是 BC 的中点,BD=DE, ∴DM=1EC=4.(10 分)
2
23.(10 分)如图,P 是正方形 ABCD 对角线 BD 上 一点,PE⊥DC,PF⊥BC,点 E,F 分别是垂足. (1)求证:AP=PC;
3.如图,点 P 是菱形 ABCD 对角线 BD 上一点, PE⊥AB 于点 E,若∠BPE=60°,则∠ADC 的度数 为( A ) A.60° B.65° C.70° D.75°
4.如图,在 Rt△ABC 中,∠ACB=90°,点 H、E、 F 分别是边 AB、BC、CA 的中点.若 EF+CH=8, 则 CH 的长为( B ) A.3 B.4 C.5 D.6
人教版初二数学下册第十八章-单元测试题及答案

八年级数学下册第十八章单元测试卷一、选择题(每小题3分,共30分)1.若平行四边形中两个内角的度数比为1∶3,则其中较小的内角是()A.30°B.45°C.60°D.75°2.如图,已知四边形ABCD是平行四边形,对角线AC,BD相交于点O,E是BC的中点,以下说法错误的是()A.OE=12DC B.OA=OC C.∠BOE=∠OBA D.∠OBE=∠OCE ,第2题图,第3题图,第6题图3.如图,矩形ABCD的对角线AC=8 cm,∠AOD=120°,则AB的长为()A. 3 cm B.2 cm C.2 3 cm D.4 cm4.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形5.若顺次连接四边形各边中点所得的四边形是菱形,则该四边形一定是() A.矩形B.一组对边相等,另一组对边平行的四边形C.对角线相等的四边形D.对角线互相垂直的四边形6.如图,已知点E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为()A.20°B.25°C.30°D.35°7.在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下结论正确的有()①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④8.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB′=60°,则矩形ABCD的面积是()A.12 B.24 C.12 3 D.16 3,第8题图 ,第9题图 ,第10题图9.如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5°,EF ⊥AB ,垂足为F ,则EF 的长为( )A .1 B. 2 C .4-2 2 D .32-410.如图,在矩形ABCD 中,点E 是AD 的中点,∠EBC 的平分线交CD 于点F ,将△DEF 沿EF 折叠,点D 恰好落在BE 上点M 处,延长BC ,EF 交于点N ,有下列四个结论:①DF =CF ;②BF ⊥EN ;③△BEN 是等边三角形;④S △BEF =3S △DEF ,其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④二、填空题(每小题3分,共24分)11.如图,在▱ABCD 中,AB =5,AC =6,当BD =____时,四边形ABCD 是菱形.,第11题图),第12题图),第14题图)12.(2016·江西)如图,在▱ABCD 中,∠C =40°,过点D 作CB 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为____.13.在四边形ABCD 中,AD ∥BC ,分别添加下列条件之一:①AB ∥CD ;②AB =CD ;③∠A =∠C ;④∠B =∠C.能使四边形ABCD 为平行四边形的条件的序号是____.14.如图,∠ACB =90°,D 为AB 中点,连接DC 并延长到点E ,使CE =14CD ,过点B 作BF ∥DE 交AE 的延长线于点F ,若BF =10,则AB 的长为____.15.如图,四边形ABCD 是正方形,延长AB 到点E ,使AE =AC ,则∠BCE 的度数是____度.,第15题图),第16题图),第17题图),第18题图) 16.如图,在四边形ABCD中,对角线AC⊥BD,垂足为点O,E,F,G,H分别为边AD,AB,BC,CD的中点,若AC=8,BD=6,则四边形EFGH的面积为____.17.已知菱形ABCD的两条对角线长分别为6和8,M,N分别是边BC,CD的中点,P是对角线BD上一点,则PM+PN的最小值是____.18.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则S正方形MNPQ S正方形AEFG的值等于___.三、解答题(共66分)19.(8分)如图,点E,F分别是锐角∠A两边上的点,AE=AF,分别以点E,F 为圆心,以AE的长为半径画弧,两弧相交于点D,连接DE,DF.(1)请你判断所画四边形的形状,并说明理由;(2)连接EF,若AE=8 cm,∠A=60°,求线段EF的长.20.(8分)如图,已知BD是△ABC的角平分线,点E,F分别在边AB,BC上,ED∥BC,EF∥AC.求证:BE=CF.21.(9分)如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC 于点F.(1)求证:△BEF≌△CDF;(2)连接BD,CE,若∠BFD=2∠A,求证:四边形BECD是矩形.22.(9分)如图,在▱ABCD中,E,F两点在对角线BD上,BE=DF.(1)求证:AE=CF;(2)当四边形AECF为矩形时,请求出BD-ACBE的值.23.(10分)如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)填空:当AB∶AD=__1∶2__时,四边形MENF是正方形,并说明理由.24.(10分)(2016·遵义)如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)求证:四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.25.(12分)如图,在正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于点Q.(1)如图①,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系,并加以证明;(2)如图②,当点Q 落在DC 的延长线上时,猜想并写出PB 与PQ 满足的数量关系,并证明你的猜想.第十八章 单元检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.若平行四边形中两个内角的度数比为1∶3,则其中较小的内角是( B )A .30°B .45°C .60°D .75°2.如图,已知四边形ABCD 是平行四边形,对角线AC ,BD 相交于点O ,E 是BC 的中点,以下说法错误的是( D )A .OE =12DCB .OA =OC C .∠BOE =∠OBAD .∠OBE =∠OCE ,第2题图 ,第3题图 ,第6题图3.如图,矩形ABCD 的对角线AC =8 cm ,∠AOD =120°,则AB 的长为( D )A. 3 cm B .2 cm C .2 3 cm D .4 cm4.已知四边形ABCD 是平行四边形,下列结论中不正确的是( D )A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形C .当∠ABC =90°时,它是矩形D .当AC =BD 时,它是正方形5.若顺次连接四边形各边中点所得的四边形是菱形,则该四边形一定是( C )A .矩形B .一组对边相等,另一组对边平行的四边形C .对角线相等的四边形D .对角线互相垂直的四边形6.如图,已知点E 是菱形ABCD 的边BC 上一点,且∠DAE =∠B =80°,那么∠CDE 的度数为( C )A .20°B .25°C .30°D .35°7.在▱ABCD 中,AB =3,BC =4,当▱ABCD 的面积最大时,下结论正确的有(B)①AC =5;②∠A +∠C =180°;③AC ⊥BD ;④AC =BD .A .①②③B .①②④C .②③④D .①③④8.如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B ′处,若AE =2,DE =6,∠EFB ′=60°,则矩形ABCD 的面积是( D )A .12B .24C .12 3D .16 3,第8题图 ,第9题图 ,第10题图9.如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5°,EF ⊥AB ,垂足为F ,则EF 的长为( C )A .1 B. 2 C .4-2 2 D .32-410.如图,在矩形ABCD 中,点E 是AD 的中点,∠EBC 的平分线交CD 于点F ,将△DEF 沿EF 折叠,点D 恰好落在BE 上点M 处,延长BC ,EF 交于点N ,有下列四个结论:①DF =CF ;②BF ⊥EN ;③△BEN 是等边三角形;④S △BEF =3S △DEF ,其中正确的结论是( B )A .①②③B .①②④C .②③④D .①②③④二、填空题(每小题3分,共24分)11.如图,在▱ABCD 中,AB =5,AC =6,当BD =__8__时,四边形ABCD 是菱形.,第11题图),第12题图),第14题图)12.如图,在▱ABCD 中,∠C =40°,过点D 作CB 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为__50°__.13.在四边形ABCD 中,AD ∥BC ,分别添加下列条件之一:①AB ∥CD ;②AB =CD ;③∠A =∠C ;④∠B =∠C.能使四边形ABCD 为平行四边形的条件的序号是__①或③__.14.如图,∠ACB =90°,D 为AB 中点,连接DC 并延长到点E ,使CE =14CD ,过点B 作BF ∥DE 交AE 的延长线于点F ,若BF =10,则AB 的长为__8__.15.如图,四边形ABCD 是正方形,延长AB 到点E ,使AE =AC ,则∠BCE 的度数是__22.5__度.,第15题图) ,第16题图),第17题图) ,第18题图)16.如图,在四边形ABCD 中,对角线AC ⊥BD ,垂足为点O ,E ,F ,G ,H 分别为边AD ,AB ,BC ,CD 的中点,若AC =8,BD =6,则四边形EFGH 的面积为__12__.17.已知菱形ABCD 的两条对角线长分别为6和8,M ,N 分别是边BC ,CD 的中点,P 是对角线BD 上一点,则PM +PN 的最小值是__5__.18.如图,在正方形ABCD 中,点E ,N ,P ,G 分别在边AB ,BC ,CD ,DA 上,点M ,F ,Q 都在对角线BD 上,且四边形MNPQ 和AEFG 均为正方形,则S 正方形MNPQ S 正方形AEFG的值等于__89__. 三、解答题(共66分)19.(8分)如图,点E ,F 分别是锐角∠A 两边上的点,AE =AF ,分别以点E ,F 为圆心,以AE 的长为半径画弧,两弧相交于点D ,连接DE ,DF.(1)请你判断所画四边形的形状,并说明理由;(2)连接EF ,若AE =8 cm ,∠A =60°,求线段EF 的长.解:(1)菱形,理由:根据题意得AE =AF =ED =DF ,∴四边形AEDF 是菱形 (2)∵AE =AF ,∠A =60°,∴△EAF 是等边三角形,∴EF =AE =8 cm20.(8分)如图,已知BD 是△ABC 的角平分线,点E ,F 分别在边AB ,BC 上,ED ∥BC ,EF ∥AC.求证:BE =CF.