ANSYS_ACP_Tutorial_ex1复合材料分析官方实例
ansys工程实例(经典例子)

管道支架结构分析一问题描述该结构用于支撑管道,如图所示。
该结构需要有很好的长时间的支撑性,且在支撑时,变形不能过大,否则会由于支撑力不够,造成管道变形,严重的话会造成管道的泄露。
另外,所用的材料也要满足屈服条件,设计时不能造成结构的破坏。
如何设计该支撑的结构和所用的材料成了其中的关键。
材料参数为7E+008,泊松比为0.33,边界条件为最下端为固定端,载荷为管道所在弧面上,方向为垂直且指向弧面的均布面力。
二求解步骤定义工作文件名Utility Menu-->File-->Change Jobname 该工作名为yangxin10054554定义单元类型Main Menu --> Preprocessor--> Element Type --> Add/Edit/Delete…创建mesh200和brick 20node 95单元。
(mesh200还需设置options选择面单元,否则分网时会提示出问题)材料参数设定main menu-->preferences-->…选中结构类选项。
Main menu-->preprocessor-->material props-->material models-->在material models available 分组框中依次选取structural/linear/elastic/isotropic选项,设置弹性模量EX=0.7e9,泊松比=0.33。
4.生成几何模型、划分网格Main menu-->preprocessor-->modeling-->create-->keypoints-->in active cs 选项,输入关键点号和相应的坐标,如下:2)连线Main menu-->preprocessor-->modeling-->create-->lines-->lines-->straightline-->…3) 倒角Main menu-->preprocessor-->modeling-->create-->lines-->line fillet-->...4)对称Main menu-->preprocessor-->modeling-->reflect-->lines-->…之后将所有面add在一起。
Ansys复合材料结构分析总结

Ansys复合材料结构分析总结说明:整理自Simwe论坛,复合材料版块,原创fea_stud,大家要感他呀目录1# 复合材料结构分析总结(一)——概述篇5# 复合材料结构分析总结(二)——建模篇10# 复合材料结构分析总结(三)——分析篇13# 复合材料结构分析总结(四)——优化篇做了一年多的复合材料压力容器的分析工作,也积累了一些分析经验,到了总结的时候了,回想起来,总最初采用I-deas,到MSC.Patran、Nastran,到最后选定Ansys为自己的分析工具,确实有一些东西值得和大家分享,与从事复合材料结构分析的朋友门共同探讨。
(一)概述篇复合材料是由一种以上具有不同性质的材料构成,其主要优点是具有优异的材料性能,在工程应用中典型的一种复合材料为纤维增强复合材料,这种材料的特性表现为正交各向异性,对于这种材料的模拟,很多的程序都提供了一些处理方法,在I-Deas、Nastran、Ansys中都有相应的处理方法。
笔者最初是用I-Deas下建立各项异性材料结合三维实体结构单元来模拟(由于研究对象是厚壁容器,不宜采用壳单元),分析结果还是非常好的,而且I-Deas强大的建模功能,但由于课题要求要进行压力容器的优化分析,而且必须要自己写优化程序,I-Deas的二次开发功能开放性不是很强,所以改为MSC.Patran,Patran 提供了一种非常好的二次开发编程语言PCL(以后在MSC的版中专门给大家贴出这部分容),采用Patran结合Nastran的分析环境,建立了基于正交各项异性和各项异性两种分析模型,但最终发现,在得到的最后结果中,复合材料层之间的应力结果始终不合理,而模型是没有问题的(因为在I-Deas中,相同的模型结果是合理的),于是最后转向Ansys,刚开始接触Ansys,真有相见恨晚的感觉,丰富的单元库,开放的二次开发环境(APDL 语言),下面就重点写Ansys的容。
在ANSYS程序中,可以通过各项异性单元(Solid 64)来模拟,另外还专门提供了一类层合单元(Layer Elements)来模拟层合结构(Shell 99, Shell 91, Shell 181, Solid 46 和Solid 191)的复合材料。
ansys_复合材料分析介绍

SOLID95 是 20 节点的结构实体单元,在 KEYOPT(1)=1 时,其作用与单
层的 SOLID191 单元类似,包括应用方位角和失效准则,还允许非线性材料和大
◆ 料。
5.2.2
BEAM188 和 BEAM189 为三维有限应变梁单元,其截面可以包含多种材