解:∵ED ∥BC ,EF ∥AC ,∴四边形EFCD 是平行四边形,∴DE =CF ,∵BD 平分∠ABC ,∴∠EBD =∠DBC ,∵DE ∥BC ,∴∠EDB =∠DBC ,∴∠EBD =∠EDB ,∴EB =ED ,∴EB =CF21.(9分)如图,将▱ABCD 的边AB 延长到点E ,使BE =AB ,连接DE ,交边BC 于点F.(1)求证:△BEF ≌△CDF ;(2)连接BD ,CE ,若∠BFD =2∠A ,求证:四边形BECD 是矩形.解:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD.∵BE =AB ,∴BE =CD.∵AB∥CD ,∴∠BEF =∠CDF ,∠EBF =∠DCF ,∴△BEF ≌△CDF(ASA) (2)∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∠A =∠DCB ,∵AB =BE ,∴CD =EB ,∴四边形BECD 是平行四边形,∴BF =CF ,EF =DF ,∵∠BFD =2∠A ,∴∠BFD =2∠DCF ,∴∠DCF =∠FDC ,∴DF =CF ,∴DE =BC ,∴四边形BECD 是矩形22.(9分)如图,在▱ABCD 中,E ,F 两点在对角线BD 上,BE =DF.(1)求证:AE =CF ; (2)当四边形AECF 为矩形时,请求出BD -AC BE的值. 解:(1)由SAS 证△ABE ≌△CDF 即可 (2)连接CE ,AF ,AC.∵四边形AECF 是矩形,∴AC=EF ,∴BD -AC BE =BD -EF BE =BE +DF BE =2BE BE=2 23.(10分)如图,在矩形ABCD 中,M ,N 分别是边AD ,BC 的中点,E ,F 分别是线段BM ,CM 的中点.(1)求证:△ABM ≌△DCM ;(2)填空:当AB ∶AD =__1∶2__时,四边形MENF 是正方形,并说明理由.解:(1)由SAS 可证 (2)理由:∵AB ∶AD =1∶2,∴AB =12AD ,∵AM =12AD ,∴AB =AM ,∴∠ABM =∠AMB ,∵∠A =90°,∴∠AMB =45°,∵△ABM ≌△DCM ,∴BM =CM ,∠DMC =∠AMB =45°,∴∠BMC =90°,∵E ,F ,N 分别是BM ,CM ,BC 的中点,∴EN ∥CM ,FN∥BM ,EM =MF ,∴四边形MENF 是菱形,∵∠BMC =90°,∴菱形MENF 是正方形24.(10分)(2016·遵义)如图,在Rt △ABC 中,∠BAC =90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于点F.(1)求证:△AEF ≌△DEB ;(2)求证:四边形ADCF 是菱形;(3)若AC =4,AB =5,求菱形ADCF 的面积.解:(1)由AAS 易证△AFE ≌△DBE (2)由(1)知,△AEF ≌△DEB ,则AF =DB ,∵DB =DC ,∴AF =CD ,∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC =90°,D 是BC 的中点,∴AD=DC =12BC ,∴四边形ADCF 是菱形 (3)连接DF ,由(2)知AF 綊BD ,∴四边形ABDF 是平行四边形,∴DF =AB =5,∴S 菱形ADCF =12AC·DF =12×4×5=10 25.(12分)如图,在正方形ABCD 中,AC 是对角线,今有较大的直角三角板,一边始终经过点B ,直角顶点P 在射线AC 上移动,另一边交DC 于点Q.(1)如图①,当点Q 在DC 边上时,猜想并写出PB 与PQ 所满足的数量关系,并加以证明;(2)如图②,当点Q 落在DC 的延长线上时,猜想并写出PB 与PQ 满足的数量关系,并证明你的猜想.解:(1)PB =PQ.证明:连接PD ,∵四边形ABCD 是正方形,∴∠ACB =∠ACD ,∠BCD =90°,BC =CD ,又∵PC =PC ,∴△DCP ≌△BCP(SAS),∴PD =PB ,∠PBC =∠PDC ,∵∠PBC +∠PQC =180°,∠PQD +∠PQC =180°,∴∠PBC =∠PQD ,∴∠PDC =∠PQD ,∴PQ =PD ,∴PB =PQ (2)PB =PQ.证明:连接PD ,同(1)可证△DCP ≌△BCP ,∴PD =PB ,∠PBC =∠PDC ,∵∠PBC =∠Q ,∴∠PDC =∠Q ,∴PD =PQ ,∴PB =PQ。
人教版八年级数学下册第十八章卷(附答案)

人教版八年级数学下册第十八章卷(附答案)一、选择题1.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形2.下列命题中正确的是()A.对角线互相平分的四边形是菱形B.对角线互相平分且相等的四边形是菱C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形3.如图,某花木场有一块等腰梯形ABCD的空地,其各边的中点分别是E、F、G、H,测得对角线AC=10m,现想利用篱笆围成四边形EFGH场地,则需篱笆得总长度是()A.40 m B.30 m C.20 m D.10 m4.在梯形ABCD中,AD∥BC,对角线AC⊥BD,且AC=10,BD=6,则该梯形的面积是()A.30B.15C.D.605.如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP 的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定6.已知一个直角梯形,一腰长为6,这腰与一底所成的角为30°,那么另一腰的长是()A.1.5B.3C.6D.97.如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是()A.B.C.D.8.用两个全等的直角三角形拼下列图形:①矩形;②菱形;③正方形;④平行四边形;⑤等腰三角形;⑥等腰梯形.其中一定能拼成的图形是()A.①②③B.①④⑤C.①②⑤D.②⑤⑥二、填空题9.如图,在平行四边形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE=度.10.如图,点E、F在▱ABCD的对角线BD上,要使四边形AECF是平行四边形,还需添加一个条件.(只需写出一个结论,不必考虑所有情况).11.如图所示,工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料(如图①所示),使AB=CD,EF=GH.(2)摆放成如图②的四边形,则这时窗框的形状是,根据的数学道理是.(3)将直尺紧靠窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④,说明窗框合格,这时窗框是,根据的数学道理是.12.如图,菱形ABCD中,AC=2,BD=5,P是AC上一动点(P不与A、C重合),PE∥BC交AB于E,PF∥CD交AD于F,则图中阴影部分(即多边形BCPFEB)的面积为.13.如图所示,菱形ABCD中,对角线AC,BD相交于点O,若再补充一个条件能使菱形ABCD成为正方形,则这个条件是.(只填一个条件即可,答案不唯一)14.等腰梯形两底之差为12cm,高为6cm,则其锐角底角为度.15.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的面积为cm2.三、解答题16.已知:如图,在梯形ABCD中,AD∥BC,CD=10cm,∠B=45度,∠C=30度,AD=5cm.求:(1)AB的长;(2)梯形ABCD的面积.17.如图,在菱形ABCD中,∠A与∠B的度数比为1:2,周长是48cm.求:(1)两条对角线的长度;(2)菱形的面积.18.如图,在平行四边形ABCD中,E、F是AC上的两点,且AE=CF.求证:DE=BF.19.如图,在梯形ABCD中,AD∥BC,AB∥DE,AF∥DC,E、F两点在边BC上,且四边形AEFD是平行四边形.(1)AD与BC有何等量关系,请说明理由;(2)当AB=DC时,求证:平行四边形AEFD是矩形.20.如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于E,连接AE、CD.请判断四边形ADCE的形状,说明理由.答案1.D.2.D.3.C.4.A.5.C.6.B.7.D.8.B.9.20°.10.平行四边形.11.平行四边形;两组对边分别相等的四边形是平行四边形;矩形;由一个角是直角的平行四边形是矩形.12.2.5.13.∠BAD=90°或AC=BD.14.45°.15..16.解:(1)如图,过点D作DE⊥BC于E,∵∠C=30°,CD=10cm,∴DE=CD=×10=5cm,过A作AH⊥BC于H,则AH=DE=5cm,∵∠B=45°,∴△ABH是等腰直角三角形,∴AB=AH=5cm;(2)∵AH、DE都是梯形的高线,∴四边形AHED是矩形,∴HE=AD=5cm,又∵BH=AH=5cm,CE===5cm,∴BC=BH+HE+CE=5+5+5=(10+5)cm,∴梯形ABCD的面积=(5+10+5)×5=(+)cm.17.解:(1)连接BD,∵∠A与∠B互补,即∠A+∠B=180°,∠A与∠B的度数比为1:2,∴∠A=60°,∠B=120°.∴∠BDA=120°×=60°.∴△ABD是正三角形.∴BD=AB=48×=12cm.AC=2×=12cm.∴BD=12cm,AC=12cm.(2)S菱形ABCD=×两条对角线的乘积=×12×12=72cm218.证明:在平行四边形ABCD中,则AD=CB,∠DAE=∠BCF,又AE=CF,∴△ADE≌△CBF(SAS),∴DE=BF.19.(1)解:AD=BC.理由如下:∵AD∥BC,AB∥DE,AF∥DC,∴四边形ABED和四边形AFCD都是平行四边形.∴AD=BE,AD=FC,又∵四边形AEFD是平行四边形,∴AD=EF.∴AD=BE=EF=FC.∴AD=BC.(2)证明:∵四边形ABED和四边形AFCD都是平行四边形,∴DE=AB,AF=DC.∵AB=DC,∴DE=AF.又∵四边形AEFD是平行四边形,∴平行四边形AEFD是矩形.20.证明:∵MN是AC的垂直平分线,∴AE=CE,AD=CD,OA=OC,∠AOD=∠EOC=90°,∵CE∥AB,∴∠DAO=∠ECO,∴△ADO≌△CEO.(ASA)∴AD=CE,OD=OE,∵OD=OE,OA=OC,∴四边形ADCE是平行四边形又∵∠AOD=90°,∴▱ADCE是菱形.。
人教版八年级下册数学第十八章测试题(附答案)

人教版八年级下册数学第十八章测试题(附答案)一、单选题1.如图,阴影部分是一个长方形,则长方形的面积是()A. 3cm2B. 4cm2C. 5cm2D. 6cm22.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,则AC的值为()A. 2√2B. √6C. 2D. √23.下列不能判断是正方形的有()A. 对角线互相垂直的矩形B. 对角线相等的矩形C. 对角线互相垂直且相等的平行四边形D. 对角线相等的菱形4.菱形的周长等于其高的8倍,则这个菱形的较大内角是()A. 30°B. 120°C. 150°D. 135°二、填空题5.正方形的对角线长为2,则正方形的边长为________cm.面积为________cm2.6.如图,BD是正方形ABCD的对角线,点E在CD上,若CE=3,△ABE的面积为8,则△DBE的周长为________。