定义材料的叠层结构
复合材料最重要的特征就是其叠层结构。每层材料都有可能由不同的正交各 向异性材料构成,并且其主方向也可能各不相同。对于叠层复合材料,纤维的方 向决定了层的主方向。 有两种方法可用来定义材料层的配置: 通过定义各层材料的性质; 通过定义表示宏观力、力矩与宏观应变、曲率之间相互关系的本构矩阵(只 适合于 SOLID46 和 SHELL99)。
5.2.2.1 定义各层材料的性质
这种方法由下到上一层一层定义材料层的配置。底层为第一层,后续的层沿 单元坐标系的 Z 轴正方向自底向上叠加。如果叠层结构是对称的,可以只定义一 半的材料层。 有时,某个物理层可能只延伸到模型的一部分。为了建立连续的层,可以把 这些中断的层的厚度设置为零,图 5-1 显示了一个四层模型,其中第二层在某处 中断了。
1
及一个特殊的“三明治”选项, 而 SHELL99 则不能。另外 SHELL91 更适用于大 变形的情况。 3、SHELL181—有限应变壳单元 SHELL181 是四节点三维壳单元,每个节点有六个自由度。该单元支持所有 的非线性功能(包括大应变),允许有多达 250 层材料层。应该通过截面命令, 而不是实常数来定义层的信息,可以通过 FC 命令来指定失效准则。 4、SOLID46—三维层状结构体单元 SOLID46 是八节点三维实体单元 SOLID45 的一种叠层形式,其每个节点有 三个自由度(UX, UY, UZ)。它可用来建立叠层壳或实体的有限元模型,每个单元 允许有多达 250 层的等厚材料层, 或者 125 层的厚度在单元面内呈现双线性变 化的不等厚材料层。 该单元的另一个优点是可以用叠加几个单元的方式来对多于 250 层的复合材料建立模型,并允许沿厚度方向的变形斜率连续。用户也可输入 自己的本构矩阵。SOLID46 调整横向的材料特性,以允许在横向上为常应力。与 八节点壳单元相比较,SOLID46 的阶次要低些,因此,如在壳结构应用中要得到 与 SHELL91 或 SHELL99 相同的求解精度,需要更密的网格。 5、SOLID191--层状结构体单元 SOLID191 是 20 节点三维实体单元 SOLID95 的一种叠层形式,其每个节点 有三个自由度(UX, UY, UZ)。它可用以建立厚的叠层壳或实体的有限元模型,每 个单元允许有多达 100 层的材料层。与 SOLID46 类似,SOLID191 可以模拟厚度 上的不连续。SOLID46 可以调整横向的材料特性,以允许在横向上为常应力。这 个单元不支持非线性材料或大挠度。 6、其他 除上述层单元外,还有其它的一些具有层功能的单元: ◆ 挠度。 ◆ SHELL63 是四节点壳单元,可用于对“三明治”壳结构作粗糙、近似 的计算。 象两块金属片之间夹有一层聚合物的问题就很典型,此时聚合物的弯曲 刚度相对于金属片的弯曲刚度来说是一个小量。用户可以用实常数 RMI 来修正 单元的弯曲刚度, 使其等效于由金属片引起的弯曲刚度。从中面到外层纤维的距 离(实常数 CTOP 和 CBOT)可用来获得“三明治”壳的表层输出应力。这种单元 不如 SHELL91 、SHELL99 和 SHELL181 那样用得频繁,故后面不再论述。 ◆ SOLID65 是三维钢筋混凝土实体单元,可以模拟在三个用户指定方向 配筋的各向同性介质。
Ansys复合材料结构分析操作指导书

Ansys10.0 复合材料结构分析操作指导书第一章概述复合材料是两种或两种以上物理或化学性质不同的材料复合在一起而形成的一种多相固体材料,具有很高的比刚度和比强度(刚度和强度与密度的比值),因而应用相当广泛,其应用即涉及航空、航天等高科技领域,也包括游艇、风电叶片等诸多民用领域。
由于复合材料结构复杂,材料性质特殊,对其结构进行分析需要借助数值模拟的方法,众多数值模拟软件中Ansys是个不错的选择。
Ansys软件由美国ANSYS公司开发,是目前世界上唯一一款通过ISO9001质量体系认证的分析设计软件,有着近40年的发展历史,经过多次升级和收购其它CAE(Computer Aided Engineering )软件,目前已经发展成集结构力学、流体力学、电磁学、声学和热学分析于一体的大型通用有限元分析软件,是一款不可多得的工程分析软件。
Ansys在做复合材料结构分析方面也有不俗的表现,此书将介绍如何使用该款软件进行复合材料结构分析。
在开始之前有以下几点需要说明,希望大家能对有限元法有大体的认识,以及Ansys软件有哪些改进,最后给出一些学习Ansys软件的建议。
1、有限元分析方法应用简介有限元法(Finite Element Method,简称FEM)是建立在严格数学分析理论上的一种数值分析方法。
该方法的基本思想是离散化模型,将求解目标离散成有限个单元(Element),并在每个单元上指定有限个节点(Node),单元通过节点相连构成整个有限元模型,用该模型代替实际结构进行结构分析。
在对结构离散后,要求解的基本未知量就转变为各个节点位移(Ansys中称之为DOF(Degree Of Freedom),试想一下,节点的位移包括沿x,y,z轴的平动和转动,也就是节点的自由度),节点位移通过求解一系列代数方程组得到,在求得节点位移后,利用节点位移和应力、应变之间的关系矩阵就可以求出各个节点上的应力、应变,应用线性插值便可以获得单元内任意位置的位移、应力、应变等信息。
ansys分析实例

ANSYS 分析实例集Whtao1998汇集11.ANSYS SOLID65环向布置钢筋的例2.混凝土非线性计算实例(1)- MISO单压 (6)3.混凝土非线性计算实例(2)-MISO约束4.混凝土非线性计算实例(3)- KINH滞回 (10)5.混凝土非线性计算实例(4)-K INH压-拉裂 (12)6.混凝土非线性计算实例(5) (13)7.混凝土非线性计算实例(6) (15)8.混凝土非线性计算实例(7)-MISO滞回 (17)9.混凝土非线性计算实例(8) (19)10.混凝土非线性计算实例(9)-梁平面应力 (21)11.四层弹簧-质点模型的地震分析 (23)12.悬臂梁地震分析 (49)13.用beam54单元描述变截面梁的例子 (73)14.变截面梁实例 (74)15.拱桥浇筑过程分析-单元生死应用实例 (75)16.简支梁实体与预应力钢筋分析实例 (76)17.简单的二维焊接分析-单元生死实例 (78)18.隧道开挖(三维)的命令流 (85)19.岩土接触分析实例 (102)20.钢筋混凝土管的动力响应特性分析实例......................................................................11021.隧道模拟开挖命令流(入门)......................................................................................11722.螺栓连接的模拟实现问题 (120)23.道路的基层、垫层模量与应力之间的关系 (130)23.滞回分析 (152)24.模拟某楼层浇注 (154)25.在面上施加移动的面力 (156)27.在任意面施加任意方向任意变化的压力 (160)28.预紧分析 (161)29.几何非线性+塑性+接触+蠕变 (163)30.埋设在地下的排水管32.幕墙企业玻璃简化计算 (173)33.等截面杆单元生死应用实例 (189)34.梁板建模联系 (190)36.简单的例子-如何对结构的振动控制分析 (193)37.模态分析结果的输出实例 (195)38.火车过桥动态加载实例(部分) (197)39.悬索结构的找形和计算的例题 (214)40.陶瓷杆撞击铝板的例子 (219)41.求反作用力的APDL 命令42.LS-DYNA 实例(部分) (223)43.路面分层填筑对路基的影响 (224)44.一个例子(含地震影响,求振兴与频率) (228)45.接触面上的压力总和 (232)46.施加位置函数荷载 (236)247.非线性分析考虑刚度退48.一个圆形水池的静力分析 (238)49.ANSYS中混凝土模式预应力模拟的算50.悬臂梁受重力作用发生大变形求其固有频率 (241)51.循环对称结构模态分析 (243)52.三角平台受谐波载荷作用的结构响应 (245)53.三角平台受一地震谱激励的应力分布和支反力 (247)54.三角平台受时程载荷作用的应力分布和变形过程 (249)55.经典层合板理论 (251)56.定易圆轨迹的例子 (258)57.模拟门式刚架施工-单元生死 (258)58.钢筋混凝土整体式模型例子 (261)子 (263)60.含预应力的特征值屈曲计算 (264)61.振型叠加计算及工况组合例子 (266)62.柱子稳定分析算(预应力,特征值屈曲,初始缺陷) (269)63.m odule M Concre te!混凝土模板 (272)64.混凝土开裂实例 (280)65.螺栓网格划分 (281)66.自由液面的土石坝平面渗流分析 (282)67.导出刚度矩阵 (286)析 (287)69.移动温度荷载计算 (294)70.S HSD用于壳-实体装配实例An (296)71.ansys 显示-隐式-回弹分析实例 (300)72.工况组合的经典例子 (315)31.ANSYS SOLID65环向布置钢筋的例子!一个管道,环向配筋率为1%,纵向配筋率为0.5%,径向配筋率为0.1%!FINISH/CLEAR/PREP7!*!单元属性ET,1,SOLID65!*KEYOPT,1,1,0KEYOPT,1,5,0KEYOPT,1,6,0KEYOPT,1,7,1!*!实参数1:不同方向配筋R,1,2,.001,,,2,.01,RMORE,90,,2,.005,90,90,!Adds real constants to a set.!材料属性!