7.如图,在平行四边形ABCD中,DE平分∠ADC,AD=5,BE=2,则ABCD的周长是________.8.如图,正方形ABCD的边长为10cm,E是AB上一点,BE=4cm,P是对角线AC上一动点,则PB+PE的最小值是________cm.9.若一个正方形的面积为a2+a+ 14,则此正方形的周长为________.10.如图为等边△ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AB=3,DE=1,则△EFC的面积为________.11.如图,在平面直角坐标系中,O为坐标原点,A(1,3),B(2,1),直角坐标系中存在点C,使得O,A,B,C四点构成平行四边形,则C点的坐标为________.12.菱形的面积是16,一条对角线长为4,则另一条对角线的长为________.13.已知▱ABCD的对角线AC,BD相交于点O,△AOD是等边三角形,且AD=4,则AB的长为________.14.如图,边长为4的菱形ABCD中,∠ABC=30°,P为BC上方一点,且S△PBC=14S菱形ABCD,则PB+PC的最小值为________.三、解答题15.如图,点O是平行四边形ABCD的对角线交点,AD>AB,E,F是AB边上的点,且EF=1 2AB;G,H是BC边上的点,且GH=13BC,若S1,S2分别表示ΔEOF和ΔGOH的面积,求S1:S2的比。
【精选】人教版八年级下册数学第十八章《平行四边形》测试卷(含答案)

【精选】人教版八年级下册数学第十八章《平行四边形》测试卷(含答案)一、选择题(每题3分,共30分)1.已知在▱ABCD中,∠B+∠D=200°,则∠B的度数为( ) A.100° B.160° C.80° D.60°2.【2022·广东】如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=( )A.14B.12C.1 D.2(第2题) (第4题) (第5题) (第8题) 3.【2022·河北】依据所标数据,下列一定为平行四边形的是( )4.【教材P44例2改编】【2021·恩施州】如图,在▱ABCD中,AB=13,AD=5,AC ⊥BC,则▱ABCD的面积为( )A.30 B.60 C.65 D.65 25.【教材P53例1改编】如图,在矩形ABCD中,对角线AC,BD交于点O,∠AOB =60°,AB=5,则BD的长为( )A.20 B.15 C.10 D.56.【2021·河南】关于菱形的性质,以下说法不正确...的是( )A.四条边相等 B.对角线相等C.对角线互相垂直 D.是轴对称图形7.下列命题中,是真命题的为( )A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形8.如图,已知在菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是( )A.16 3 B.16 C.8 3 D.89.【2022·青岛】如图,O为正方形ABCD对角线AC的中点,△ACE为等边三角形.若AB=2,则OE的长度为( )A.62B. 6 C.2 2 D.2 3(第9题) (第10题) (第11题) (第13题)10.【教材P68复习题T13拓展】【2022·恩施州】如图,在四边形ABCD中,∠A=∠B=90°,AD=10 cm,BC=8 cm,点P从点D出发,以1 cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是( )A.当t=4时,四边形ABMP为矩形B.当t=5时,四边形CDPM为平行四边形C.当CD=PM时,t=4D.当CD=PM时,t=4或6二、填空题(每题3分,共24分)11.如图,在▱ABCD中,AB=5,AC=8,BD=12,则△COD的周长是________.12.在Rt△ABC中,∠C=90°,AC=5,BC=12,则斜边上的中线CD=________. 13.【2021·益阳】如图,已知四边形ABCD是平行四边形,从①AB=AD,②AC =BD,③∠ABC=∠ADC中选择一个作为条件,补充后使四边形ABCD成为菱形,则其选择是________(限填序号).14.如图,平行四边形ABCD的三个顶点的坐标分别为A(1,1),B(4,1),D(2,3),要把顶点A平移到顶点C的位置,则其平移方式可以是:先向右平移________个单位长度,再向上平移________个单位长度.(第14题) (第15题) (第16题) (第17题) 15.【2022·哈尔滨】如图,菱形ABCD的对角线AC,BD相交于点O.点E在OB 上,连接AE,点F为CD的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为________.16.如图,在矩形ABCD中,E是BC边上一点,AE=AD,DF⊥AE于点F,连接DE,AE=5,BE=4,则DF=________.17.【2022·苏州】如图,在平行四边形ABCD中,AB⊥AC, AB=3, AC=4,分别以A,C为圆心,大于12AC的长为半径画弧,两弧相交于点M,N,过M,N两点作直线,与BC交于点E,与AD交于点F,连接AE,CF.则四边形AECF的周长为________.18.以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是____________.三、解答题(19,20题每题8分,21,22题每题12分,其余每题13分,共66分)19.【2022·桂林】如图,在▱ABCD中,点E和点F是对角线BD上的两点,且BF =DE.(1)求证:BE=DF;(2)求证:△ABE≌△CDF.20.【2021·郴州】如图,四边形ABCD中,AB=DC,将对角线AC向两端分别延长至点E,F,使AE=CF, 连接BE,DF.若BE=DF,证明:四边形ABCD是平行四边形.21.【教材P55练习T2改编】【2021·长沙】如图,▱ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4.(1)求证:▱ABCD是矩形;(2)求AD的长.22.【2021·十堰】如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交ED的延长线于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若CF=2,∠FAC=30°,∠B=45°,求AB的长.23.如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF;(2)若正方形的边长是5,BE=2,求AF的长.24.【2022·北京八中模拟】在▱ABCD中,AB≠AD,对角线AC,BD交于点O,AC =10,BD=16.点M,N在对角线BD上,点M从点B出发以每秒1个单位长度的速度向点D运动,到达点D时停止运动,同时点N从点D出发,运动至点B后立即返回,点M停止运动的同时,点N也停止运动,设运动时间为t 秒(t>0).。
人教版八年级数学下册第十八章测试卷及答案

人教版八年级数学下册第十八章测试卷及答案一.选择题(共10小题,每小题3分,共30分)1.下面的性质中,平行四边形不一定具有的是( )A.对角互补 B.邻角互补C.对角相等 D.对边相等2.如图,D,E分别是△ABC的边AB,AC上的点,且AD=DB,AE=EC.若DE=4,则BC的长为( )A.2 B.4 C.6 D.83. 如图,在菱形ABCD中,下列结论错误的是( )A.AC=BD B.AC⊥BD C.AB=AD D.∠1=∠24. 如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10 cm,BD=6 cm,则AD的长为( )A.4 cm B.5 cm C.D.8 cm5.四边形ABCD的对角线AC与BD相交于点O,下列四组条件中,一定能判定四边形ABCD为平行四边形的是( )A.AD∥BC B.OA=OC,OB=ODC.AD∥BC,AB=DC D.AC⊥BD6.如图,在矩形ABCD中,AD=6,对角线AC与BD相交于点O,AE⊥BD,垂足为E,且DE=3BE,则AE的长为( )A.2 B..3 D.7.如图,四边形ABCD 的两条对角线相交于点O,且互相平分.添加下列条件后,不能判定四边形ABCD为菱形的是( )A.AC⊥BD B.AB=ADC.AC=BD D.∠ABD=∠CBD8.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是( )A.67.5° B.22.5° C.30° D.45°9.如图,矩形ABCD的对角线AC与BD相交于点O,CE∥BD,DE∥AC,AD==2,则四边形OCED的面积为( )A..4 C..810. 如图,在四边形ABCD中,∠A=∠B=90°,AD=10 cm,BC=8 cm,点P从点D出发,以1 cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是( )A.当t=4时,四边形ABMP为矩形B.当t=5时,四边形CDPM为平行四边形C.当CD=PM时,t=4D.当CD= PM时,t=4或6二.填空题(共8小题,每小题3分,共24分)11.在四边形ABCD中,AB=DC,请添加一个条件,使四边形ABCD成为平行四边形,你所添加的条件为__________.12. .如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为________.13.若以A(-0.5,0),B(2,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在第________象限.14.如图,E,F是正方形ABCD的对角线AC上的两点,若AC=8,AE=CF=2,则四边形BEDF的周长是________.15.如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连接DF.若CE =1 cm,则BF=__________cm.16.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加______________条件,才能保证四边形EFGH是矩形.17.如果一个平行四边形的一个内角的平分线分它的一边为1:2两部分,那么称这样的平行四边形为"协调平行四边形",称该边为"协调边".当协调边为6时,这个平行四边形的周长为________.18.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,…,以此类推,第n个正方形的面积为________.三.解答题(共7小题, 66分)19.(8分) 如图,在▱ABCD中,E为AD延长线上的一点,F为CB延长线上的一点,且DE=BF,连接AF,CE.求证:四边形AFCE是平行四边形.20.(8分) 如图,在▱ABCD中,点E,F分别在边CB,AD的延长线上,且BE=DF,EF分别与AB,CD交于点G,H.求证AG=CH.21.(8分) 如图,在▱ABCD中,点E和点F是对角线BD上的两点,且BF=DE.(1)求证:BE=DF;(2)求证:△ABE≌△CDF.22.(8分) 在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.23.(10分)如图,正方形ABCD的边长为4,E,F分别为DC,BC的中点.(1)求证△ADE≌△ABF;(2)求△AEF的面积.24.(10分)如图,在正方形ABCD中,点E,F分别在BC和CD上,且BE=DF,连接EF.(1)求证:AE=AF;(2)过点E作EM∥AF,过点F作FM∥AE,求证:四边形AEMF是菱形.25.(14分)如图,在矩形ABCD中,AB=3,BC=4.点M,N在对角线AC上,且AM=CN,E,F分别是AD,BC的中点.(1)求证:△ABM≌△CDN;(2)点G是对角线AC上的点,∠EGF=90°,求AG的长.参考答案1-5ADAAB 6-10CCBAD11. AB ∥DC(答案不唯一)_12. 3013. 三15.