混凝土基本材料属性MPTEMP,,,,,,,, MPTEMP,1,0MPDATA,EX,1,,30E2 MPDATA,PRXY,1,,.2!屈服准则TB,MISO,1,1,5, TBTEMP,0TBPT,,0.0005,15 TBPT,,0.001,21 TBPT,,0.0015,24 TBPT,,0.002,27 TBPT,,0.003,24!破坏准则TB,CONC,1,1,9, TBTEMP,0 TBDATA,,.5,.9,3,30,,!抗拉和抗压是10倍的关系TBDATA,,,,1,,, MPTEMP,,,,,,,,4MPTEMP,1,0!钢材基本属性MPDATA,EX,2,,200E3MPDATA,PRXY,2,,.27!屈服准则TB,BISO,2,1,2,TBTEMP,0TBDATA,,310,2E3,,,,!管道内径和外径CYL4,0,0,3000, ,,,1000CYL4,0,0,2000, ,,,10000VSBV,1,2!定义局部柱坐标CSWPLA,11,1,1,1,!Defines a local coordinate system at the origin of the workin g plane. KWPAVE,11!move to keypoint11WPRO,,-90.000000,VSBW,3WPCSYS,-1,0!Defines the working plane location based on a coordinate syste m. KWPAVE,1WPRO,,,-90.000000VSBW,ALLESIZE,500,0,!注意:设定单元局部坐标VATT,1,1,1,11!*VSWEEP,ALL/DEVICE,VECTOR,1/ESHAPE,1.0!Displays elements with shapes determined from the real constan ts or section/REPLO!注意:红色代表最大配筋方向,绿色代表其次,蓝色表示最小配筋方向52.混凝土非线性计算实例(1)-MISO单压!MISO单压FINISH/CLEAR/PREP7ET,1,SOLID65R,1MP,EX,1,30E3MP,NUXY,1,0.2TB,CONCR,1,1TBTEMP,0TBDATA,1,0.3,0.5,2.5,-1TB,MISO,1,1,15TBPT,,100E-6, 3.0TBPT,,300E-6,8.3TBPT,,600E-6,14.6TBPT,,900E-6,19.1TBPT,,1100E-6,21.0TBPT,,1250E-6,22.0TBPT,,1400E-6,22.6TBPT,,1550E-6,22.8TBPT,,1650E-6,22.7TBPT,,1800E-6,22.3TBPT,,2000E-6,21.4TBPT,,2800E-6,16.8TBPT,,3200E-6,14.7TBPT,,3800E-6,12.3TBPT,,4600E-6,9.9!TB,MKIN,1!TBTEMP,,STRAIN!TBDATA,,600E-6,1100E-6,1600E-6,3000E-6,4500E-6 !TBTEMP,0!TBDATA,,15,21.5,23,16,9BLOCK,0,50,0,50,0,50MSHAPE,0,3DMSHKEY,1ESIZE,106VMESH,ALL NSEL,S,LOC,X,0 D,ALL,UX,0 NSEL,S,LOC,Y,0 D,ALL,UY,0 NSEL,S,LOC,Z,0 D,ALL,UZ,0 NSEL,S,LOC,Y,50 CP,1,UY,ALL NSEL,ALL FINISH/VIEW,1,1,1,1 /REPLOT/SOLU ANTYPE,STATIC AUTOTS,OFF OUTRES,ALL,1 TIME,50 NSUBST,50D,1,UY,-.25NSEL,ALLSOLVEFINISH/POST26NSOL,2,1,U,Y,UYRFORCE,3,1,F,Y,FYADD,4,2,,,STRAIN,,,-1/50ADD,5,3,,,STRESS,,,-1/2500/AXLAB,X,STRAIN/AXLAB,Y,STRESSXVAR,4PLVAR,5FINISH3.混凝土非线性计算实例(2)-MISO约束压7!MISO约束压FINISH/CLEAR/PREP7ANTYPE,STATICET,1,SOLID65R,1MP,EX,1,30E3MP,NUXY,1,0.2TB,CONCR,1,1 TBTEMP,0TBDATA,1,0.3,0.5,2.5,-1 TB,MISO,1,1,15 TBPT,,100E-6, 3.0 TBPT,,300E-6,8.3 TBPT,,600E-6,14.6 TBPT,,900E-6,19.1 TBPT,,1100E-6,21.0 TBPT,,1250E-6,22.0 TBPT,,1400E-6,22.6TBPT,,1550E-6,22.8TBPT,,1650E-6,22.7TBPT,,1800E-6,22.3TBPT,,2000E-6,21.4TBPT,,2800E-6,16.8TBPT,,3200E-6,14.7TBPT,,3800E-6,12.3TBPT,,4600E-6,9.9!TB,MKIN,1!TBTEMP,,STRAIN!TBDATA,,600E-6,1100E-6,1600E-6,3000E-6,4500E-6!TBTEMP,0!TBDATA,,15,21.5,23,16,9BLOCK,0,50,0,50,0,50ESIZE,10VMESH,ALLMSHAPE,0,3DNSEL,S,LOC,X,0D,ALL,UX,08NSEL,S,LOC,Y,0 D,ALL,UY,0 NSEL,S,LOC,Z,0 D,ALL,UZ,0 NSEL,S,LOC,Y,50 CP,1,UY,ALL D,ALL,UX,0D,ALL,UZ,0 NSEL,ALL FINISH/VIEW,1,1,1,1 /REPLOT/SOLU OUTRES,ALL,1 TIME,20 NSUBST,20,0,20 D,1,UY,-.04 LSWRITE,1 TIME,30 NSUBST,20,0,20 D,1,UY,-.06LSWRITE,2TIME,40NSUBST,100D,1,UY,-.1LSWRITE,3LSSOLVE,1,3FINISH/POST26NSOL,2,1,U,Y,UY RFORCE,3,1,F,Y,FYADD,4,2,,,STRAIN,,,-1/50 ADD,5,3,,,STRESS,,,-1/2500 /AXLAB,X,STRAIN/AXLAB,Y,STRESSXVAR,4PLVAR,5FINISH94.混凝土非线性计算实例(3)-KINH滞回!KINH滞回FINISH/CLEAR/PREP7ANTYPE,STATICET,1,SOLID65R,1MP,EX,1,30E3MP,NUXY,1,0.2TB,CONCR,1,1TBTEMP,0TBDATA,1,0.3,0.5,2.5,-1TB,KINH,1,1,10TBPT,,150E-6, 4.5TBPT,,600E-6,14.8 TBPT,,1000E-6,20.25 TBPT,,1300E-6,22.3 TBPT,,1480E-6,22.8 TBPT,,1620E-6,22.8 TBPT,,1800E-6,22.3 TBPT,,2000E-6,21.4 TBPT,,3500E-6,12.8 TBPT,,5000E-6,9.0BLOCK,0,50,0,50,0,50 ESIZE,10VMESH,ALL MSHAPE,0,3D NSEL,S,LOC,X,0D,ALL,UX,0NSEL,S,LOC,Y,0D,ALL,UY,0NSEL,S,LOC,Z,0D,ALL,UZ,0NSEL,S,LOC,Y,50 CP,1,UY,ALL10NSEL,ALL FINISH/VIEW,1,1,1,1 /REPLOT/SOLU OUTRES,ALL,ALL TIME,20 NSUBST,20,0,20 D,1,UY,-.04 LSWRITE,1 TIME,35 NSUBST,15,0,15 D,1,UY,-.01 LSWRITE,2 TIME,90 NSUBST,55,0,55 D,1,UY,-.12 LSWRITE,3 TIME,125 NSUBST,35,0,35 D,1,UY,-.05LSWRITE,4TIME,175NSUBST,50,0,50D,1,UY,-.15LSWRITE,5LSSOLVE,1,5FINISH/POST26NSOL,2,1,U,Y,UY RFORCE,3,1,F,Y,FYADD,4,2,,,STRAIN,,,-1/50 ADD,5,3,,,STRESS,,,-1/2500 /AXLAB,X,STRAIN/AXLAB,Y,STRESSXVAR,4PLVAR,5FINISH115.混凝土非线性计算实例(4)-KINH压-拉裂!KINH压——拉裂压到峰值,泄载、反向加载到拉裂FINISH/CLEAR/PREP7ANTYPE,STATICET,1,SOLID65R,1MP,EX,1,30E3MP,NUXY,1,0.2TB,CONCR,1,1TBTEMP,0TBDATA,1,0.3,0.5,2.5,-1TB,KINH,1,1,10 TBPT,,150E-6, 4.5 TBPT,,600E-6,14.8 TBPT,,1000E-6,20.25 TBPT,,1300E-6,22.3 TBPT,,1480E-6,22.8 TBPT,,1620E-6,22.8 TBPT,,1800E-6,22.3 TBPT,,2000E-6,21.4 TBPT,,3500E-6,12.8 TBPT,,5000E-6,9.0BLOCK,0,50,0,50,0,50 ESIZE,10VMESH,ALL MSHAPE,0,3D