(216.AC ⊥BD(答案不唯一) 17. 16或2018. 2n -1 19.证明:∵四边形ABCD 是平行四边形,∴AD ∥BC,AD =BC,∴AE ∥CF. 又∵DE =BF,∴AD +DE =BC +BF,即AE =CF,∴四边形AFCE 是平行四边形20.证明:∵四边形ABCD 是平行四边形,∴AD =BC,AD ∥BC,∠A =∠C.∴∠F =∠E.∵BE =DF,∴AD +DF =CB+BE,即AF =CE.在△AGF 和△CHE 中, {∠A =∠CAF =CE ∠F =∠E ∴△AGF ≌△CHE(ASA).∴AG =CH.21. 证明:(1)∵BF =DE,∴BF -EF =DE -EF,即BE =DF.(2)∵四边形ABCD 为平行四边形,∴AB =CD,且AB ∥CD.∴∠ABE =∠CDF.在△ABE 和△CDF 中, {AB =CD∠ABE =∠CDF BE =DF∴△ABE ≌△CDF(SAS).22. 证明:(1)∵四边形ABCD 是正方形,∴AB =AD,∠B =∠D =90°.又∵BE =DF,∴Rt△ABE≌Rt△ADF(SAS),∴AE =AF(2)∵EM ∥AF,FM ∥AE,∴四边形AEMF 是平行四边形.又由(1)知AE =AF,∴▱AEMF 是菱形23. (1)证明:∵四边形ABCD 为正方形,∴AB =AD =DC =CB,∠D =∠B =90°.∵E,F 分别为DC,BC 的中点,∴DE =12DC,BF =12BC.∴DE =BF.在△ADE 和△ABF 中, {AD =AB∠D =∠B DE =BF ∴△ADE ≌△ABF(SAS).(2)解:由题易知△ABF,△ADE,△CEF 均为直角三角形,且AB =AD =4,DE =BF =CE =CF =12×4=2,∴S △AEF =S 正方形ABCD -S △ADE -S △ABF -S △CEF =4×4-12×4×2-12×4×2-12×2×2=6.24. (1)证明:∵AF ∥BC,∴∠AFE =∠DBE.∵E 是AD 的中点,∴AE =DE.在△AFE 和△DBE 中, {∠AFE =∠DBE∠FEA =∠BED AE =DE ∴△AFE ≌△DBE(AAS).∴AF =BD.∵AD 是BC 边上的中线,∴DC =BD.∴AF =DC.(2)解:四边形ADCF 是菱形.证明:由(1)得AF =DC,又∵AF ∥BC,∴四边形ADCF 是平行四边形.∵AC ⊥AB,AD是斜边BC 上的中线,∴AD =12BC =DC.∴四边形ADCF 是菱形.25.解:(1)∵四边形ABCD 是矩形,∴AB ∥CD,AB =CD,∴∠MAB =∠NCD.在△ABM 和△CDN 中,{AB =CD∠MAB =∠NCDAM =CN ∴△ABM ≌△CDN(SAS)(2)如图,连接EF,交AC 于点O.∵四边形ABCD 是矩形,∴AD =BC,∠ABC =90°,∵AB =3,BC =4,∴AC =5,∵E,F 分别是AD,BC 的中点,∴AE =BF =CF,∴四边形ABFE 是矩形,∴EF =AB =3.在△AEO 和△CFO 中,{∠EOA =∠FOC∠EAO =∠FCO AE =CF ∴△AEO ≌△CFO(AAS),∴EO =FO,AO =CO,∴O 为EF,AC 中点.∵∠EGF =90°,OG =12EF =32,∴AG =AO -OG =1或AG =AO +OG =4,∴AG 的长为1或4。
【3套】人教版八年级下册数学第十八章平行四边形复习题(含答案)

人教版八年级下册数学第十八章平行四边形复习题(含答案)一、选择题1.如图,在□ ABCD中,已知∠ ODA= 90°, AC= 10cm, BD= 6cm,则 BC的长为()A. 4cmB. 5cmC. 6cmD. 8cm2.如图,在平行四边形ABCD中,连结对角线AC、BD,图中的全等三角形的对数()A. 1 对B. 对2C. 对3D. 对43.正方形的一条对角线长为 2 厘米,则正方形的面积(A. 2B. 3C. 4D.4.如图,矩形ABCD 的对角线AC、 BD 订交于点O, CE∥ BD, DE∥ AC,若 AC=4,则四边形CODE的周长()A. 4B. 6C. 8D. 105.如图,将△ABC沿 BC 方向平移获得△DCE,连结AD,以下条件中能够判断四边形ACED为菱形的是 ( )A. AB= BC B∠. ACB= 60°C∠. B= 60° D. AC= BC6.如图,在菱形 ABCD中,∠ ABC=60°,AB=1,E为 BC的中点,则对角线BD 上的动点P 到 E、C 两点的距离之和的最小值为()A. B. C. D.7.八个边长为 1 的正方形如图摆放在平面直角坐标系中,经过P 点的一条直线l 将这八个正方形分红面积相等的两部分,则该直线l 的分析式为()A. B. y=x+C. D.8.如图,在正方形 ABCD中, E,F 分别为 AD,CD 的中点, BF 与 CE订交于点 H,直线 EN 交CB 的延伸线于点 N,作 CM⊥ EN 于点 M ,交 BF 于点 G,且 CM=CD,有以下结论:① BF ⊥CE;② ED=EM ;③ tan ∠ ENC=;④S 四边形DEHF=4S△CHF,此中正确结论的个数为()A. 1 个B. 个2C. 个3D. 个49.如图,在正方形ABCD中,△BPC是等边三角形,BP、 CP的延伸线分别交AD 于点 E、 F,连结 BD、DP,BD 与 CF 订交于点H,给出以下结论:①BE=2AE;②△DFP∽△ BPH;③△PFD ∽△ PDB;④DP 2=PH?PC此中正确的选项是()A. ①②③④B. ②③C. ①②④D.①③④10.如图, ?ABCD中, AB=4,BC=6,AC 的垂直均分线交 AD 于点 E,则△CDE的周长是()A. 6B. 8C. 10D. 1211.如图,△ABC 周长为 1,连结△ABC 三边中点构成第二个三角形,再连结第二个三角形三边中点构成第三个三角形,以此类推,第2016 个三角形的周长为()A. 22016B. 22017C.D.12.如图,将边长为2cm 的菱形ABCD 沿边AB 所在的直线l 翻折获得四边形ABEF,若∠DAB=30°,则四边形CDFE的面积为()A. 2cm 2222B. 3cmC. 4cmD. 6cm13.如图,已知正方形ABCD边长为 1,连结 AC、BD,CE均分∠ ACD交 BD 于点 E,则 DE长为()A. 2-2B.-1C.-1D. 2-14.如图,P 为正方形 ABCD的对角线 BD 上任一点,过点 P 作 PE⊥ BC于点 E,PF⊥ CD 于点 F,连结 EF.给出以下 4 个结论:① △FPD是等腰直角三角形;②AP=EF;③AD=PD ;④∠ PFE=∠BAP.此中,全部正确的结论是()A. ①②B. ①④C. ①②④D. ①③④二、填空题15.在平行四边形ABCD中,∠ B=100°,则∠ A=________,∠ D= ________16.如图,已知△ABC 的三个极点的坐标分别为A(﹣ 2, 0),B(﹣ 1, 2), C( 2, 0).请直接写出以A, B, C 为极点的平行四边形的第四个极点 D 的坐标 ________17.如图,在 ?ABCD中, DE 均分∠ ADC, AD=6, BE=2,则 ?ABCD的周长是 ________.18.如图,平行四边形ABCD 中, AF、 CE分别是∠ BAD 和∠ BCD 的角均分线,依据现有的图形,请增添一个条件,使四边形AECF为菱形,则增添的一个条件能够是________ .(只要写出一个即可,图中不可以再增添其余“点”和“线”)19.如图,平行四边形的四个内角均分线订交,如能构成四边形,则这个四边形是________20.如图,正方形 ABCD被分红两个小正方形和两个长方形,假如两个小正方形的面积分别是18cm2和 10cm2,那么两个长方形的面积和为________cm 2.21.如图,在矩形ABCD中, AB=2,AD=4,点E是BC边上一个动点,连结AE,作 DF⊥AE 于点 F,当 BE的长为 ________时,△CDF是等腰三角形.三、解答题22.如图,四边形ABCD是平行四边形,E、 F 是对角线AC 上的两点,∠ 1=∠ 2.(1)求证: AE=CF;(2)求证:四边形 EBFD是平行四边形.F, G 是 EF 的中点,连结CG.求证:① △ABM≌△ CBM;②CG⊥CM.24.如图,在矩形ABCD中, M 、N 分别是 AD、BC 的中点, P、 Q 分别是 BM、 DN 的中点.(1)求证:△MBA≌△ NDC;(2)求证:四边形 MPNQ 是菱形.25.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D, AN 是△ABC 外角∠ CAM 的平分线, CE⊥ AN,垂足为点E,(1)求证:四边形 ADCE为矩形;(2)当△ABC知足什么条件时,四边形ADCE是一个正方形?并给出证明.26.如图,矩形 OABC的边 OA 在 x 轴正半轴上,边 OC在 y 轴正半轴上, B 点的坐标为(1,3).矩形 O′ A′是BC矩′形 OABC绕 B 点逆时针旋转获得的.O′点恰幸亏x 轴的正半轴上,O′ C′交 AB 于点 D.(1)求点 O′的坐标,并判断△O′DB的形状(要说明原因)(2)求边 C′O所′在直线的分析式.(3)延伸 BA 到 M 使 AM=1,在( 2)中求得的直线上能否存在点P,使得△POM 是以线段OM 为直角边的直角三角形?若存在,请直接写出P 点的坐标;若不存在,请说明原因.参照答案一、选择题1. A2.D3. A4.C5. D6. C7.B8.D9. C10. C11. D12. C13. C14. C二、填空题15.80 ;°100 °16.( 3,2 ),(﹣ 5,2),( 1,﹣ 2)17.2018.AC⊥ EF19.矩形20.21.2 或 2或 4﹣ 2三、解答题22.( 1)证明:如图:∵四边形ABCD是平行四边形,∴AD=BC, AD∥ BC,∠ 3=∠4,∵∠ 1=∠ 3+∠5,∠ 2=∠4+∠ 6,∠ 1=∠ 2∴∠ 5=∠ 6∵在△ADE 与△CBF中,∴△ ADE≌△ CBF( ASA),∴A E=CF(2)证明:∵∠ 1=∠ 2,∴DE∥BF.又∵由( 1)知△ADE≌△ CBF,∴DE=BF,∴四边形 EBFD是平行四边形.23.证明:① ∵四边形ABCD是正方形,∴A B=CB,∠ ABM=∠ CBM,在△ABM 和△CBM 中,,∴△ ABM≌△ CBM( SAS),② ∵△ ABM≌△ CBM,∴∠ BAM=∠ BCM,∵∠ ECF=90°, G 是 EF的中点,∴GC=GF,∴∠ GCF=∠F,又∵ AB∥ DF,∴∠ BAM=∠ F,∴∠ BCM=∠ GCF,∴∠ BCM+∠ GCE=∠ GCF+∠ GCE=90°,∴GC⊥ CM.24.( 1)证明:∵四边形 ABCD是矩形,∴AB=CD, AD=BC,∠ A=∠ C=90°,∵在矩形 ABCD中, M、 N 分别是 AD、 BC的中点,∴AM=AD, CN=BC,∴AM=CN,在△MAB 和△NDC中,∵,∴△ MBA≌△ NDC( SAS)(2)证明:四边形 MPNQ 是菱形.原因以下:连结 AP, MN ,则四边形 ABNM 是矩形,∵AN 和 BM 相互均分,则A,P,N 在同一条直线上,易证:△ABN≌△ BAM,∴AN=BM ,∵△ MAB≌△ NDC,∴BM=DN,∵P、 Q 分别是 BM、 DN 的中点,∴PM=NQ,∵,∴△ MQD≌△ NPB( SAS).∴四边形MPNQ 是平行四边形,∵M 是 AD 中点, Q 是 DN 中点,∴MQ=AN,∴MQ=BM,∵MP=BM,∴MP=MQ ,∴平行四边形MQNP 是菱形.25.(1)证明:在△ABC中, AB=AC, AD⊥ BC,∴∠ BAD=∠ DAC,∵AN 是△ABC外角∠ CAM 的均分线,∴∠ MAE=∠ CAE,∴∠ DAE=∠ DAC+∠CAE=180°=90°,又∵ AD⊥ BC,CE⊥AN,∴∠ ADC=∠ CEA=90°,∴四边形ADCE为矩形(2)当△ABC知足∠ BAC=90°时,四边形ADCE是一个正方形.