NSEL,S,LOC,X,0D,ALL,UX,0NSEL,S,LOC,Y,0D,ALL,UY,0NSEL,S,LOC,Z,0D,ALL,UZ,012CP,1,UY,ALL NSEL,ALL FINISH/VIEW,1,1,1,1 /REPLOT/SOLU OUTRES,ALL,ALL TIME,20 NSUBST,20,0,20 D,1,UY,-.04 LSWRITE,1 TIME,45 NSUBST,25,0,25 D,1,UY,.01 LSWRITE,2 LSSOLVE,1,2 FINISH/POST26RFORCE,3,1,F,Y,FYADD,4,2,,,STRAIN,,,-1/50ADD,5,3,,,STRESS,,,-1/2500/AXLAB,X,STRAIN/AXLAB,Y,STRESSXVAR,4PLVAR,5FINISH6.混凝土非线性计算实例(5)FINISH/CLEAR/PREP7ANTYPE,STATIC13ET,1,SOLID65R,1MP,EX,1,30E3MP,NUXY,1,0.2TB,CONCR,1,1 TBTEMP,0TBDATA,1,0.3,0.5,2.5,-1 TB,KINH,1,1,18 TBPT,,100E-6, 3.0 TBPT,,300E-6,8.3 TBPT,,600E-6,14.6 TBPT,,900E-6,19.1 TBPT,,1100E-6,21.0 TBPT,,1250E-6,22.0 TBPT,,1400E-6,22.6 TBPT,,1550E-6,22.8 TBPT,,1650E-6,22.7 TBPT,,1800E-6,22.3 TBPT,,2000E-6,21.4 TBPT,,2400E-6,19.1 TBPT,,2800E-6,16.8TBPT,,3200E-6,14.7TBPT,,3600E-6,13.0TBPT,,4100E-6,11.3TBPT,,4600E-6,9.9BLOCK,0,50,0,50,0,50ESIZE,10VMESH,ALLMSHAPE,0,3DNSEL,S,LOC,X,0D,ALL,UX,0NSEL,S,LOC,Y,0D,ALL,UY,0NSEL,S,LOC,Z,0D,ALL,UZ,0NSEL,S,LOC,Y,50CP,1,UY,ALLNSEL,ALLFINISH14/VIEW,1,1,1,1/REPLOT/SOLUOUTRES,ALL,ALLTIME,50NSUBST,50,0,50D,1,UY,-.25SOLVEFINISH/POST26NSOL,2,1,U,Y,UY RFORCE,3,1,F,Y,FYADD,4,2,,,STRAIN,,,-1/50 ADD,5,3,,,STRESS,,,-1/2500 /AXLAB,X,STRAIN/AXLAB,Y,STRESSXVAR,4PLVAR,5FINISH7.混凝土非线性计算实例(6)!MISO约束压FINISH/CLEAR/PREP7ANTYPE,STATICET,1,SOLID65R,1MP,EX,1,30E3MP,NUXY,1,0.2TB,CONCR,1,1TBTEMP,0TBDATA,1,0.3,0.5,2.5,-1TB,KINH,1,1,15TBPT,,100E-6, 3.015TBPT,,300E-6,8.3TBPT,,600E-6,14.6TBPT,,900E-6,19.1TBPT,,1100E-6,21.0TBPT,,1250E-6,22.0TBPT,,1400E-6,22.6TBPT,,1550E-6,22.8TBPT,,1650E-6,22.7TBPT,,1800E-6,22.3TBPT,,2000E-6,21.4TBPT,,2800E-6,16.8TBPT,,3200E-6,14.7TBPT,,3800E-6,12.3TBPT,,4600E-6,9.9!TB,MKIN,1!TBTEMP,,STRAIN!TBDATA,,600E-6,1100E-6,1600E-6,3000E-6,4500E-6 !TBTEMP,0!TBDATA,,15,21.5,23,16,9BLOCK,0,50,0,50,0,50ESIZE,10VMESH,ALL MSHAPE,0,3D NSEL,S,LOC,X,0 D,ALL,UX,0 NSEL,S,LOC,Y,0 D,ALL,UY,0 NSEL,S,LOC,Z,0 D,ALL,UZ,0 NSEL,S,LOC,Y,50 CP,1,UY,ALL D,ALL,UX,0D,ALL,UZ,0 NSEL,ALL FINISH/VIEW,1,1,1,1 /REPLOT/SOLU OUTRES,ALL,1 TIME,20 NSUBST,20,0,2016D,1,UY,-.04LSWRITE,1TIME,30NSUBST,20,0,20D,1,UY,-.06LSWRITE,2TIME,40NSUBST,100D,1,UY,-.1LSWRITE,3LSSOLVE,1,3FINISH/POST26NSOL,2,1,U,Y,UY RFORCE,3,1,F,Y,FYADD,4,2,,,STRAIN,,,-1/50 ADD,5,3,,,STRESS,,,-1/2500 /AXLAB,X,STRAIN/AXLAB,Y,STRESSXVAR,4PLVAR,5FINISH8.混凝土非线性计算实例(7)-MISO滞回!MISO滞回FINISH/CLEAR/PREP7ANTYPE,STATICET,1,SOLID65R,1MP,EX,1,30E3MP,NUXY,1,0.2TB,CONCR,1,1TBTEMP,0TBDATA,1,0.3,0.5,2.5,-117TB,MISO,1,1,15 TBPT,,100E-6, 3.0 TBPT,,300E-6,8.3 TBPT,,600E-6,14.6 TBPT,,900E-6,19.1 TBPT,,1100E-6,21.0 TBPT,,1250E-6,22.0 TBPT,,1400E-6,22.6 TBPT,,1550E-6,22.8 TBPT,,1650E-6,22.7 TBPT,,1800E-6,22.3 TBPT,,2000E-6,21.4 TBPT,,2800E-6,16.8 TBPT,,3200E-6,14.7 TBPT,,3800E-6,12.3 TBPT,,4600E-6,9.9BLOCK,0,50,0,50,0,50 ESIZE,10VMESH,ALL MSHAPE,0,3D NSEL,S,LOC,X,0D,ALL,UX,0NSEL,S,LOC,Y,0 D,ALL,UY,0 NSEL,S,LOC,Z,0 D,ALL,UZ,0 NSEL,S,LOC,Y,50 CP,1,UY,ALL NSEL,ALL FINISH/VIEW,1,1,1,1 /REPLOT/SOLU OUTRES,ALL,ALL TIME,20 NSUBST,20,0,20 D,1,UY,-.04 LSWRITE,1 TIME,35NSUBST,15,0,15 D,1,UY,-.01。
Ansys在复合材料结构优化设计中的应用_图文(精)

A一13玻璃钢学会第十六届玻璃钢/复合材料学术年会论文集2006年Amys在复合材料结构优化设计中的应用覃海艺,邓京兰(武汉理工大学材料科学与工程学院,武汉430070摘要:优化设计方法在复合材料结构设计中起着十分重要的作用。
本文详细介绍了Ansys两种优化设计方法.目标函数最优设计和拓扑优化设计的过程,并运用目标函数最优设计方法对复合材料夹层结构进行了最优结构层合设计和运用拓扑优化设计方'法对玻璃钢圆凳进行了最佳形状设计。
结果证明Ansys优化设计方法在复合材料结构设计中的有效性。
关键词:Ansys;优化设计方法;目标函数最优设计;拓扑优化设计;复合材料l前言复合材料是由两种或多种性质不同的材料组成,具有比强度、比刚度高、耐疲劳性能好及材料与性能可设计强等特点,广泛应用于汽车、建筑、航空、卫生等领域。
复合材料通过各相组分性能的互补和关联获得优异的性能,因此复合材料各组分之间及材料整体结构的合理布置,充分发挥复合材料的性能已成为设计的关键所在…。
Ansys软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。
优化设计是一种寻找确定最优设计方案的技术,Ansys强大的优化设计功能已广泛地应用于复合材料制品的结构设计心J。
2Ansys中的优化设计方法【3娟j2.1目标函数最优设计“最优设计”是指满足所有的设计要求,而且所需(如重量、面积、体积、应力、费用等的方案最小,即目标函数值最小。
也就是说,最优设计方案是一个最有效率的方案。
在Ansys中设计方案的任何方面都是可以优化的,如尺寸(如厚度、形状(如过渡圆角的大小、支撑位置、制造费用、自然频率、材料特性等。
实际上,所有可以参数化的Ansys选项都可以作优化设计。
目标函数最优设计是通过改变设计变量(自变量的数值,使状态变量(设计变量的函数,因变量在满足一定条件时,目标函数(因设计变量的改变而有所改变的值最小。
目标函数最优设计的一般步骤为①生成循环所用的分析文件,该文件须包括整个分析的过程,并满足以下条件:参数化建立模型(PREIy7,对模型进行初次求解(SOLUTION,对初次求解的结果提取并指定状态变量和目标函数(POSTl/POST26;②在Ansys数据库里建立与分析文件中变量相对应的参数,这一步是标准的做法,但不是必须的(BEGIN或OPT;③进入OPT优化处理器,指定要进行优化设计循环的分析文件(oPT;④声明优化变量:指定哪些参数是设计变量,哪些参数是状态变量,哪个参数是目标函数;⑤选择优化工具或优化算法:优化算法是使单个函数(目标函数在控制条件下达到最小值的传统算法,包括零阶算法和一阶算法;⑥指定优化循环控制方式,每种优化方法和工具都有相应的循环控制参数,比如最大迭代次数等;⑦进行优化分析;⑧查看设计序列结果(OPT和后处理(POSTl/POST26。
[整理]Ansys复合材料结构分析总结.