原因:∵ AB=AC,∴∠ ACB=∠ B=45°,∵AD⊥ BC,∴∠ CAD=∠ ACD=45°,∴DC=AD,∵四边形ADCE为矩形,∴矩形 ADCE是正方形.∴当∠ BAC=90°时,四边形ADCE是一个正方形26.(1)解:如图,连结OB, O′B,则 OB=O′B,∵四边形OABC是矩形,∴AO=AO′,∵B 点的坐标为( 1, 3),∴O A=1,∴A O′=1,∴点 O′的坐标是( 2,0 ),△O′ DB为等腰三角形,原因以下:在△BC′D与△O′AD中,,∴△ BC′D≌△ O′AD(AAS),∴BD=O′D,∴△ O′DB是等腰三角形(2)解:设点 D 的坐标为( 1, a),则 AD=a,∵点 B 的坐标是( 1, 3),∴O′D=3﹣ a,222在 Rt△ADO′中, AD +AO′=O′D,∴a2+12=( 3﹣ a)2,解得 a=,∴点 D 的坐标为( 1,),设直线 C′O的′分析式为y=kx+b,则,解得,∴边 C′O所′在直线的分析式:y=﹣x+(3)解:∵ AM=1, AO=1,且 AM⊥AO,∴△ AOM 是等腰直角三角形,① PM 是另向来角边时,∠ PMA=45°,∴P A=AM=1,点P 与点O′重合,∴点 P 的坐标是( 2, 0),② PO 是另向来角边,∠ POA=45°,则 PO 所在的直线为 y=x,∴,解得,∴点 P 的坐标为P( 2, 0)或(,).人教版八年级数学下单元测试题:第十八章平行四边形一、填空题 (每题 3 分,共 24 分 )1.如图, ?ABCD 中, AC,BD 订交于点O,若 AD = 6,AC+BD = 16,则△BOC 的周长为________.2.如图,四边形ABCD 是对角线相互垂直的四边形,且OB= OD ,请你增添一个适合的条件____________,使四边形 ABCD 成为菱形 (只要增添一个即可 ).3.若以A(- 0.5, 0), B(2, 0), C(0, 1)三点为极点画平行四边形,则第四个极点不行能在第________象限.4.如图,在平面直角坐标系中,菱形OABC 的极点 B 的坐标为 (8, 4),则 C 点的坐标为________.5.如图, BD 为正方形ABCD 的对角线, BE 均分∠ DBC,交 DC 于点 E,延伸 BC 到 F ,使CF= CE,连结 DF .若 CE= 1 cm,则 BF= __________ .6.矩形 ABCD 中, AB= 3, AD= 4, P 是 AD 上一动点, PE⊥ AC 于 E, PF⊥ BD 于 F,则PE+ PF 的值为 ________.7.以正方形ABCD 的 AD 作等三角形ADE,∠ BEC 的度数是 __________.8.如,在 1 的菱形 ABCD 中,∠ DAB = 60°.接角AC,以 AC 作第二个菱形 ACEF ,使∠ FAC= 60°.接 AE,再以 AE 作第三个菱形AEGH ,使∠ HAE =60°⋯⋯按此律所作的第n 个菱形的是________.二、 (每 3 分,共 30 分 )9.如,在 ?ABCD 中,已知 AC= 4 cm,若△ACD 的周13 cm, ?ABCD 的周 ()A . 26 cm B. 24 cm C. 20 cm D. 18 cm10.如, ?ABCD 中,角AC ,BD 交于点 O,点 E 是 BC 的中点.若O E =3 cm,AB 的 ()A . 12 cm B. 9 cm C. 6 cm D. 3 cm11.以下四条件中,不可以判断四形ABCD 是平行四形的是()A . AB= DC , AD= BC B. AB∥ DC , AD∥ BCC.AB ∥DC , AD= BC D.AB ∥DC , AB= DC12.如,在平行四形ABCD 中,已知∠ ODA = 90°,AC =10 cm , BD = 6 cm, AD 的()13.如图,在菱形ABCD 中,∠ B= 60°,AB= 4,则以 AC 为一边的正方形ACEF 的周长为()A . 14B. 15C. 16D. 1714.以下说法中,正确的个数有()①对顶角相等;②两直线平行,同旁内角相等;③对角线相互垂直的四边形为菱形;④对角线相互垂直均分且相等的四边形为正方形.A . 1 个B. 2 个C. 3 个D. 4 个15.如图,已知在菱形ABCD 中,对角线AC 与 BD 交于点 O,∠ BAD = 120 °,AC =4,则该菱形的面积是()A . 16 3B . 16C. 8 3D. 816.用尺规在一个平行四边形内作菱形ABCD ,以下作法中错误的选项是()17.如图,在矩形ABCD 中, AD =3AB,点 G, H 分别在 AD,BC 上,连结BG,DH ,且AG=()时,四边形 BHDG 为菱形.BG∥ DH ,当AD4B.343A. 55 C.9 D.818.如图,在 ?ABCD 中, CD = 2AD, BE⊥ AD 于点 E,F 为 DC 的中点,连结EF ,BF ,以下结论:①∠ ABC= 2∠ ABF;② EF = BF;③ S 四边形DEBC= 2S△EFB;④∠ CFE = 3∠ DEF ,此中正确的结论有 ()A . 1 个B . 2 个C.3 个 D . 4 个三、解答题 (19 题 8 分, 20~ 22 题每题 10 分,其余每题14 分,共 66 分 )19.如图,在 ?ABCD 中,点 E, F 分别在边CB, AD 的延伸线上,且BE= DF , EF 分别与AB, CD 交于点 G,H .求证 AG =CH.20.如图,正方形 ABCD 中,E 是 BC 上的一点,连结 AE,过 B 点作 BH ⊥ AE,垂足为点 H ,延伸 BH 交 CD 于点 F,连结 AF .(1)求证 AE= BF;(2)若正方形的边长是5, BE= 2,求 AF 的长.21.如图,矩形A BCD 中, E 是 AD 的中点,连结CE 并延伸与BA 的延伸线交于点F,连接AC、 DF .(1)求证:四边形ACDF 是平行四边形;(2)当 CF 均分∠ BCD 时,写出BC 与 CD 的数目关系,并说明原因.22.在△ABC 中, AD 是 BC 边上的中线, E 是 AD 的中点,过点 A 作 BC 的平行线交BE 的延伸线于点F,连结 CF .(1)求证 AF= DC ;(2)若 AB⊥ AC,试判断四边形ADCF 的形状,并证明你的结论.23.如图,△ABC 中,∠ ACB= 90°, D 为 AB 的中点,四边形BCED 为平行四边形,DE ,AC 订交于 F .连结 DC, AE.(1)试确立四边形ADCE 的形状,并说明原因.(2)若 AB= 16, AC= 12,求四边形ADCE 的面积.(3)当△ABC 知足什么条件时,四边形ADCE 为正方形?请赐予证明.24.我们给出以下定义:按序连结随意一个四边形各边中点所得的四边形叫做中点四边形.(1)如图①,在四边形ABCD 中,点 E,F , G,H 分别为边 AB, BC,CD , DA 的中点,求证:中点四边形 EFGH 是平行四边形;(2)如图②,点 P 是四边形 ABCD 内一点,且知足点E,F , G, H 分别为边 AB, BC, CD ,DA PA= PB,PC= PD,∠ APB =∠ CPD ,的中点,判断中点四边形 EFGH 的形状,并说明原因;(3)若改变 (2) 中的条件,使∠APB=∠ CPD= 90°,其余条件不变,直接写出中点四边形EFGH 的形状 (不用证明 ).答案一、 1.142.OA=OC(答案不独一)3.三4.(3,4)5.(2+2) cm126.57.30°或150°8.(3)n-1二、 9-18: DCCAC BCCCD三、 19.证明:∵四边形ABCD是平行四边形,∴AD= BC,AD∥ BC,∠ A=∠ C.∴∠ F=∠ E.∵BE= DF,∴AD+ DF= CB+BE,即 AF=CE.在△AGF和△CHE中,∠ A=∠ C,AF= CE,∠ F=∠ E,∴△ AGF≌△ CHE(ASA).∴AG= CH.20.(1)证明:∵四边形ABCD是正方形,∴AB= BC,∠ ABE=∠ BCF= 90°.∴∠ BAE+∠ AEB= 90°.∵BH⊥ AE,∴∠ BHE=90°.∴∠ AEB+∠ EBH= 90°.∴∠ BAE=∠ EBH.在△ABE 和△BCF中,∠BAE=∠ CBF,AB= BC,∠ABE=∠ BCF,∴△ABE≌△BCF(ASA).∴AE= BF.∴BE= CF.∵正方形的边长是5, BE= 2,∴DF= CD- CF= CD- BE= 5- 2=3.在Rt△ADF 中,由勾股定理得: AF= AD2+ DF2= 52+ 32= 34. 21.(1)证明:∵四边形ABCD是矩形,∴AB∥ CD.∴∠ FAE=∠ CDE.∵E 是 AD 的中点,∴ AE= DE.又∵∠ FEA=∠ CED,∴△ FAE≌△ CDE(ASA).∴CD= FA.又∵ CD∥ FA,∴四边形 ACDF是平行四边形.(2)解: BC= 2CD.原因以下:∵CF均分∠BCD,∴∠ DCE= 45°.∵∠ CDE= 90°,∴△ CDE是等腰直角三角形.∴CD=DE.∵E是AD 的中点,∴ AD= 2DE.∴AD= 2CD.∵AD= BC,∴ BC= 2CD.22.(1)证明:∵AF∥BC,∴∠ AFE=∠ DBE.∵E 是 AD 的中点,∴ AE= DE.在△AFE 和△DBE 中,∠AFE=∠ DBE,∠FEA=∠ BED,AE= DE,∴△ AFE≌△ DBE(AAS).∴A F=BD.∵AD 是 BC边上的中线,∴DC= BD.∴A F= DC.(2)解:四边形ADCF是菱形.证明:由 (1)得 AF=DC,又 AF∥ BC,∴四边形ADCF是平行四边形.∵ AC⊥ AB, AD 是斜边 BC 上的中线,1∴AD=2BC= DC.∴?ADCF是菱形.23.解:(1)四边形ADCE是菱形.原因:∵四边形BCED为平行四边形,∴CE∥ BD, CE= BD, BC∥ DE.∵D 为 AB 的中点,∴ AD= BD.∴CE∥ AD, CE= AD.∴四边形ADCE为平行四边形.又∵ BC∥ DF,∴∠ AFD=∠ ACB=90°,即 AC⊥ DE.∴四边形ADCE为菱形.(2)在 Rt△ABC中,∵ AB= 16, AC=12 ,∴ BC= 4 7.而 BC= DE,∴ DE=4 7.1∴四边形ADCE的面积=2AC·DE= 24 7.(3)当 AC= BC 时,四边形ADCE为正方形.证明:∵ AC= BC,D 为 AB 的中点,∴ CD⊥ AB,即∠ ADC=90°.∴菱形 ADCE为正方形.24.(1)证明:如图①,连结BD.∵点 E, H 分别为边AB, DA 的中点,1∴EH∥ BD, EH=2BD.∵点 F, G 分别为边BC,CD 的中点,1∴FG∥BD,FG=2BD.∴EH∥ FG,EH= FG.∴中点四边形EFGH是平行四边形.(2)解:中点四边形EFGH是菱形.原因:如图②,连结AC,BD.∵∠ APB=∠ CPD,∴∠ APB+∠ APD=∠ CPD+∠ APD,即∠ BPD=∠ APC.在△APC和△BPD 中,PA= PB,∠APC=∠ BPD,PC= PD,∴△ APC≌△ BPD(SAS).∴AC= BD.∵点 E, F, G 分别为边AB, BC, CD 的中点,11∴EF=2AC, FG=2BD.∴EF= FG.又由 (1)中结论知中点四边形EFGH是平行四边形,∴中点四边形EFGH是菱形.(3)解:中点四边形EFGH是正方形.人教版数学八年级下册第十八章《平行四边形》检测卷一、选择题 (每题 3 分,共 30 分 )1. 平行四边形的周长为24 cm,相邻两边的差为 2 cm,则平行四边形的各边长为()A . 4 cm, 8 cm, 4 cm, 8 cm B. 5 cm, 7 cm,5 cm, 7 cmC.5.5 cm , 6.5 cm, 5.5 cm, 6.5 cm D. 3 cm, 9 cm,3 cm, 9 cm2. 如图,在? ABCD中,AB>AD,按以下步骤作图:以点 A 为圆心,小于AD 的长为半径画弧,分别交AB,AD 于点 E,F ;再分别以点E, F 为圆心,大于12EF 的长为半径画弧,两弧交于点G;作射线AG 交 CD 于点 H ,则以下结论中不可以由条件推理得出的是()A . AG 均分∠ DAB B. AD= DHC.DH = BC D. CH = DH第 2 题第3题3.如图,在 ? ABCD 中, AB= 4,BC =6,AC 的垂直均分线交 AD 于点 E,则△ CDE 的周长是 ()A . 7B .10C. 11 D . 124. 正方形的一条对角线长为4,则这个正方形面积是()A . 8B .42C. 82D. 165.如图,? ABCD 的对角线 AC 的长为 10 cm,∠ CAB= 30°,AB 的长为 6 cm,则? ABCD 的面积为 ()A . 60 cm2B. 30 cm2C. 20 cm2D. 16 cm2第 5 题第6题6.如图, ? ABCD 的对角线 AC 与 BD 订交于点 O,AE⊥ BC,垂足为 E, AB= 3, AC=2, BD = 4,则 AE 的长为 ()3321221A.2B. 2C.7D.77. 如图,在△ABC中,∠BAC=45°,AB=AC=8,P为AB边上一动点,以PA, PC 为边作 ? PAQC,则对角线PQ 长度的最小值为 ()A . 6B. 8C. 2 2 D .4 2第 7 题第8题8.如图,在矩形 ABCD 中, E, F 分别是 AD, BC 中点,连结 AF, BE, CE, DF 分别交于点 M, N,四边形EMFN 是 ()A .正方形B.菱形C.矩形D.没法确立9. 将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变,当∠ B= 90°时,如图 1,测得 AC= 2,当∠ B= 60°时,如图 2,AC 的长是 ()A.2 B . 2 C. 6D. 22第 9 题第 10 题10.如图, ? ABCD 中, AB= 8 cm, AD= 12 cm,点 P 在 AD 边上以每秒 1 cm 的速度从点A 向点 D 运动,点 Q 在 BC 边上以每秒 4 cm 的速度从点 C 出发,在 CB 间来回运动,两个点同时出发,当点P 抵达点 D 时停止 (同时点 Q 也停止 ),在运动此后,以P, D, Q,B 四点构成平行四边形的次数有()A . 4 次B. 3 次C. 2 次D. 1 次二、填空题 (每题 3 分,共 24 分 )11. 若平行四边形中两个内角度数比为1∶ 2,则此中较大的内角是度.12. 如图,在菱形ABCD中,AC,BD订交于点O,若∠BCO=55°,则∠ADO=.第 12 题第13题13.如图, ? ABCD 与? DCFE 的周长相等,且∠ BAD = 60°,∠ F= 110 °,则∠ DAE 的度数为.14.已知直角坐标系内有四个点O(0, 0),A(3,0),B(1,1),C(x,1),若以 O, A,B,C 为极点的四边形是平行四边形,则x=.15.如图,在四边形 ABCD 中, P 是对角线 BD 的中点, E, F 分别是 AB, CD 的中点,AD =BC,∠ PEF = 18°,则∠ PFE 的度数是.第 15 题第16题16.如图,在 ? ABCD 中,对角线 AC 与 BD 交于点 E,∠ AEB= 45°,BD= 2,将△ ABC 沿 AC 所在直线翻折,若点 B 的落点记为B′,则 DB′的长为.17.如图,正方形 ABCO 的极点 C,A 分别在 x 轴、y 轴上, BC 是菱形 BDCE 的对角线,若∠ D= 60°, BC= 2,则点 D 的坐标是.第 17 题第18题18.如图,边长为 4 的正方形 ABCD,点 P 是对角线 BD 上一动点,点 E 在边 CD 上,EC= 1,则 PC+ PE 的最小值是.三、解答题 (共 66 分 )19.(8 分)如图,已知四边形 ABCD 是平行四边形,点 E, B,D , F 在同向来线上,且BE= DF .求证: AE= CF .20.(8 分 )如图,在 Rt△ABC 中,∠ C=90°,∠ B= 60°,AB = 8 cm,E,F 分别为边 AC,AB 的中点.(1)求∠ A 的度数;(2)求 EF 的长.21.(9 分)如图, ? ABCD 的对角线 AC, BD 交于点 O, EF 过点 O 且与 BC, AD 分别交于点E,F.试猜想线段 AE, CF 的关系,并说明原因.22. (9分)如图,E是? ABCD的边CD的中点,延伸AE 交 BC 的延伸线于点 F.(1)求证:△ ADE≌△ FCE;(2)若∠ BAF = 90°, BC =5, EF= 3,求 CD 的长.23. (10分)如图,在正方形ABCD 中, E 是 AB 上一点, F 是 AD 延伸线上一点,且DF =BE .(1)求证: CE= CF;(2)若点 G 在 AD 上,且∠ GCE =45°,则 GE= BE+GD 建立吗?为何?24.(10 分 )如图, ? ABCD 的对角线 AC,BD 订交于点 O,EF 过点 O 且与 AB, CD 分别订交于点 E, F ,连结 EC.(1)求证: OE=OF ;(2)若 EF ⊥ AC,△ BEC 的周长是10,求 ? ABCD 的周长.25.(12 分 )以下图,在四边形 ABCD 中, AD ∥BC ,AD= 24 cm, BC= 30 cm,点 P 从点A 向点 D 以 1 cm/ s 的速度运动,到点 D 即停止.点 Q 从点 C 向点 B 以 2 cm/ s 的速度运动,到点 B 即停止.直线PQ 将四边形ABCD 截成两个四边形,分别为四边形ABQP 和四边形 PQCD ,则当 P,Q 两点同时出发,几秒后所截得两个四边形中,此中一个四边形为平行四边形?参照答案1. B2. D3. B4. A5. B6. D7. D8. B9. A10. B11.12012.35°13.25°14.4 或- 215.18°16.217.(2+ 3, 1)18.519.证明:∵四边形 ABCD 是平行四边形,∴ AB∥ CD,AB= CD . ∴∠ ABD =∠ CDB . ∴∠ ABE =∠ CDF .AB=CD ,在△ ABE 和△CDF 中,∠ABE=∠CDF,∴△ABE≌△CDF (SAS).∴AE=CF .BE=DF ,20.解: (1)∵∠ C= 90°,∴∠ A+∠ B= 90°.∴∠ A=90°-∠ B=90°- 60°= 30°.1(2) 在 Rt△ABC 中,∠ A=30°, AB= 8 cm,∴ BC=2AB= 4 cm. ∵ E, F 分别是 AC, AB 的中1点,∴ EF 是△ ABC 的中位线.∴EF=2BC= 2 cm.21.解: AE= CF 且 AE∥ CF. 原因:∵四边形 ABCD 为平行四边形,∴ OA= OC,AD ∥ BC.∠AFO =∠CEO ,∴∠ AFO =∠ CEO.在△ AOF和△ COE中,∠AOF =∠COE ,OA=OC,∴△ AOF ≌△ COE(AAS) .∴ OF= OE. 又∵ OA= OC,∴四边形 AECF 是平行四边形.∴ AE =C F 且 AE∥ CF .22. 解:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAE=∠F,∠D=∠ECF .∠DAE =∠ F,∵E是CD的中点,∴ DE=CE.在△ ADE和△ FCE中,∠D=∠ECF,DE =CE,∴△ ADE ≌△ FCE (AAS) .(2) ∵△ ADE≌△ FCE ,∴ AE= EF = 3.∵AB ∥CD,∴∠ AED=∠ BAF= 90°. 在 ? ABCD 中,AD =BC= 5,∴ DE = AD 2- AE 2=52- 32= 4. ∴CD= 2DE = 8.23.解: (1) 证明:∵四边形 ABCD 是正方形,∴ BC= CD ,∠ B=∠ CDF . 又∵ BE = DF ,∴△ CBE≌△ CDF (SAS) .∴ CE= CF .(2) GE= BE + GD 建立.原因:由 (1) ,得△ CBE≌△ CDF ,∴∠ BCE =∠ DCF . ∴∠ BCE +∠ECD =∠ DCF +∠ ECD,即∠ BCD =∠ ECF = 90°. 又∵∠ GCE = 45°,∴∠ GCF=∠ GCE =45°. ∵ CE= CF ,∠ GCE=∠ GCF ,GC= GC,∴△ ECG≌△ FCG(SAS) .∴GE= GF. ∴ GE =D F + GD = BE+ GD.24.解:(1) 证明:∵四边形 ABCD 是平行四边形,∴ OD = OB,DC ∥ AB. ∴∠ FDO =∠ EBO.∠FDO =∠ EBO,在△ DFO 和△ BEO 中,OD =OB,∴△ DFO≌△ BEO(ASA).∴ OE=OF .∠FOD =∠ EOB,(2) ∵四边形ABCD 是平行四边形,∴AB=CD ,AD = BC,OA= OC. ∵ EF ⊥ AC,∴ AE= CE.∵△ BEC 的周长是 10,∴ BC+BE + CE=BC +BE+ AE=BC+ AB=10. ∴ C? ABCD= 2(BC+ AB)=20.25.略。
人教版八年级数学下册第十八章综合测试卷含答案

人教版八年级数学下册第十八章综合测试卷一、选择题(每题3分,共30分)1.下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直2.[2022·广东]如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE =()(第2题)A.14B.12C.1D.23.[2023·北京四中期中]如图,在四边形ABCD中,AB∥CD,要使四边形ABCD是平行四边形,下列添加的条件不正确的是()(第3题)A.AD=BCB.AB=CDC.AD∥BCD.∠A=∠C4.如图,在Rt△ABC中,CD是斜边AB上的中线,若∠A=36°,则∠DCB的度数为()(第4题)A.54°B.64°C.72°D.75°5.某班同学在“做环保护航者”的主题班会课上制作象征“健康快乐”的绿丝带(丝带的对边平行且宽度相同),如图,丝带重叠的部分一定是()(第5题)A.正方形B.矩形C.菱形D.都有可能6.(母题:教材P50习题T8)如图,在平面直角坐标系中,四边形ABCD为正方形,点A的坐标为(0,2),点B的坐标为(4,0),则点C的坐标为()(第6题)A.(6,3)B.(8,3)C.(6,4)D.(8,4)7.[2022·宁波]将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形ABCD内,其中矩形纸片和正方形纸片的周长相等,若知道图中阴影部分的面积,则一定能求出()(第7题)A.正方形纸片的面积B.四边形EFGH的面积C.△BEF的面积D.△AEH的面积8.[2023·郑州外国语中学模拟]如图所示,边长为4的菱形ABCD中,∠ABC=60°,对角线AC与BD交于点O,P为AB的中点,Q为OD的中点,连接PQ,则PQ 的长为()(第8题)A.2√3B.3√2C.√13D.√159.[2023·德阳]如图,▱ABCD的面积为12,AC=BD=6,AC与BD交于点O,分别过点C,D作BD,AC的平行线相交于点F,点G是CD的中点,点P是四边形OCFD边上的动点,则PG的最小值是()(第9题)A.1B.√32C.32D.310.如图,在四边形ABCD中,∠A=∠B=90°,AD=10 cm,BC=8 cm,点P从点D出发,以1 cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是()(第10题)A.当t=4 s时,四边形ABMP为矩形B.