![[整理]Ansys复合材料结构分析总结.](https://img.taocdn.com/s3/m/00857e6c16fc700aba68fc2b.png)
Ansys复合材料结构分析总结说明:整理自Simwe论坛,复合材料版块,原创fea_stud,大家要感谢他呀目录1# 复合材料结构分析总结(一)——概述篇5# 复合材料结构分析总结(二)——建模篇10# 复合材料结构分析总结(三)——分析篇13# 复合材料结构分析总结(四)——优化篇做了一年多的复合材料压力容器的分析工作,也积累了一些分析经验,到了总结的时候了,回想起来,总最初采用I-deas,到MSC.Patran、Nastran,到最后选定Ansys为自己的分析工具,确实有一些东西值得和大家分享,与从事复合材料结构分析的朋友门共同探讨。
(一)概述篇复合材料是由一种以上具有不同性质的材料构成,其主要优点是具有优异的材料性能,在工程应用中典型的一种复合材料为纤维增强复合材料,这种材料的特性表现为正交各向异性,对于这种材料的模拟,很多的程序都提供了一些处理方法,在I-Deas、Nastran、Ansys中都有相应的处理方法。
笔者最初是用I-Deas下建立各项异性材料结合三维实体结构单元来模拟(由于研究对象是厚壁容器,不宜采用壳单元),分析结果还是非常好的,而且I-Deas强大的建模功能,但由于课题要求要进行压力容器的优化分析,而且必须要自己写优化程序,I-Deas的二次开发功能开放性不是很强,所以改为MSC.Patran,Patran 提供了一种非常好的二次开发编程语言PCL(以后在MSC的版中专门给大家贴出这部分内容),采用Patran结合Nastran的分析环境,建立了基于正交各项异性和各项异性两种分析模型,但最终发现,在得到的最后结果中,复合材料层之间的应力结果始终不合理,而模型是没有问题的(因为在I-Deas中,相同的模型结果是合理的),于是最后转向Ansys,刚开始接触Ansys,真有相见恨晚的感觉,丰富的单元库,开放的二次开发环境(APDL 语言),下面就重点写Ansys的内容。
在ANSYS程序中,可以通过各项异性单元(Solid 64)来模拟,另外还专门提供了一类层合单元(Layer Elements)来模拟层合结构(Shell 99, Shell 91, Shell 181, Solid 46 和Solid 191)的复合材料。
Ansys的复合材料分析

© 2005 ANSYS, Inc.
8
ANSYS, Inc. Proprietary
SHELL99 Linear Layered Structural Shell Element
• Element Definition
– 8node, 3D shell element with six degrees of freedom at each node – Thin to moderately thick plate and shell structures with a sideto thickness ratio of roughly 10 or greater
© 2005 ANSYS, Inc.
rietary
Benefits of Composites
• Stronger and stiffer than metals on a density basis • Capable of high continuous operating temperatures • Highly corrosion resistant • Electrically insulating/conducting/selectively conducting properties • Tailorable thermal expansion properties • Exceptional formability • Outstanding durability
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
© 2013 ANSYS, Inc.
ANSYS, Inc. Proprietary
ACP Tutorial
Goals:
• Basic composite workflow from a geometry to post-processing. • Build a simple sandwich panel.
ACP Tutorial
• • Update Model and then refresh Setup in the ACP (Pre) component: Open Setup of ACP (Pre) with a double-click on Setup (or Edit… in drop-down menu )
13
© 2013 ANSYS, Inc.
Load case: Clamped panel under uniform pressure.
2
© 2013 ANSYS, Inc.
ANSYS, Inc. Proprietary
ACP Tutorial
• • Open a new Workbench project and restore the archive “tutorial_1.wbpz”. Review the boundary conditions, and verify that the model is welldefined with the default material. Review the results with an isotropic material.
10
© 2013 ANSYS, Inc.
ANSYS, Inc. Proprietary
ACP Tutorial
• Review the Biax properties through the Plot tab.
Click on apply to update the model & OK to close the window.
– Carbon UD with 0.2 mm thickness, – Foam core with 15 mm thickness.
•
9
© 2013 ANSYS, Inc.
ANSYS, Inc. Proprietary
ACP Tutorial
• Define a new Stackup with the UD Carbon. A Stackup is a preassembled tape also called non-crimp fabric (NCF).
ANSYS, Inc. Proprietary
ห้องสมุดไป่ตู้
ACP Tutorial
• Define a new Rosette (using the default settings):
•
After the material definition the orientations and offset directions have to be defined. This is done with Oriented Element Sets which are defined now.
3
© 2013 ANSYS, Inc.
ANSYS, Inc. Proprietary
ACP Tutorial
• Add the ACP (Pre) component to the existing analysis.
4
© 2013 ANSYS, Inc.
ANSYS, Inc. Proprietary
11
© 2013 ANSYS, Inc.
ANSYS, Inc. Proprietary
ACP Tutorial
• Define a Sub Laminate as shown below and plot the mechanical properties.
12
© 2013 ANSYS, Inc.
ACP Tutorial
First composite materials have to be defined in ANSYS Workbench Engineering Data: There are two possibilities:
1. Import preconfigured materials from the Composite Materials catalog 2.
(see figure below) Create new materials In this example, you will create new materials as shown in the following slides.
5
© 2013 ANSYS, Inc.
ANSYS, Inc. Proprietary
ACP Tutorial
Define also a core material:
• Uncheck the filter button to display all properties in the toolbox
7
© 2013 ANSYS, Inc.
ANSYS, Inc. Proprietary
1
8 © 2013 ANSYS, Inc.
2
3
ANSYS, Inc. Proprietary
ACP Tutorial
• In ACP further material data (Fabrics, Stackup and Sublaminates) have to be defined. Define a new Fabric with the defined materials:
ACP Tutorial
Define a unidirectional material in ANSYS Workbench Engineering Data with the following properties:
6
© 2013 ANSYS, Inc.
ANSYS, Inc. Proprietary