当t=5 s时,四边形CDPM为平行四边形C.当CD=PM时,t=4 sD.当CD=PM时,t=4 s或6 s二、填空题(每题3分,共24分)11.如图,点E,F分别在▱ABCD的边AB,CD的延长线上,连接EF,分别交AD,BC于点G,H.添加一个条件使△AEG≌△CFH,这个条件可以是.(只需写一种情况)(第11题)12.(母题:教材P57练习T2)如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为.(第12题)13.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC的中点.若DE=5,则AB的长为.(第13题)14.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E,若∠CBF=20°,则∠AED等于.(第14题)15.[2023·金昌]如图,菱形ABCD中,∠DAB=60°,BE⊥AB,DF⊥CD,垂足分别为B,D,若AB=6 cm,则EF=cm.(第15题)16.[2023·滨州]如图,矩形ABCD的对角线AC,BD相交于点O,点E,F分别是线段OB,OA上的点,若AE=BF,AB=5,AF=1,BE=3,则BF的长为.(第16题)17.如果一个平行四边形的一个内角的平分线分它的一边为1∶2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当协调边为6时,这个平行四边形的周长为.18.[2023·南京外国语学校期中]如图,将边长为2的正方形纸片ABCD沿EF折叠,点C落在AB边上的点G处,点D与点H重合,CG与EF交于点P,取GH的中点Q,连接PQ,则△GPQ周长的最小值是.三、解答题(19题8分,20题10分,其余每题12分,共66分)19.[2023·北大附中期中]如图,点E,F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:DF=BE.20.[2023·张家界]如图,已知点A,D,C,B在同一条直线上,且AD=BC,AE=BF,CE=DF.(1)求证:AE∥BF;(2)若DF=FC,求证:四边形DECF是菱形.21.如图①,在一平面内,从左到右,点A,D,O,C,B均在同一直线上,线段AB=4,线段CD=2,O分别是AB,CD的中点,如图②,固定点O 以及线段AB,让线段CD绕点O顺时针旋转α(0°<α<180°).连接AC,AD,BC,BD.(1)求证:四边形ADBC为平行四边形;(2)当α=90°时,求四边形ADBC的周长;22.如图,在Rt△ABC中,∠ACB=90°,D,E分别是AB,AC的中点,连接CD,过点E作EF∥DC交BC的延长线于点F.(1)求证:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25 cm,AC的长为5 cm,求线段AB的长度.23.如图,在正方形ABCD中,动点E在AC上,AF⊥AC,垂足为A,AF=AE.(1)BF与DE有怎样的数量关系?请证明你的结论.(2)在其他条件都保持不变的情况下,当点E运动到AC的中点时,四边形AFBE是什么特殊四边形?请证明你的结论.24.已知AC是菱形ABCD的对角线,∠BAC=60°,点E是直线BC上的一个动点,连接AE,以AE为边作菱形AEFG,并且使∠EAG=60°,连接CG.当点E在线段BC上时,如图①,易证:AB=CG+CE.(1)当点E在线段BC的延长线上时(如图②),猜想AB,CG,CE之间的关系并证明;(2)当点E在线段CB的延长线上时(如图③),直接写出AB,CG,CE之间的关系.第十八章综合答案一、1.C 2.D3.A 【点拨】A.当AB∥CD,AD=BC时,四边形ABCD可能为等腰梯形,故此选项符合题意;B.当AB∥CD,AB=CD时,一组对边平行且相等,可证明四边形ABCD为平行四边形,故此选项不符合题意;C.当AB∥CD,AD∥BC时,两组对边分别平行,可证明四边形ABCD为平行四边形,故此选项不符合题意;D.∵AB∥CD,∴∠A+∠D=180°.∵∠A=∠C,∴∠C+∠D=180°.∴AD∥BC. ∴四边形ABCD为平行四边形,故此选项不符合题意.故选A.4.A5.C6.C7.C 【点拨】根据题意知四边形EFGH为正方形,设正方形纸片的边长为x,正方形EFGH的边长为y,则矩形纸片的宽为x-y.根据矩形纸片和正方形纸片的周长相等,可得矩形纸片的长为x+y,先表示出图中阴影部分的面积,再分别表示出四个选项中的面积,即可得出正确答案.8.C 【点拨】过点P作PM⊥OB,垂足为M,根据∠ABC=60°,AB=BC,得到△ABC 为等边三角形,从而得到∠ABD=30°,计算出MO=1OB=√3=OQ,PM=1,2再计算出MQ=OM+OQ=2OM=2√3,最后根据勾股定理计算出PQ.9.A 【点拨】先判定四边形OCFD为菱形,找出当GP垂直于菱形OCFD的一边时,PG有最小值,过D点作DM⊥AC于点M,过G点作GP⊥AC于点P,则GP∥MD,利用平行四边形的面积求DM的长,再利用三角形的中位线定理可求PG的长,进而可求解.10.D二、11.BE=DF(答案不唯一)12.3013.1014.65°15.2√316.√22【点拨】如图,过A作AN⊥BD于N,过B作BM⊥AC于M,∴∠ANO=∠ANB=∠BMO=∠BMA=90°.∵四边形ABCD是矩形,∴OB =12BD ,OA =12AC ,AC =BD .∴OB =OA . ∵S △AOB =12OB·AN =12OA·BM ,∴AN =BM . ∵AE =BF ,∴Rt △ANE ≌Rt △BMF (HL ). ∴FM =EN . 设FM =EN =x .∵AF =1,BE =3,∴BN =3-x ,AM =1+x .易知BN =AM . ∴3-x =1+x .∴x =1.∴FM =1. ∴AM =2.∵AB =5,∴BM =√AB 2-AM 2=√21. ∴BF =√FM 2+BM 2=√1+21=√22. 17.16或20 【点拨】如图所示.①当AE =2,DE =4时,∵四边形ABCD 是平行四边形, ∴BC =AD =6,AB =CD ,AD ∥BC .∴∠AEB =∠CBE . ∵BE 平分∠ABC ,∴∠ABE =∠CBE . ∴∠ABE =∠AEB .∴AB =AE =2.∴平行四边形ABCD 的周长为2(AB +AD )=16.②当AE =4,DE =2时,同理可得AB =AE =4,平行四边形ABCD 的周长为2(AB +AD )=20.综上所述,这个平行四边形的周长为16或20.18.√5+1 【点拨】如图,取CD 的中点N ,连接PN ,PB ,BN ,易得BN =√5.由折叠的性质以及对称性可知 PQ =PN ,PG =PC ,GH =CD =2. ∵点Q 是GH 的中点,∴QG =12GH =1,∵∠CBG =90°,PC =PG , ∴PB =PG =PC .∴PQ +PG =PN +PB ≥BN =√5.∴PQ +PG 的最小值为√5.∴△GPQ 的周长的最小值为√5+1. 三、19.【证明】∵四边形ABCD 是平行四边形, ∴AB ∥CD ,CD =AB .∴∠DCF =∠BAE ,在△CDF 和△ABE 中,{CD =AB ,∠DCF =∠BAE ,CF =AE ,∴△CDF ≌△ABE (SAS ).∴DF =BE . 20.【证明】(1)∵AD =BC , ∴AD +CD =BC +CD ,∴AC =BD . ∵AE =BF ,CE =DF , ∴△AEC ≌△BFD (SSS ), ∴∠A =∠B ,∴AE ∥BF . (2)∵△AEC ≌△BFD , ∴∠ECA =∠FDB ,∴EC ∥DF .∵EC =DF ,∴四边形DECF 是平行四边形. ∵DF =FC ,∴四边形DECF 是菱形. 21.(1)【证明】∵O 分别是AB ,CD 的中点, ∴OA =OB ,OC =OD . ∴四边形ADBC 为平行四边形. (2)【解】∵α=90°,∴AB ⊥CD . 又∵四边形ADBC 为平行四边形, ∴四边形ADBC 为菱形.∵AB =4,CD =2,∴OA =2,OD =1. ∴AD =√OD 2+OA 2=√12+22=√5. ∴四边形ADBC 的周长为4√5.22.(1)【证明】∵D ,E 分别是AB ,AC 的中点, ∴ED 是Rt △ABC 的中位线.∴ED ∥FC .又∵EF∥DC,∴四边形CDEF是平行四边形.(2)【解】∵四边形CDEF是平行四边形,∴DC=EF. ∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC.又∵ED是Rt△ABC的中位线,∴BC=2DE.∴四边形CDEF的周长为AB+BC.∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(25-AB)2+52,解得AB=13 cm.∴线段AB的长度为13 cm.23.【解】(1)BF=DE.证明如下:∵四边形ABCD是正方形,∴AB=AD,∠DAC=∠BAC=45°.∵AF⊥AC,∴∠BAF=∠BAC=∠DAC=45°.又∵AB=AD,AF=AE,∴△AFB≌△AED(SAS).∴BF=DE.(2)四边形AFBE是正方形.证明如下:∵四边形ABCD是正方形,E是AC的中点,∴AE=BE.在△ABF和△ABE中,{AF=AE,∠FAB=∠EAB=45°,AB=AB,∴△ABF≌△ABE(SAS).∴BF=BE.∴AE=BE=BF=AF.∴四边形AFBE是菱形. 又∵AF⊥AE,∴四边形AFBE是正方形. 24.【解】(1)AB=CG-CE.证明如下:∵四边形ABCD是菱形,∴AB=BC.又∵∠BAC=60°,∴△ABC是等边三角形. ∴AB=AC.∵∠EAG=60°,∴∠BAC=∠EAG.∴∠BAC+∠CAE=∠EAG+∠CAE,即∠BAE=∠CAG.又∵四边形AEFG 是菱形,∴AE =AG .在△ABE 和△ACG 中,{AB =AC ,∠BAE =∠CAG ,AE =AG ,∴△ABE ≌△ACG (SAS ).∴BE =CG . ∵AB =BC =BE -CE ,∴AB =CG -CE .(2)AB =CE -CG .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学八年级下册第十八章测试卷一.选择题(共10小题)1.以三角形的一条中位线和第三边上的中线为对角线的四边形是()A.梯形B.平行四边形C.菱形D.矩形2.如图,是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=4m,∠A=30°,则DE等于()A.1m B.2m C.3m D.4m3.若平行四边形的一边长为5,它的两条对角线的长可能是()A.4和3 B.4和8 C.4和6 D.2和124.菱形相邻两角的比为1:2,那么它们的较长对角线与边长的比为()A.2:3 B.C.2:1 D.5.如图,△ABC周长为1,连接△ABC三边中点构成第二个三角形,再连接第二个三角形三边中点构成第三个三角形,以此类推,第2016个三角形的周长为()A.22016B.22017 C.D.6.在Rt△ABC中,∠C=90°,AB=16cm,点D为AB的中点,则CD的长为()A.2cm B.4cm C.6cm D.8cm7.如图,平行四边形ABCD中,AB=6cm,AD=10cm,点P在AD 边上以每秒1cm 的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有()A.1 次B.2次 C.3次 D.4次8.如图,一根木棍斜靠在与地面(OM)垂直的墙(ON)上,设木棍中点为P,若木棍A端沿墙下滑,且B沿地面向右滑行.在此滑动过程中,点P到点O的距离()A.变小B.不变C.变大D.无法判断9.如图,△ABC中,CD⊥AB于D,且E是AC的中点.若AD=6,DE=5,则CD 的长等于()A.5 B.6 C.7 D.810.平面直角坐标系中,四边形ABCD的顶点坐标分别是A(﹣3,0),B(0,2),C(3,0),D(0,﹣2),则四边形ABCD是()A.矩形B.菱形C.正方形D.平行四边形二.填空题(共5小题)11.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,则DF的长为.12.已知平行四边形ABCD的周长为44,过点A作AE⊥直线BC于E,作AF⊥直线CD于点F,若AE=5,AF=6,则CE+CF的值为.13.用20cm长的铁丝围成一个平行四边形,使长边比短边长2cm,则它的长边长为,短边长为.14.在直角三角形中,斜边上的中线为3,那么斜边长为.15.如图,在Rt△ABC中,CD是斜边AB上的中线,若AB=2,则CD=.三.解答题(共7小题)16.已知:如图,∠ABC=∠ADC=90°,E、F分别是AC、BD的中点.求证:EF⊥BD.17.在△ABC中,AD=BF,点D,E,F分别是AC,BC,BA延长线上的点,四边形ADEF为平行四边形.求证:AB=AC.18.已知:如图,A,B,C,D在同一直线上,且AB=CD,AE=DF,AE∥DF.求证:四边形EBFC是平行四边形.19.如图,在Rt△ABC中,∠ACB=90°,点E,F分别是边AC,AB的中点,延长BC到点D,使2CD=BC,连接DE.(1)如果AB=10,求DE的长;(2)延长DE交AF于点M,求证:点M是AF的中点.20.△ABC的中线BD、CE相交于O,F,G分别是BO、CO的中点,求证:EF∥DG,且EF=DG.21.如图,∠ACB=∠ADB=90°,M、N分别为AB、CD的中点.求证:MN⊥CD.22.如图,AD是△ABC的中线,AE∥BC,BE交AD于点F,交AC于G,F是AD 的中点.(1)求证:四边形ADCE是为平行四边形;(2)若EB是∠AEC的角平分线,请写出图中所有与AE相等的边.参考答案与试题解析一.选择题(共10小题)1.以三角形的一条中位线和第三边上的中线为对角线的四边形是()A.梯形B.平行四边形C.菱形D.矩形【解答】解:如右图:∵D、E、F分别是三角形的三边的中点∴DF∥AC,EF∥AB∵AE、AD分别在AC、AB上∴DF∥AE,EF∥AD∴四边形是平行四边形.故选B.2.如图,是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=4m,∠A=30°,则DE等于()A.1m B.2m C.3m D.4m【解答】解:∵点D是斜梁AB的中点,立柱BC,DE垂直于横梁AC,∴点E是AC的中点,∴DE是直角三角形ABC的中位线,根据三角形的中位线定理得:DE=BC,又∵在Rt△ABC中,AB=4m,∠A=30°,∴BC=AB=2m.故DE=BC=1m,故选:A.3.若平行四边形的一边长为5,它的两条对角线的长可能是()A.4和3 B.4和8 C.4和6 D.2和12【解答】解:如图,过点C作CF∥BD,交AB延长线于点F,∴四边形BFCD为平行四边形,∴CF=BD,∴在△AFC中:AC﹣CF<AF<AC+CF,即AC﹣BD<2AB<AC+BD,∵AB=5,∴选项中只有D中的数据能满足此关系:8﹣4=4<5×2<8+4=12,故选B.4.菱形相邻两角的比为1:2,那么它们的较长对角线与边长的比为()A.2:3 B.C.2:1 D.【解答】解:如图在菱形ABCD中,连接AC、BD交于点O,∵∠ADC=2∠DAB,∠ADC+∠DAB=180°,∴∠DAB=60°,∴∠DAO=30°,∠AOD=90°,'设OD=a,则AD=2a,OA=a,∴AC=2OA=2a,∴AC:AD=2a:2a=:1,故选D.5.如图,△ABC周长为1,连接△ABC三边中点构成第二个三角形,再连接第二个三角形三边中点构成第三个三角形,以此类推,第2016个三角形的周长为()A.22016B.22017 C.D.【解答】解:根据三角形中位线定理可得第二个三角形的各边长都等于最大三角形各边的一半,那么第二个三角形的周长=△ABC的周长1×=,第三个三角形的周长为=△ABC的周长×=()2,第2016个三角形的周长═()2015.故选D.6.在Rt△ABC中,∠C=90°,AB=16cm,点D为AB的中点,则CD的长为()A.2cm B.4cm C.6cm D.8cm【解答】解:∵∠C=90°,点D为AB的中点,∴CD=AB=8cm,故选:D.7.如图,平行四边形ABCD中,AB=6cm,AD=10cm,点P在AD 边上以每秒1cm 的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有()A.1 次B.2次 C.3次 D.4次【解答】解:∵四边形ABCD为平行四边形,∴PD∥BQ.若要以P、D、Q、B四点组成的四边形为平行四边形,则AP=BQ.设运动时间为t.当0<t<时,AP=t,PD=10﹣t,CQ=4t,BQ=10﹣4t,∴10﹣t=10﹣4t,方程无解;当<t<5时,AP=t,PD=10﹣t,BQ=4t﹣10,∴10﹣t=4t﹣10,解得:t=4;当5<t<时,AP=t,PD=10﹣t,CQ=4t﹣20,BQ=30﹣4t,∴10﹣t=30﹣4t,解得:t=;当<t<10时,AP=t,PD=10﹣t,BQ=4t﹣30,∴10﹣t=4t﹣30,解得:t=8.综上所述:当运动时间为4秒、秒或8秒时,以P、D、Q、B四点组成的四边形为平行四边形.故选C.8.如图,一根木棍斜靠在与地面(OM)垂直的墙(ON)上,设木棍中点为P,若木棍A端沿墙下滑,且B沿地面向右滑行.在此滑动过程中,点P到点O的距离()A.变小B.不变C.变大D.无法判断【解答】解:在木棍滑动的过程中,点P到点O的距离不发生变化,理由是:连接OP,∵∠AOB=90°,P为AB中点,AB=2a,∴OP=AB=a,即在木棍滑动的过程中,点P到点O的距离不发生变化,永远是a;故选B.9.如图,△ABC中,CD⊥AB于D,且E是AC的中点.若AD=6,DE=5,则CD 的长等于()A.5 B.6 C.7 D.8【解答】解:∵△ABC中,CD⊥AB于D,∴∠ADC=90°.∵E是AC的中点,DE=5,∴AC=2DE=10.∵AD=6,∴CD===8.故选D.10.平面直角坐标系中,四边形ABCD的顶点坐标分别是A(﹣3,0),B(0,2),C(3,0),D(0,﹣2),则四边形ABCD是()A.矩形B.菱形C.正方形D.平行四边形【解答】解:如图所示:∵A(﹣3,0)、B(0,2)、C(3,0)、D(0,﹣2),∴OA=0C,OB=OD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD为菱形,故选:B二.填空题(共5小题)11.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,则DF的长为2.【解答】解:延长CF交AB于点G,∵AE平分∠BAC,∴∠GAF=∠CAF,∵AF垂直CG,∴∠AFG=∠AFC,在△AFG和△AFC中,,∴△AFG≌△AFC(ASA),∴AC=AG,GF=CF,又∵点D是BC中点,∴DF是△CBG的中位线,∴DF=BG=(AB﹣AG)=(AB﹣AC)=2.故答案为:2.12.已知平行四边形ABCD的周长为44,过点A作AE⊥直线BC于E,作AF⊥直线CD于点F,若AE=5,AF=6,则CE+CF的值为2+或22+11..【解答】解:①如图1中,当∠BAD是钝角时,设AB=a,BC=b,∵四边形ABCD是平行四边形,∴AB=CD=a,•BC•AE=•CD•AF,∴6a=5b ①∵a+b=22 ②由①②解得a=10,b=12,在Rt△ABE中,∵∠AEB=90°,AB=10,AE=5,∴BE===5,∴EC=12﹣5,在Rt△ADF中,∵∠AFD=90°.AD=12,AF=6.∴DF===6,∵6>10,∴CF=DF﹣CD=6﹣10,∴CE+CF=EC+CF=2+.②如图2中,当∠BAD是锐角时,由①可知:DF=6,BE=5,∴CF=10+6,CE=12+5,∴CE+CF=22+11.故答案为:2+或22+11.13.用20cm长的铁丝围成一个平行四边形,使长边比短边长2cm,则它的长边长为6cm,短边长为4cm.【解答】解:设平行四边形的两边分别为xcm,(x﹣2)cm,由题意2[x+(x﹣2)]=20,解得x=6,∴平行四边形的两边分别为6cm,4cm,故答案为6cm,4cm.14.在直角三角形中,斜边上的中线为3,那么斜边长为6.【解答】解:∵直角三角形斜边上的中线长为3,∴斜边长是6.故答案为:6.15.如图,在Rt△ABC中,CD是斜边AB上的中线,若AB=2,则CD=1.【解答】解:在Rt△ABC中,∵CD是斜边AB上的中线,AB=2,∴CD=AB=1,故答案为1.三.解答题(共7小题)16.已知:如图,∠ABC=∠ADC=90°,E、F分别是AC、BD的中点.求证:EF⊥BD.【解答】证明:如图,连接BE、DE,∵∠ABC=∠ADC=90°,E是AC的中点,∴BE=DE=AC,∵F是BD的中点,∴EF⊥BD.17.在△ABC中,AD=BF,点D,E,F分别是AC,BC,BA延长线上的点,四边形ADEF为平行四边形.求证:AB=AC.【解答】证明:∵四边形ADEF是平行四边形,∴AD=EF AD∥EF,∴∠2=∠3,又∵AD=BF,∴BF=EF,∴∠1=∠3,∴∠1=∠2,∴AB=AC.18.已知:如图,A,B,C,D在同一直线上,且AB=CD,AE=DF,AE∥DF.求证:四边形EBFC是平行四边形.【解答】证明:连接AF,ED,EF,EF交AD于O.∵AE=DF,AE∥DF.∴四边形AEDF为平行四边形,∴EO=FO,AO=DO,又∵AB=CD,∴AO﹣AB=DO﹣CD,∴BO=CO,又∵EO=FO,∴四边形EBFC是平行四边形.19.如图,在Rt△ABC中,∠ACB=90°,点E,F分别是边AC,AB的中点,延长BC到点D,使2CD=BC,连接DE.(1)如果AB=10,求DE的长;(2)延长DE交AF于点M,求证:点M是AF的中点.【解答】解:(1)连接CF,在Rt△ABC中,F是AB的中点,∴CF=AB=5,∵点E,F分别是边AC,AB的中点,∴EF∥BC,EF=BC,∵2CD=BC,∴EF=CD,EF∥CD,∴四边形EDCF是平行四边形,∴DE=CF=5;(2)如图2,∵四边形EDCF是平行四边形,∴CF∥DM,∵点E是边AC的中点,∴点M是AF的中点.20.△ABC的中线BD、CE相交于O,F,G分别是BO、CO的中点,求证:EF∥DG,且EF=DG.【解答】证明:连接DE,FG,∵BD、CE是△ABC的中线,∴D,E是AB,AC边中点,∴DE∥BC,DE=BC,同理:FG∥BC,FG=BC,∴DE∥FG,DE=FG,∴四边形DEFG是平行四边形,∴EF∥DG,EF=DG.21.如图,∠ACB=∠ADB=90°,M、N分别为AB、CD的中点.求证:MN⊥CD.【解答】证明:如图,连接CM、DM,∵∠ACB=∠ADB=90°,M为AB的中点,∴CM=AB,DM=AB,∴CM=DM=AB,∵N为CD的中点,∴MN⊥CD.22.如图,AD是△ABC的中线,AE∥BC,BE交AD于点F,交AC于G,F是AD 的中点.(1)求证:四边形ADCE是为平行四边形;(2)若EB是∠AEC的角平分线,请写出图中所有与AE相等的边.【解答】(1)证明:∵AD是△ABC的中线,∴BD=CD,∵AE∥BC,∴∠AEF=∠DBF,在△AFE和△DFB中,,∴△AFE≌△DFB(AAS),∴AE=BD,∴AE=CD,∵AE∥BC,∴四边形ADCE是平行四边形;(2)图中所有与AE相等的边有:AF、DF、BD、DC.理由:∵四边形ADCE是平行四边形,∴AE=DC,AD∥EC,∵BD=DC,∴AE=BD,∵BE平分∠AEC,∴∠AEF=∠CEF=∠AFE,∴AE=AF,∵△AFE≌△DFB,∴AF=DF,∴AE=AF=DF=CD=BD.。